Timing Cycles

Timing cycles

Objectives

Upon completion of this program the participant will be able to:

- Identify the basic timing cycles of a single and dual chamber pacemaker.
- Describe the characteristics of upper rate pacing in the DDD pacing mode.
- Describe how timing cycles are affected by rate adaptive pacing.
- Explain PMT and name one treatment option.

Outline

- Single- and Dual-Chamber Timing
 - Describe the 4 scenarios of dual chamber pacing
- Upper Rate Pacing Characteristics
- Timing & Rate-Adaptive Pacing
- Pacemaker Mediated Tachycardia (PMT)

Pacemakers have two basic functions

Sense intrinsic rhythm and Inhibit

Timing cycles

- Single Chamber
- Dual Chamber
- Adaptive Rate

Single Chamber Timing

Single chamber

Interval (ms) = 60,000 / rate (ppm)

60,000 / 60 ppm = 1000 ms

Single chamber

Terminology

Refractory Period:

In pacing, a programmable parameter that controls the length of time following a paced or sensed beat, during which the pacemaker's sensing circuit does not respond to sensed events.

- PVARP=Post Ventricular Atrial Refractory
 Period=atrial refractory period
- VRP=Ventricular <u>R</u>efractory <u>Period</u>

Single chamber

Dual-Chamber Timing

Timing intervals

Timing intervals

Example

VA = V-V - AV V-V = VA + AV

Lower Rate = 60 ppm V-V = 1000 ms AV Delay = 200 ms

VA = 1000 ms - 200 ms = 800 ms

AV sequential pacing

Complete inhibition

A-Sense / V-Sense

Atrial pacing with conduction

A-Pace / V-Sense

P-synchronous pacing

A-Sense / V-Pace

Timing intervals

Terminology

Blanking Period

- The interval of time following a paced output during which the pacemaker's sense amplifiers are disabled
- This timing parameter prevents cross chamber sensing

PVARP AND TARP

- TARP = AV + PVARP
- 2:1 Rate = 60,000 / TARP

Pacemaker Wenckebach

2:1 Block Vp Vp As AR As AV AV **PVARP PVARP TARP TARP Maximum Tracking Rate**

2:1 Rate = 60,000 / TARP

Upper rate behavior is determined by TARP and MTR

2:1 Block > URL

2:1 Block < URL

MTR = 140 ppm AV = 200 ms PVARP = 300 ms TARP = 500 ms

- 2:1 Block Point
 - = 60,000/TARP
 - = 60,000/500
 - = 120 bpm

Adaptive Rate

In Rate Responsive pacing (modes ending with "R"), sensor(s) in pacemaker are used to detect changes in physiologic needs and increase the pacing rate accordingly.

- The sensor
 - Sensors are used to detect changes in metabolic demand
 - "Sensors" sense motion (piezoelectrode crystal or accelerometer) or use a physiologic indicator, i.e., minute ventilation
- The algorithm
 - With-in the software of the pacemaker
 - Uses the input from the sensor to determine the appropriate paced heart rate for the activity.

Sensor-Determined Rate Controls V-V Interval

Shortened Sensing Windows at High Rates

Sensor-Controlled Pacing Not Limited By PVARP

DDDR: Sinus or sensor?

Follow the Faster Input

Pacemaker mediated tachycardia

Rapid ventricular pacing secondary to retrograde conduction

Retrograde conduction

Conduction of an electrical impulse from the ventricles to the atria through the heart's conduction system

Conditions required for PMT

- Loss of A-V Synchrony
- Intact V-A Conduction
- V-A Conduction Time > programmed PVARP

Initiators of retrograde conduction

Retrograde conduction is caused by any loss of AV synchrony, such as the following:

- PVC (Retrograde conduction)
- Oversensed P wave
- Undersensed P wave
- Loss of Atrial Capture
- EMI
- Magnet Application or Removal

PMT prevention

- Program longer PVARP
 - PVARP after PVC
- Use PMT prevention scheme
- Need to make a programming change, or PMT will recur

Summary

- List and explain the four different scenarios that may be observed with dual-chamber pacing.
- Explain upper rate pacing characteristics of Wenckebach and 2:1 Block.
- Describe the mechanism and corrective actions for Pacemaker Mediated Tachycardia (PMT).

Timing Cycles