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Introduction to Temporal LogicIntroduction to Temporal Logic

� Why Temporal Logic?

◦ Formulae statically true or false for a given model in 

classical propositional, predicate logic

◦ Most systems are dynamic 

◦ Property verification for concurrent, reactive systems◦ Property verification for concurrent, reactive systems

� Temporal Logic

◦ Formulae are not statically true or false in a model

◦ Models are transitions systems

◦ Dynamic notion of truth



Linear Temporal LogicLinear Temporal Logic

� Timeline is the underlying structure of 
time in Linear Temporal Logic

� We assume time in LTL is isomorphic to 
the natural numbers

� Under this assumption, time in LTL:� Under this assumption, time in LTL:
◦ Is discrete

◦ Has an initial moment with no predecessors

◦ Is infinite into the future

� Timeline is a set of paths: t0 t1 t2…



Linear vs. Branching  Linear vs. Branching  

� Linear-time Temporal Logic
◦ Time as a set of paths

◦ Each path is a sequence of moments

◦ At each moment, only one possible next 
future momentfuture moment

� Computational Tree Logic (Branching)
◦ Time as a tree

◦ Root as present moment

◦ Branches out into the future



Linear vs. Branching (Intuition)Linear vs. Branching (Intuition)

Linear vs. Branching        (Alessandro Artable,  “Formal Methods”)



SyntaxSyntax

The rules for generating Linear Temporal Logic

(LTL):

� Each ϕ is a formula

If ϕ and ψ are formulae then ¬ ϕ , ϕ ∧∧∧∧ ψ , ϕ ∨∨∨∨� If ϕ and ψ are formulae then ¬ ϕ , ϕ ∧∧∧∧ ψ , ϕ ∨∨∨∨
ψ , ϕ � ψ are formulae

� If ϕ and ψ are formulae then X ϕ , F ϕ , G ϕ , 
ϕ U ψ , ϕW ψ , ϕ R ψ



Syntax (cont’d)Syntax (cont’d)

Defined in Backus Naur Form:

ϕ ::= p | True | False 

| ¬ ϕ | ϕ ∧∧∧∧ ψ | ϕ ∨∨∨∨ ψ |  ϕ � ψ

|  X ϕ |  F ϕ | G ϕ | ϕ U ψ | ϕW ψ|  X ϕ |  F ϕ | G ϕ | ϕ U ψ | ϕW ψ

| ϕ R ψ

Atomic propositions:  p ∈Atoms

Boolean operators:  ∧∧∧∧ ∨∨∨∨ ¬  ����

Temporal operators:  X  G  F  U  W  R



Well Formed FormulaeWell Formed Formulae

The well formed formulae in LTL follow the
same rules as well formed formulae in
classical propositional logic, plus the rules
for temporal operators.

The following are NOT well formed formulae:

◦ U r – since U is a binary operator, not unary

◦ p G q – since G is a unary operator, not binary



Syntax ExamplesSyntax Examples

� F p ∧∧∧∧ G q ���� pW r

� F (p ���� G r) ∨∨∨∨ ¬ q U p

� p W (q W r)

� G F p ���� F(q ∨∨∨∨ s)



MMore Practical Syntax Examplesore Practical Syntax Examples

� ((x = 0) ∧∧∧∧ (x + 3)) � X (x = 3)

� lottery-win � G rich

� send � F receive

� start-lecture � talk U end-lecture

� born � alive U dead



Transition SystemTransition System

Timeline as a linear time structure M=(S, �,L) where

◦ S is a set of states,

◦ � is a transition relation such that every s∈S has some 

r∈S with s�r

◦ L : S ���� PowerSet (Atoms) is a labeling of each state 

∈

∈

◦ L : S ���� PowerSet (Atoms) is a labeling of each state 

with a set of atomic propositions in Atoms.

Semantics are given with respect to a path π = s1 s2 s3…

Suffix of trace starting at si is defined as πi = si si+1 si+2…



Transition System ExampleTransition System Example



Transition System ExampleTransition System Example
The set of paths is limited 

by what we can construct 

from the given states and 

transitions.  So

π = S1,S1,S1,S1,S1,S1,S1,….

and

π = S1,S1,S3,S2,S3,S2,….

are in M (read: can be 
defined by it).  But

π = S1,S1,S3,S2,S1,S1….

is not!



SemanticsSemantics

� π |=  True

� not   π |= False

� π |=  p iff p ∈ L(s1)   (π = s1 s2 s2 … )

� π |=  ¬ϕ iff not π |= ϕ

π |=  ϕ ∧∧∧∧ ψ iff π |= ϕ and π |= ψ� π |=  ϕ ∧∧∧∧ ψ iff π |= ϕ and π |= ψ

� π |=  ϕ ∨∨∨∨ ψ iff π |= ϕ or π |= ψ

� π |=  ϕ � ψ iff π |= ϕ if  π |= ψ

� π |=  X ϕ iff π2|= ϕ

(holds iff ϕ holds at the next state)

� π |=  F ϕ iff ∃i ≥ 1 πi |= ϕ

(at some future state ϕ is true)



Semantics (cont’d)Semantics (cont’d)

� π |=  G ϕ iff ∀i ≥ 1 πi |= ϕ

(at all the future states, ϕ is true)

� π |=  ϕ U ψ iff    ∃i ≥ 1 πi |= ψ and ∀ j < i πj |= ϕ

(ϕ is true until ψ is true)

� π |=  ϕW ψ iff    (∃i ≥ 1 π |= ψ and ∀ j < i π |= ϕ)

∀

� π |=  ϕW ψ iff    (∃i ≥ 1 πi |= ψ and ∀ j < i πj |= ϕ)

or  ∀ k ≥ 1 πk |= ϕ

(ϕ is true until ψ is true, or ϕ is always true)

� π |=  ϕ R ψ iff   (∃i ≥ 1 πi |= ϕ and  ∀j<i  πj |= ψ)

or ∀ k ≥ 1 πk |= ψ)

(ψ is true until ϕ is true, or ψ is always true)



p U q  (p until q)

Semantics (Intuition)Semantics (Intuition)

p W q  (p weak until q)

p R q  (p release q)



Semantic Notion AppliedSemantic Notion Applied

From this model, we can 
derive different (infinite) 
paths:

π = S1,S1,S1,S1,S1,S1,S1,….

π = S1,S1,S2,S3,S2,S3,,…

π = S1,S1,S3,S2,S3,S2,…



Semantic Notion Applied (Cont’d)Semantic Notion Applied (Cont’d)

Given a path π, and a 
formula ϕ, we can now 
evaluate the truth of that 
formula.

So for:

π = S1,S1,S1,S1,S1,S1,S1,….

π |=  p  is true

by the rule that “π |=  p
iff    p ∈ L(s1)”.  



Semantics ExampleSemantics Example

Given the model to the left, 
we can then say for
π = S1,S1,S3,S2,S3,S2,S3,…

π |=  p  is true
π |=  q  is trueπ |=  q  is true
π |=  p ∧∧∧∧ q is true
π |=  r   is false
π |=  F p is true
π |=  X p is true
π |=  X (X p) is false
π |=  G r is false
π |=  G (X (X r)) is true
π |=  p U r is true



Another Semantics ExampleAnother Semantics Example

Given the model to the left, 
we can then say for
π = S1,S1,S3,S2,S2,….

π |=  p is true
π |=  X p is trueπ |=  X p is true
π |=  X (X p) is false
π |=  p U r is false
π |=  q U r is true
π |=  q W r is true
π |=  r R q is true
π |=  F p is true
π |=  F (X (X p)) is false



Same Model, Different PathsSame Model, Different Paths
Given the model to the left, 
we can then say for
π = S1,S1,S3,S2,S2,….

π |=  p U r is FALSE

But for:But for:

π = S1,S2,S2,S2,….

π |=  p U r is TRUE

Truth is no longer static 
for a given model.  
Different paths may 
evaluate differently for 
the same formula!



Further DefinitionsFurther Definitions

Entailment:  f |= y iff ∀M , ∀i ∈ N. (M , πi) |= f ⇒
(M , πi) |= y

Equivalence:  f ≡ y iff ∀M , ∀i ∈ N. (M , πi) |= f ⇔
(M , πi) |= y

Satisfiable:  An LTL formula ϕϕϕϕ is satisfiable iff there 

∀ ∀ ∈ ⇔

Satisfiable:  An LTL formula ϕϕϕϕ is satisfiable iff there 
exists a linear time structure M = (S,�,L) such 
that  M, π |= ϕϕϕϕ.  Any such structure defines a 
model of ϕϕϕϕ.

Valid:  A formula ϕϕϕϕ is valid iff for all linear time 
structures M = (S, �,L), we have M, π |= ϕϕϕϕ , 
and write |= ϕϕϕϕ .



Examples:Examples:

Some significant validities
� |= G ¬¬¬¬ p ≡ ¬¬¬¬ F p
� |= F ¬¬¬¬ p ≡ ¬¬¬¬ G p
� |= X ¬¬¬¬ p ≡ ¬¬¬¬ X p

Satisfiable or valid
� p � F q
satisfiable formula but not valid

� G (p � F q) � (p � F q)
valid formula



ConclusionConclusion

� Linear Temporal Logic is a useful and 
accessible framework for modeling 
systems which involve changes occurring 
over time!

� Questions?
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