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Introduction to Temporal Logic

* Why Temporal Logic!
> Formulae statically true or false for a given model in
classical propositional, predicate logic

> Most systems are dynamic

> Property verification for concurrent, reactive systems

e Temporal Logic
> Formulae are not statically true or false in a model
> Models are transitions systems

> Dynamic notion of truth



Linear Temporal Logic

e Timeline is the underlying structure of
time in Linear Temporal Logic

* We assume time in LTL is isomorphic to
the natural numbers

e Under this assumption, time in LTL:

0]

0]

0]

s discrete
-as an initial moment with no predecessors

s infinite into the future

e Timeline is a set of paths: ¢, t, t, ...



Linear vs. Branching

e Linear-time Temporal Logic
> Time as a set of paths
> Each path is a sequence of moments

> At each moment, only one possible next
future moment

e Computational Tree Logic (Branching)
> Time as a tree
> Root as present moment
> Branches out into the future



Linear vs. Branching (Intuition)
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Linear vs. BranChing (Alessandro Artable, “Formal Methods”)




Syntax

The rules for generating Linear Temporal Logic
(LTL):

e Each ¢ is a formula

e If p and y are formulae then=v @, 0 Ay, Vv
v, ¢ =2 y are formulae

e If @ and y are formulae then X ¢, F ¢, G ¢,
PUvy,oWy,0RYy



Syntax (cont’d)
Defined in Backus Naur Form:

¢ == p | True | False

To|loAy|ovy| 9DV
Xo|Fo|Go|loUvy|oWy
¢oRvy

Atomic propositions: p € Atoms

Boolean operators: A v 1 =
Temporal operators: X G F U W R



Well Formed Formulae

The well formed formulae in LTL follow the
same rules as well formed formulae in
classical propositional logic, plus the rules
for temporal operators.

The following are NOT well formed formulae:

> U r —since U is a binary operator, not unary
> p G q—since G is a unary operator, not binary



Syntax Examples

*FpAGgq2>pWr
*F(p2>Gr)vaqUp
*PW(@QWr)

*GFp—> F(qvys)



More Practical Syntax Examples

c(x=0)A(x+3) 2> X (x=3)
* lottery-win = G rich
e send =2 F receive

o start-lecture = talk U end-lecture

e born = alive U dead



Transition System

Timeline as a linear time structure M=(S, -,L) where
° S is a set of states,

o => is a transition relation such that every s€S has some
reS with s>r

o L:S -> PowerSet (Atoms) is a labeling of each state
with a set of atomic propositions in Atoms.

Semantics are given with respect to a path m =5, s, s5 ...

Suffix of trace starting at s; is defined as ; = s; §;,; Si4y .-



Transition System Example

M= (S,—,L)is as
follows:

S = {51,52,53}

— = {(51,51),(51,53),

(51,52),(52,53),
(53,52)}

L(51) = {p.q}
L(52) = {p.r}
L(53) = {q,r}




Transition System Example
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The set of paths is limited
by what we can construct
from the given states and
transitions. So

n=SI,SI,SI,SI,SI,S1,S1,....
and

nt = S1,S1,S3,52,S3,S2,....

are in M (read: can be
defined by it). But

m=351,51,53,52,51,51....

is not!



Semantics

o 1 |= True

e not T |= False

eTU|= p iff pel(s) (mM=s;5,5, )
o TU|= — iff notm|=0

= oAy iff m|=p andmt|= vy
= ¢pvy iff m|=p ormt|=vy
=2y iff m|=e if M=V
= Xo iff 1,|= 0o

(holds iff ¢ holds at the next state)
eTt|= Fo iff Ji=zlm|=0

4 A A4 4 4 A

(at some future state @ is true)



Semantics (cont’d)

e mm|= Go iff VizIltm|=0¢
(at all the future states, @ is true)
e mm|= Uy iff EIiZIT[i|=\|Jande<iT[j|=(p
(¢ is true until y is true)
e = oWy iff Fix>Im |=\|Jande<iT[j |= )
or Vk=zIlm|=0¢
(¢ is true until y is true, or ¢ is always true)
e |= oRy iff @iz]m|=0¢and Vj<i m;|=vy)
orVk=Iml|=vy)

(v is true until @ is true, or y is always true)



Semantics (Intuition)

51-»82-»83->»84->85->56->87->...
=== pUq (puntil q)
p q

S51->82—->83->54->535->56->57->...
S
P q P W q (p weak until q)

"

851->52-»>33->84->85->86->87->. ..

p R g (p release q)

L3
L
L)



Semantic Notion Applied

From this model, we can
derive different (infinite)
paths:

= S1,51,52,53,S2,S3,,...

= S1,51,S3,52,S3,52,...

nt=S1,S1,S1,S1,S1,S1,S1,....



Semantic Notion Applied (Cont'd)

Given a path 1,and a
formula ¢, we can now
evaluate the truth of that
formula.

So for:

nt=S1,S1,S1,S1,S1,S1,S1,....

T |= p istrue

by the rule that“mt |= p
iff pel(s)”




Semantics Example

51

ip.q}

S3

Given the model to the left,

we can then say for
rt=S1,51,S3,52,S3,52,S3,...

p Is true

= q is true

= pAQq istrue

= r is false

= F p istrue

= X p is true

= X (X p) is false

= Gr is false

= G (X (X)) is true
= pUr istrue
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Another Semantics Example

51

ip.q}

53

Given the model to the left,

we can then say for
= S1,51,S3,52,52,....

p is true

= X pis true

= X (X p) is false

= p Uris false

q U ris true

= qW ris true

= rRqis true

= F pis true

= F (X (X p)) is false

A4 A 4444444
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Same Model, Different Paths

51

ip.q}

53

Given the model to the left,

we can then say for
= S1,51,S3,52,52,....

n|= pUris FALSE

But for:

= S1,52,52,52,....

n|= pUris TRUE
Truth is no longer static
for a given model.
Different paths may

evaluate differently for
the same formula!



Further Definitions

Entailment: f|=yiff VM ,VieN. M, 1) |=f=

M,T) =y
Equivalence: f=yiff VM,ViEN.M, 1) |=f <
M,T) |=y

Satisfiable: An LTL formula @ is satisfiable iff there

exists a linear time structure M = (S,—2,L) such
that M, TT |= @. Any such structure defines a

model of (.

Valid: A formula @ is valid iff for all linear time
structures M = (S, 2,L),we have M, TT |= @,
and write |= @ .



Examples:

Some significant validities
.=G—IPE—|FP
‘=F—|PE—|GP
‘=X—|PE—|XP

Satisfiable or valid
°p 2 Fq

satisfiable formula but not valid
*G(p>Fq)>(p>Fq)

valid formula



Conclusion

e Linear Temporal Logic is a useful and
accessible framework for modeling
systems which involve changes occurring
over time!

e Questions?
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