
The Programming Language Go

The Programming Language Go

Jessica Pavlin
Department of Computing and Software

McMaster University

November 16, 2010

The Programming Language Go

Outline

1 Who & Why

2 How
Basic Structure
Types and Interfaces
Concurrency
Implementation

3 Concluding Remarks

The Programming Language Go

Who & Why

Who Designed and Implemented Go?

The Programming Language Go

Who & Why

A Very Brief History

Sept. 2007 Robert Griesemer, Rob Pike and Ken Thompson
started sketching the goals for a new language on
a white board

Sept. 2007 Within a few days they had their goals and plan
sketched out

Sept. 2007 They continued to design the new language
whenever they had time

Jan. 2008 Thompson started the compiler
May 2008 Taylor started the gcc front end for Go using specs
Late 2008 Russ Cox joined in helped to implement the

language and libraries

The Programming Language Go

Who & Why

A Very Brief History

Sept. 2007 Robert Griesemer, Rob Pike and Ken Thompson
started sketching the goals for a new language on
a white board

Sept. 2007 Within a few days they had their goals and plan
sketched out

Sept. 2007 They continued to design the new language
whenever they had time

Jan. 2008 Thompson started the compiler
May 2008 Taylor started the gcc front end for Go using specs
Late 2008 Russ Cox joined in helped to implement the

language and libraries

The Programming Language Go

Who & Why

Motivation for a New Language

Frustration with existing languages and environments for
systems programming
They felt that programming languages were partly to blame
for programming becoming “too difficult”
Didn’t want to have to choose anymore between:

Efficient compilation
Efficient execution
Ease of programming

The Programming Language Go

Who & Why

Goals for a New Language

1 As easy to program as an interpreted, dynamically typed
language

2 The efficiency and safety of a statically typed, compiled
language

3 Modern: support for networked and multicore computing
4 Fast
5 Make programming fun again

The Programming Language Go

Who & Why

A Very Brief History

Sept. 2007 September 2007: Robert Griesemer, Rob Pike
and Ken Thompson started sketching the goals for
a new language on the white board

Sept. 2007 Within a few days they had their goals and plan
sketched out

Sept. 2007 They continued to design the new language
whenever they had time

Jan. 2008 Thompson started the compiler
May 2008 Taylor started the gcc front end for Go using specs
Late 2008 Russ Cox joined in helped to implement the

language and libraries

The Programming Language Go

Who & Why

A Very Brief History

Sept. 2007 September 2007: Robert Griesemer, Rob Pike
and Ken Thompson started sketching the goals for
a new language on the white board

Sept. 2007 Within a few days they had their goals and plan
sketched out

Sept. 2007 They continued to design the new language
whenever they had time

Jan. 2008 Thompson started the compiler
May 2008 Taylor started the gcc front end for Go using specs
Late 2008 Russ Cox joined in helped to implement the

language and libraries

The Programming Language Go

Who & Why

A Very Brief History

Sept. 2007 September 2007: Robert Griesemer, Rob Pike
and Ken Thompson started sketching the goals for
a new language on the white board

Sept. 2007 Within a few days they had their goals and plan
sketched out

Sept. 2007 They continued to design the new language
whenever they had time

Jan. 2008 Thompson started the compiler
May 2008 Taylor started the gcc front end for Go using specs
Late 2008 Russ Cox joined in helped to implement the

language and libraries

The Programming Language Go

Who & Why

A Very Brief History

Sept. 2007 September 2007: Robert Griesemer, Rob Pike
and Ken Thompson started sketching the goals for
a new language on the white board

Sept. 2007 Within a few days they had their goals and plan
sketched out

Sept. 2007 They continued to design the new language
whenever they had time

Jan. 2008 Thompson started the compiler
May 2008 Taylor started the gcc front end for Go using specs
Late 2008 Russ Cox joined in helped to implement the

language and libraries

The Programming Language Go

How

Go’s Ancestors

Basic Syntax:
C
Pascal

Concurrency:
Newsqueak
Limbo

The Programming Language Go

How

Go’s Ancestors

Basic Syntax:
C
Pascal

Concurrency:
Newsqueak
Limbo

The Programming Language Go

How

Basic Structure

Hello World

package main

import fmt "fmt"

func main() {
fmt.Println("Hello, world")

Hello World! in Go

Basic structure of a Go program

The Programming Language Go

How

Basic Structure

Hello World

package main

import fmt "fmt"

func main() {
fmt.Println("Hello, world")

Hello World! in Go

All source code requires a package name

The Programming Language Go

How

Basic Structure

Hello World

package main

import newName "fmt"

func main() {
newName.Println("Hello, world")

Hello World! in Go

You can import packages
Imported packages can have qualified identifiers

The Programming Language Go

How

Types and Interfaces

Objects in Go

Go is Object-Oriented (OO)-ish
Has types and methods
Allows for OO programming
All types can have methods (even integers and strings)
“Objects” implicitly satisfy interfaces
Not an OO language:

No classes
No subclassing

The Programming Language Go

How

Types and Interfaces

Types

Definition:
A type determines the set of values and operations specific
to values of that type

Syntax:

Type = TypeName | TypeLit |
"(" Type ")" .

TypeName = QualifiedIdent.
TypeLit = ArrayType | StructType |

PointerType | FunctionType |
InterfaceType | SliceType |
MapType | ChannelType .

The Programming Language Go

How

Types and Interfaces

Anonymous Types

Types can be anonymous:

type ABC struct {
x float
int
string

}

c := ABC{ 3.5, 7, "hello" }
fmt.Println(c.x, c.int, c.string)

An example of an anonymous type

Prints:

3.5 7 hello

The Programming Language Go

How

Types and Interfaces

Types Example

type Day int

var dayName = []string{"Sunday", "Monday",
"Tuesday", "Wednesday",
"Thursday", "Friday",
"Saturday"}

Using integer types as days of the week.

The Programming Language Go

How

Types and Interfaces

Initializing Types: var vs. :=

Different ways to initialize types:
1 var

Initializes a zeroed instance of the type
Initializes int, float, etc., and any new type T
var v1 ABC // 1. type ABC

2 :=
Initializes a to a value if provided
Compiler guesses type if not p

var i int
j := 0 // i == j = true!

var k int
k = 3
l := 3 // k == l = true!

The Programming Language Go

How

Types and Interfaces

Initializing Types: new vs. make

Different ways to initialize types:
1 new

Returns a reference to a newly allocated, zeroed instance
of type T
Creates new instances of types not listed in 3
v2 := new(ABC) // 2. type *ABC

2 make
Returns an initialized (not zero) value of type T (not T*)
Creates slices, maps and channels only
var v3 []int = make([]int, 100)

Slice to reference to new array of 100 ints

The Programming Language Go

How

Types and Interfaces

Arrays

Arrays are different then they are in languages like C:
Arrays are values
Assigning an array to another copies all of the elements
When passing an array to a function, the function receives
a copy of elements
The size of an array is part of it’s type

[3]int { 1, 2, 3 }
[10]int { 1, 2, 3 }
[...]int { 1, 2, 3 }
[10]int { 2:1, 3:1, 5:1, 7:1 }

The Programming Language Go

How

Types and Interfaces

Slices Defined

Definition:
A reference to a contiguous segment of an array and
contains a numbered sequence of elements from that array

Syntax:

SliceType = "[" "]" ElementType .

The Programming Language Go

How

Types and Interfaces

Understanding Slices

Details:
Slices wrap arrays to give a more flexible, powerful, and
convenient interface to sequences of data
Conceptually, slices have 3 elements: base array
reference, length, capacity
Run-time data still passed by value (pointer, length and
capacity (max length))
Length of a slice may change (so long as it still fits within
the limits of the underlying array)

var a []int
a = ar[7:9];
var slice = []int{ 1,2,3,4,5 }

Sample initializations of slices

The Programming Language Go

How

Types and Interfaces

Creating Methods for Types

Syntax:

MethodExpr = ReceiverType "." MethodName .
ReceiverType = TypeName |

"(" "*" TypeName ")" .

Sample method for our previously defined type

func (d Day) String() string {
if 0 <= d && int(d) < len(dayName) { return

dayName[d] }
return "NoSuchDay"

}

Using integer types as days of the week.

The Programming Language Go

How

Types and Interfaces

Interfaces

Definition:
An interface type specifies a method set called its interface

Syntax:

InterfaceType = "interface"
"{" { MethodSpec ";" } "}" .

MethodSpec = MethodName Signature |
InterfaceTypeName .

The Programming Language Go

How

Types and Interfaces

Interface Example

type Stringer interface {
String() string

}

func print(args ...Stringer) {
for i, s := range args {
if i > 0 { fmt.Print(" ") }
fmt.Print(s.String())
}

}

Example of an interface for the Stringer function

print(Day(1))
=> Monday

The Programming Language Go

How

Types and Interfaces

Example of a General Interface

func print(args ...interface{}) {
for i, a := range args {
if i > 0 { fmt.Print(" ") }
switch a.(type) {

case Stringer: fmt.Print(a.String())
case int: fmt.Print(itoa(a))
case string: fmt.Print(a)

}
}

}

Creating an print method that works for many types

The Programming Language Go

How

Types and Interfaces

Advantages of using Interfaces

The advantages of using interfaces over similar OO concepts
include:

1 A type can satisfy many interfaces
2 The original implementations of the interfaces do not need

to know about the what’s using it, or even that that
interface exists

Don’t need do explicitly declare dependencies between the
types

3 Interfaces are lightweight

The Programming Language Go

How

Concurrency

Go is a Concurrent Language

Go is concurrent not parallel.

Intended for program structure, not to maximize
performance
However, this style does keep work nicely distributed on a
multi-core system

The Programming Language Go

How

Concurrency

Simple Example

A new flow of control starts whenever you put go in front of the
work that you want done.

func main() {
go expensiveComputation(x, y, z)
anotherExpensiveComputation(a, b, c)

}

Using a goroutine is similar to a thread, but it’s lighter weight
since the stacks are small, segmented and sized on demand.

The Programming Language Go

How

Concurrency

Channels

Channels provide a mechanism for two concurrently executing
functions to synchronize execution and communicate.
Syntax:

ChannelType = ("chan" ["<-"] | "<-" "chan")
ElementType .

ElementType can be any type (int, float, ...)
New channels are easily made using make, by passing it
the channel type and size of buffer:

make(chan int, 100)

The Programming Language Go

How

Implementation

Compilers

There are currently two Go compilers:
1 6g/8g/5g (the compilers for AMD64, x86, and ARM

respectively)
2 gccgo: a GCC frontend written in C++

Not complete as of last update of documentation
3 Also a very small runtime environment

All run on Unix-like systems and a port to Windows have
recently been integrated into main distributions.

The Programming Language Go

Concluding Remarks

Goals Reviewed

Did Go meet it’s goals?
As easy to program as an interpreted, dynamically typed
language

Yes! Really easy to pick up and code creation is very fast.
Efficiency and safety of a statically typed, compiled
language

Yes! Go’s Type system is expressive but lightweight
Modern - support for networked and multicore computing

Yes! We’ve shown that concurrency is easy and well
supported in Go

Fast
Yes! Runtimes of Go with standard C implementations
show very comparable results

Make programming fun again

The Programming Language Go

Concluding Remarks

Goals Reviewed

Did Go meet it’s goals?
As easy to program as an interpreted, dynamically typed
language

Yes! Really easy to pick up and code creation is very fast.
Efficiency and safety of a statically typed, compiled
language

Yes! Go’s Type system is expressive but lightweight
Modern - support for networked and multicore computing

Yes! We’ve shown that concurrency is easy and well
supported in Go

Fast
Yes! Runtimes of Go with standard C implementations
show very comparable results

Make programming fun again

The Programming Language Go

Concluding Remarks

Goals Reviewed

Did Go meet it’s goals?
As easy to program as an interpreted, dynamically typed
language

Yes! Really easy to pick up and code creation is very fast.
Efficiency and safety of a statically typed, compiled
language

Yes! Go’s Type system is expressive but lightweight
Modern - support for networked and multicore computing

Yes! We’ve shown that concurrency is easy and well
supported in Go

Fast
Yes! Runtimes of Go with standard C implementations
show very comparable results

Make programming fun again

The Programming Language Go

Concluding Remarks

Goals Reviewed

Did Go meet it’s goals?
As easy to program as an interpreted, dynamically typed
language

Yes! Really easy to pick up and code creation is very fast.
Efficiency and safety of a statically typed, compiled
language

Yes! Go’s Type system is expressive but lightweight
Modern - support for networked and multicore computing

Yes! We’ve shown that concurrency is easy and well
supported in Go

Fast
Yes! Runtimes of Go with standard C implementations
show very comparable results

Make programming fun again

The Programming Language Go

Concluding Remarks

Goals Reviewed

Did Go meet it’s goals?
As easy to program as an interpreted, dynamically typed
language

Yes! Really easy to pick up and code creation is very fast.
Efficiency and safety of a statically typed, compiled
language

Yes! Go’s Type system is expressive but lightweight
Modern - support for networked and multicore computing

Yes! We’ve shown that concurrency is easy and well
supported in Go

Fast
Yes! Runtimes of Go with standard C implementations
show very comparable results

Make programming fun again

The Programming Language Go

Concluding Remarks

Goals Reviewed

Did Go meet it’s goals?
As easy to program as an interpreted, dynamically typed
language

Yes! Really easy to pick up and code creation is very fast.
Efficiency and safety of a statically typed, compiled
language

Yes! Go’s Type system is expressive but lightweight
Modern - support for networked and multicore computing

Yes! We’ve shown that concurrency is easy and well
supported in Go

Fast
Yes! Runtimes of Go with standard C implementations
show very comparable results

Make programming fun again

The Programming Language Go

Concluding Remarks

Usage

Go is being used on some small scale productions.
Go is still experimental
Go is in use internally at Google

The server that runs golang.org was written in Go

The Programming Language Go

Concluding Remarks

How You Can Contribute

Go is open source and would like your help!

1 Download it and play and report any bugs to the Issue
Tracker

2 Contribute code

The Programming Language Go

References

golang.org:
Tutorials
Videos
Language Definition
Information on where and how to contribute
etc.

Others:
Wikipedia: http://en.wikipedia.org/wiki/Go_
(programming_language)

Wikipedia:
http://en.wikipedia.org/wiki/Newsqueak

http://en.wikipedia.org/wiki/Go_(programming_language)
http://en.wikipedia.org/wiki/Go_(programming_language)
http://en.wikipedia.org/wiki/Newsqueak

The Programming Language Go

Thank you.
Questions?

	Who & Why
	How
	
	Basic Structure
	Types and Interfaces
	Concurrency
	Implementation

	Concluding Remarks
	

