
Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

Continuing

Yinghui Wang,Mehrdad Alemzadeh

CAS 706

November 4, 2010

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

Introduction

OOP

FP
example

Mixin Classes Extending A

Pattern Matching
So what does pattern matching do?

Types
Parameterized Types
Abstract Types

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

Introduction

I The design of Scala started in 2001 at the EPFL by Martin
Odersky

I stands for ”Scalable language”
I desirable feature of a program or algorithm
I Aspects of scalability

I Multi-paradigm Language
allow programmers to use the best tool for a job

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

OOP

I Scala is a pure OO language

I extended by subclassing and multiple inheritance

I runs on the standard Java and .NET platforms

I interoperates seamlessly with all Java libraries

I ”Scala goes further than all other well-known languages in
fusing object oriented and functional programming.”(Martin
Odersky)

I Main goals

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

example

FP

I also supports functional programming −anonymous
function, Higher-order functions, curryin, Pattern matching,
Tail call

I languages = no side effects

I FP can include:
−garbage collection, Abstract types, functions as

first-class values, lazy evaluation

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

example

Examples I

I def functionName(arg1: Type1, arg2: Type2): ReturnType =
functionDefinition
−scala > def timesTwo(n: Int): Int = n ∗ 2

timesTwo: (Int)Int
−scala > timesTwo(10)

res0: Int = 20

I Higher-Order Functions
scala> def applyFn(fn: Int => Int, arg: Int) = fn(arg)

applyFn: ((Int) => Int,Int)Int scala>
applyFn(timesTwo, 10)

res2: Int = 20

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

example

Examples II

I Anonymous functions:
(arg1: Type1, arg2: Type2) => functionDefinition
scala> (n: Int) => n ∗ 3

res4: (Int) => Int = < function >
And used like so:
scala> applyFn((n: Int) => n ∗ 3, 10)

res5: Int = 30
scala> applyFn(∗ 3, 10)

res7: Int = 30

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

example

Example

import scala.io. def toInt(in: String): Option[Int] = try {
Some(Integer.parseInt(in.trim))
}catch
{
case e: NumberFormatException =¿ None }

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

Mixin Classes Extending A I

trait RichIterator extends A {
def foreach(f: T => Unit)

{ while (hasNext) f(next) }
}

class StringIterator
(s: String) extends A {
type T = Char
private var i = 0
def hasNext =

i < s.length()
def next = { val ch = s

charAt i; i+ = 1; ch } }

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

Cont

object StringIteratorTest {
def main(args: Array[String]) {
class Iter extends StringIterator(args(0)) with RichIterator
val iter = new Iter
Iter foreach println } }

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

So what does pattern matching do?

Pattern Matching

I a first-match policy.

I case classPerson(firstName:String, lastName: String);
val People = List(

Person(”Jane”, ”Smith”),
Person(”John”, ”Doe”),
Person(”Jane”, ”Eyre”));
for(Person(”Jane”, last) ¡- people)yield ”Ms. ” + last;

t-match policy.

I Results ”Ms. Smith”, ”Ms. Eyre”

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

So what does pattern matching do?

So what does pattern matching do?

I Sort of like a switch statement in Java. you match what are
essentially the creation forms of objects.

I case Nil => ...

I case x :: xs => ...

I Patterns actually nest, just like expressions nest, so you can
have very deep patterns. Generally the idea is that a pattern
looks just like an expression.

I So why do you need pattern matching?

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

Parameterized Types
Abstract Types

Types

I Scala is a statically-typed language

I comprehensive, complete, and consistent

I Scala’s parameterized types are similar to Java and
C#generics and C++ templates

I a declaration like class List[+A] means that List is
parameterized by a single type, represented by A. The +is
called a variance annotation.

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

Parameterized Types
Abstract Types

Parameterized Types

Sometimes, a Parameterized type like list is called a type
constructor, because it is used to create specific types. For
example,List is the type constructor for List[String]and List[Int],
which are different types. In fact, it is more accurate to say that all
traits and classes are type constructors. Those without type
parameters are effectively zero-argument, parameterized types.

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

Parameterized Types
Abstract Types

Abstract Types I

Scala also supports abstract types, which are common in functional
languages overlap somewhat Parameterized types are the most
natural fit for parameterized container types like List and Option

I Consider the declaration of Some from the standard library.
case final class Some[+A](val x : A) { ... }

I abstract types
case final class Some(val x : ???) { type A ... }

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

Parameterized Types
Abstract Types

Cont

I If a type will have constructor arguments declared using a
”placeholder” type that has not yet been defined, then
parameterized types are the only good solution (short of using
Any or AnyRef).

I You can use abstract types as method arguments and return
values within a function.

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

Parameterized Types
Abstract Types

Resources I

First step
http://www.artima.com/scalazine/articles/steps.html

Pattern matching
http://www.artima.com/scalazine/articles

/pattern matching.html

Type classes
http://lambda-the-ultimate.org/taxonomy/term/32

Wiki scala
http://en.wikipedia.org/wiki/

Scala (programming language)

Yinghui Wang,Mehrdad Alemzadeh Continuing



Outline
Introduction

OOP
FP

Mixin Classes Extending A
Pattern Matching

Types

Parameterized Types
Abstract Types

Resources II

Types
http://programming−scala.labs.oreilly.com/ch12.html

http://www.scala−lang.org/

http://www.cs.caltech.edu/ mvanier/hacking/

rants/scalable computer programming languages.html

Yinghui Wang,Mehrdad Alemzadeh Continuing


	Introduction
	OOP
	FP
	example

	Mixin Classes Extending A
	Pattern Matching
	So what does pattern matching do?

	Types
	Parameterized Types
	Abstract Types


