
OCaml Objects and Classes

Mohammad Alam and Damith A. Karunaratne

CAS 706: Programming Languages

November 30, 2010

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Outline

1 Classes and Objects

2 Virtual and Private Methods

3 Subtyping and Coercions

4 Class Interfaces

5 Inheritance

6 Parameterized Classes

7 Polymorphic Methods

8 Recursive Classes

9 Functional Objects

10 Object Cloning

11 Friends

12 Module System vs Class System

13 OOP of OCaml vs OOP of Java/C++

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Classes and Objects

Classes can be defined using the class and object keywords.

class point =
object

val mutable x = 0
method get x = x
method move d = x ← x + d

end;;

class point :
object val mutable x : int method get x
: int method move : int → unit end

Class bodies are evaluated at creation time.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Initializing Classes

Classes can be initialized using the new keyword.

let x0 = ref 0;;

class point =
object

val mutable x = incr x0; !x0
method get x = x
method move d = x ← x + d

end;;

new point#get x;;
- : int = 1

new point#get x;;
- : int = 2

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Initializing Classes with Parameters

Parameters can be specified after the class name.

class adjusted point x init =
let origin = (x init / 10) * 10 in
object

val mutable x = origin
method get x = x
method get offset = x - origin
method move d = x ← x + d

end;;

Class bodies can contain expressions.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Referencing Self

If a reference to self is to be used, it must be explicitly bound.

Binding will occur at invocation time.

let ints = ref [];;

class my int =
object (self)

method n = 1
method register = ints := self :: !ints

end;;

Error: This expression has type < n : int; register : ′a; .. >
but an expression was expected of type ′b
Self type cannot escape its class

Error caused by external an reference to self.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Referencing Self

If a reference to self is to be used, it must be explicitly bound.

Binding will occur at invocation time.

let ints = ref [];;

class my int =
object (self)

method n = 1
method register = ints := self :: !ints

end;;

Error: This expression has type < n : int; register : ′a; .. >
but an expression was expected of type ′b
Self type cannot escape its class

Error caused by external an reference to self.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Initializers

Initializers can be used to evaluate an expression immediately after the object is
built.

class adjusted point x init =
let origin = (x init / 10) * 10 in
object (self)

val mutable x = origin
method get x = x
method get offset = x - origin
method move d = x ← x + d
method print = print int self#get x
initializer print string ”new point at ”;

self#print; print newline()
end;;

let p = new printable point 17;;
new point at 10

Initializers cannot be overriden and are evaulated sequentially.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Immediate Objects

Objects can be created without a class.

let minmax x y =
if x < y then object method min = x method max = y end
else object method min = y method max = x end;;

val minmax : ′a → ′a → < max : ′a; min : ′a > = <fun>

(+) Immediate objects can appear within expressions.

(-) No type abbreviation.

(-) Cannot inherit from immediate objects.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Virtual Methods

In OCaml, one can define virtual methods as well as virtual instance
variables.

class virtual abstract point =
object

val mutable virtual x : int
method get x = x
method virtual move : int → unit

end;;

class point x init =
object

inherit abstract point
val mutable x = x init
method move d = x ← x + d

end;;

A class containing virtual methods or virtual instance variables must be
flagged virtual, and cannot be instantiated.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Private Methods

A private method donot appear in the object interface.

class restricted point x init =
object (self)

val mutable x = x init
method get x = x
method private move d = x ← x + d
method bump = self #move 1

end;;
Type: < get : int; bump : unit > (in the context of type

epression)

Private methods are inherited, i.e., they are visible in subclasses.

Private methods can be made public in a subclass.

Private methods can also be virtual and is defined like, method private
virtual identifer : type.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Subtyping and Coercions

Subtype: A type t1 is a subtype of t2, written t1 <: t2, if values of type t1 can
be used where values of type t2 are expected. Example,

type animal = < eat : unit >
type dog = < eat : unit; bark : unit >

Then subtyping relation dog <: animal holds.

There are two forms of Subtyping:

1 width subtyping: It means if a subtype t1 implements all the methods
(and possibly more) of t2 with the same method types.

2 depth subtyping: It is defined as: “If each method type si is a subtype of
method type ti , then the object type < f1..n : s1..n > is a subtype of the
object type < f1..n : t1..n >. [Hic08]”

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Subtyping and Coercions (Cont..)

Coercions, in OCaml is never implicit or automatic. In a coercions (obj : t1 :>
t2), there are two necessary conditions:

1 the expression obj should have type t1; and

2 type t1 must be a subtype of t2.

There are two ways to perform coercion:

1 Single coercion: (object :> object type)

2 Double coercion: (object : object type :> object type)

For example, if colored point is a subtype of points then coercion can be done
as following:

let colored point to points cp = (cp : colored point :> points); ;

But, the following is not support in OCaml, as it is narrowing coercion.

(p : points :> colored point); ;

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Subtyping and Coercions (Cont..)

The fully explicit coercion (Double coercion) is more precise and is
sometimes unavoidable.

Single coercion (e :> t2) may fail if:

the type t2 is recursive, or
the type t2 has polymorphic structure

The solution is to use fully explicit coercion (e : t1 :> t2).

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Class Interface

Class interfaces are inferred from class definitions.

Interfaces can be defined directly to restrict the type of a class.

class type restricted point type =
object

method get x : int
method bump : unit

end;;

class type restricted point type =
object method bump : unit method get x : int end

fun (x : restricted point type) → x;;

- : restricted point type → restricted point type = <fun>

Concrete instance variables and concrete private methods can be hidden.

Public methods and and virtual members cannot be hidden.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Class Interface in Modules

Interfaces can be defined in module signatures in order to restrict the inferred
signature of a module.

module type POINT =sig
class restricted point : int →

object
method get x : int
method bump : unit

end
end;;

module type POINT =
sig

class restricted point :
int → object method bump : unit method

get x : int end
end

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Inheritance

Through inheritance, one may do the following:

add new fields and new private methods

add new public methods

override fields or methods, but the type can’t be changed

class animal species =
object

method eat = Printf .printf “A %s eats.\n” species
method speak = Printf .printf “A %s speaks.\n” species

end;;

class pet ~species ~owner ~name =
object

inherit animal species
val owner = owner
method name : string = name
method eat =

Printf .printf ”A %s eats.\n” name;
super#eat

end;;

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Inheritance Cont..

Subtyping and inheritance are not related. Inheritance is a syntactic
relation between classes while subtyping is a semantic relation between
types. For example, in the previous example the class ‘pet’ could have
been defined directly, without inheriting from the class ‘animal’; the type
of pet would remain unchanged and thus still be a subtype of animal.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Multiple Inheritance

Inheritance could be done from multiple independent classes.

Inheritance could be done from multiple virtual classes.

Inheritance could be done from combination of independent and virtual
classes. Virtual classes also inherits the same way.

class floatNumber =
object

inherit comparable
inherit number
...

end;;

Previous definitions of a method can be reused by binding the related
ancestor.

The name super is a pseudo value identifier that can only be used to
invoke a super-class method.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Multiple Inheritance Cont..

Repeated inheritance is allowed in OCaml, i.e., a class can inherit an-
other, along multiple paths (diamond problem) as well as directly. Example,

class a =
object

method x = 1
end;;

class b =
object

inherit a
method x = 2
inherit a

end;;
(new b)#x ; ;

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Multiple Inheritance Cont..

Example (cont..)

class a =
object

val mutable x = 0
method set y = x ← y
method get = x

end;;
class b =

object
inherit a as super1
inherit a as super2
method test =

super1#set 10;
super2#get

end;;

In the above example, the mutable field x is duplicated not included
textually.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Multiple Inheritance Cont..

OCaml policy for multiple inheritance:

1 textual inclusion, if methods are visible, then follows overriding
rule: if a method is defined more than once, the last definition
is used.

2 Duplication, if fields and methods are hidden (private), then
follows copy rule.

Problem with textual inclusion is that, it might be necessary to know the
text of all repeated superclasses.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Parameterized Classes

Reference cells can be implemented as objects but parameterized classes are
needed (for non-immediate objects).

class ref x init =
object

val mutable x = x init
method get = x
method set y = x ← y

end;;

Error: Some type variables are unbound in this type:
class ref :

′a →
object

val mutable x : ′a
method get : ′a
method set : ′a → unit

end
The method get has type ′a where ′a is unbound

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Parameterized Classes

Reference cells can be implemented as objects but parameterized classes are
needed (for non-immediate objects).

class ref x init =
object

val mutable x = x init
method get = x
method set y = x ← y

end;;

Error: Some type variables are unbound in this type:
class ref :

′a →
object

val mutable x : ′a
method get : ′a
method set : ′a → unit

end
The method get has type ′a where ′a is unbound

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Class Type Parameters

Class type parameters are listed between [and].

class [a] ref x init =
object

val mutable x = (x init : a)
method get = x
method set y = x ← y

end;;

class [′a] ref :
′a → object val mutable x : ′a method get : ′a method set :
′a → unit end

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Constrained Class Type Parameters

The type parameters in the declaration can be constrained within the class
definitions body.

class [′a] circle (c : ′a) =
object

constraint ′a = #point
val mutable center = c
method center = center
method set center c = center ← c
method move = center#move

end;;

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Inheriting Parameterized Classes

Parameterized classes can be ”specialized”.

class [′a] colored circle c =
object

constraint ′a = #colored point
inherit [′a] circle c
method color = center#color

end;;

The type parameter must be specified when inheriting.

Parameterized classes are polymorphic in their contents.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Polymorphic Methods

Parameterized classes on their own don’t accommodate polymorphic methods.

class [′a] intlist (l : int list) =
object

method empty = (l = [])
method fold f (accu : ′a) = List.fold left f accu l

end;;

let l = new intlist [1; 2; 3];;

val l : ′ a intlist = <obj>

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Polymorphic Methods Cont..

l#fold (fun x y → x+y) 0;;

- : int = 6

l;;

- : int intlist = <obj>

l#fold (fun s x → s ˆ string of int x ˆ ” ”) ””;;

Error: This expression has type int but an expression was
expected of type string

The objects are not polymorphic as the use of fold method fixes the type.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Polymorphic Methods Cont..

l#fold (fun x y → x+y) 0;;

- : int = 6

l;;

- : int intlist = <obj>

l#fold (fun s x → s ˆ string of int x ˆ ” ”) ””;;

Error: This expression has type int but an expression was
expected of type string

The objects are not polymorphic as the use of fold method fixes the type.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Polymorphic Methods Cont..

Instead of making the class polymorphic, make the method polymorphic.

class intlist (l : int list) =
object

method empty = (l = [])
method fold : ′a. (′a → int → ′a) → ′a → ′a =

fun f accu → List.fold left f accu l
end;;

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Polymorphic Methods Cont..

let l = new intlist [1; 2; 3];;

l#fold (fun x y → x+y) 0;;

- : int = 6

l#fold (fun s x → s ˆ string of int x ˆ ” ”) ””;;

- : string = ”1 2 3 ”

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Recursive Classes

Recursive classes are used for objects whose types are mutually recursive.
Example,

class window =
object

val mutable top widget = (None : widget option)
method top widget = top widget

end
and widget (w : window) =

object
val window = w
method window = window

end;;

Here, the types are recursive but the classes are independent.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Functional Objects

Allows classes to have instance variables without assignments.

Made possible through the {<...>} construct.

class functional point y =
object

val x = y
method get x = x
method move d = {< x = x + d >}

end;;

class functional point :
int →
object (′a) val x : int method get x : int method move : int →
′a end

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Functional Objects Cont..

let p = new functional point 7;;

p#get x;;

- : int = 7

(p#move 3)#get x;;

- : int = 10

p#get x;;

- : int = 7

The move method is similar to a binary method.

A binary method takes an argument of the same type as self.

The move method takes a “copy” of the current self with some
updates.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Object Cloning

Objects can be cloned using the Oo.copy library.

Instance variables are copied, but their contents are shared.

eg. If the instance variable is a reference cell, the value will be shared.

let p = new point 5;;

val p : point = <obj>

let q = Oo.copy p;;

val q : point = <obj>

p = q, p = p;;

- : bool * bool = (false, true)

Two objects are equal iff they are physically equal.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Object Cloning

Objects can be cloned using the Oo.copy library.

Instance variables are copied, but their contents are shared.

eg. If the instance variable is a reference cell, the value will be shared.

let p = new point 5;;

val p : point = <obj>

let q = Oo.copy p;;

val q : point = <obj>

p = q, p = p;;

- : bool * bool = (false, true)

Two objects are equal iff they are physically equal.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Cloning vs. Overriding

Cloning and overriding of objects function the same when used within objects.

class copy =
object

method copy = {< >}
end;;

class copy =
object (self)

method copy = Oo.copy self
end;;

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Friends

In OCaml, the only way to share the representation between two different
objects is to expose it to the whole world. For instance, using binary
methods.

A solution to this problem is to use the friends concept, where, all friends
(classes or functions) defined within the same module share the same
abstract view (signature) but knows the concrete representation. Thus,
the concrete representation can be abstracted using signature. Example,

module type CURRENCY = sig
type t
class cur : float →

object (′a)
method v : t
method plus : ′a → ′a
method prod : float → ′a

end
end;;

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Friends Cont..

module Currency = struct
type t = float
class cur x =
object (: ′a)
val v = x
method v = v
method plus(z :′ a) = {< v = v +. z#v >}
method prod x = {< v = x ∗. v >}

end
end;;

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Module System vs Class System

OCaml has two very similar mechanism for modularity and abstraction: the
module system and the object system.

Before 3.12, the main difference was, one (object) is first class values and

the other (module) is not. But, in 3.12 modules are first class values:

(module module expr : package type) converts the module
(structure or functor) denoted by module expr to a value that
encapsulates the module.
(val expr : package type) evaluates the expression expr to a
value of type package type (unpacking into a module).

For Example,

module type DEVICE = sig · · · end
module SVG = struct · · · end
module PDF = struct · · · end
let devices : (string , module DEVICE) Hashtbl .t =

Hashtbl .create 5
let = Hashtbl .add devices ”SVG” (module SVG : DEVICE)
let = Hashtbl .add devices ”PDF ” (module PDF : DEVICE)
module Device = (val (Hashtbl .find devices device name) :

DEVICE)

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

Module System vs Class System Cont..

Modules can contain type definitions and objects cannot. This enables
modules to provide privacy outside of the module boundaries. This
advantage is used to implement the friends concept, as specified earlier.

When dynamic scoping behavior is required, one would prefer object
implementation rather than module.

class dog name =
object (self)
method name = name
method eat = Printf .printf “%s eats.\n” self #name
method bark = Printf .printf “%s barks!\n” self #name
method bark eat = self #bark; self #eat

end;;
class hound n =
object (self)
inherit dog n
method bark = Printf .printf “%s howls!\n” self #name

end;;

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

OOP of OCaml vs OOP of Java/C++

The relation between object, class and type in Objective Caml is very different
from that in main stream object-oriented languages like Java or C++.

In Java/C++ the class name is the type of the object; whereas, in
OCaml object type is set of public methods and their types. Class
types are abbreviated, it is the class name, but in the context of type
expressions it stands for the object type.

Types and classes in Objective Caml are independent of each other, i.e.,
two unrelated classes may produce objects of the same type, and there
is no way at the type level to ensure that an object comes from a specific
class.

This also affects the coercion. In Java/C++, if a class hierarchy is
defined as: animal ← pet ← petDog, then no other coersion than this
hierarchy is allowed in Java/C++ but this is not the case in OCaml.

In Java/C++ subtyping and subclassing are the same but not in
OCaml.

In Java/C++ object cannot be created without classes. In OCaml one
can create (immediate) objects without going through the classes.
These objects can be created inside an expression.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

OOP of OCaml vs OOP of Java/C++ Cont..

OCaml instance variables are private cannot be made public; in
Java/C++ instance variables can be defined as both.

In OCaml a subclass can make a private superclass method, public. In
Java a subclass can only inherit a package-private member.

In OCaml inheritance from multiple independent class is allowed, even
the same superclass directly/indirectly. It is not the same for Java.

Class type are similar to interface in Java. Java classes can implement
multiple interface but OCaml classes can implement one type only. But
OCaml type can inherit other type classes.

In OCaml the class system is statically typed and in Java/C++ it is
dynamically typed. That is why a pointer of a superclass can be used to
refer to a subclass object dynamically, in Java/C++.

In OCaml one can initialize as instance variable directly (without
initializer) as well as indicate an instance variable virtual; not in
Java/C++.

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

References

Jason Hickey.

Introduction to objective caml.

Preprint (January 11, 2008), available at
http://www.cs.caltech.edu/courses/cs134/cs134b/book.pdf, 2008.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Rémy, and Jérôme Vouillon.

The Objective Caml System: Documentation and Users Manual.

INRIA, June 2010.

Available at
http://caml.inria.fr/pub/docs/manual-ocaml/index.html.

The caml language.

http://caml.inria.fr/, 2010.

[Online; Accessed: November 2, 2010].

Mohammad Alam and Damith A. Karunaratne OCaml Objects and Classes

http://www.cs.caltech.edu/courses/cs134/cs134b/book.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://caml.inria.fr/

	Outline
	Classes and Objects
	Virtual and Private Methods
	Subtyping and Coercions
	Class Interfaces
	Inheritance
	Parameterized Classes
	Polymorphic Methods
	Recursive Classes
	Functional Objects
	Object Cloning
	Friends
	Module System vs Class System
	OOP of OCaml vs OOP of Java/C++

