12/1/2010

Scheme

Wisam Hussain
hussaiwh@mcmaster.ca
Department of Computing and Software (McMaster University)

(%]
(O]
oo
©
=)
oo
=
©
—
o
=
£
£
©
P .
o
(@]
S
o
1
(Vo)
o
N~
V)
<<
O

Content

* Introduction
* Data Types
* Expressions
* Sequencing
* Procedures
* Scope Rules
* Conditionals
* Recursion

* |nput / Output

o
i
©
o
S~
—
S~
o
i
(%]
(O]
Qo
©
=)
oY)
=
©
—
o]
=
<
<
©
=
o
(@]
o
o
1
O
(@]
N~
V)
<<
O

* Libraries
* References

Introduction

* Scheme is a general purpose multi-paradigm programming language
with support for functional, procedural and meta programming
styles.

12/1/2010

* Developed by Guy L. Steele and Gerald Jay Sussman at MIT Al [ab in
the 1975 and later introduced to the academic community through a
series of memos known as the lambda papers.

* Standardized by the IEEE and RnRS (Revised Report on the Algorithmic Language Scheme),
currently R5RS and R6RS are the most widely implemented
standards

* This presentation covers the R6RS implementation of the language

* Scheme is one of the 2 main dialects of LISP (LISt Processing)
programming language

(%]
()
o
©
S
o
c
©
-
0o
£
S
S
©
P .
oo
o)
—
a
1
te)
=)
~
(7))
<
(@)

* Scheme syntax and semantics is heavily influenced by LISP

Introduction (Characteristics)

Syntax

* Parenthesized lists in which a prefix operator is followed by its
arguments (S-Expressions)

Typing System:
* Strong Dynamic typing system
* Scope

* Lexical (unlike LISP which is dynamically scoped, scheme
borrowed the idea of lexical scoping from ALGOL)

Evaluation Strategies

* Call by value and Call by object

* Lazy evaluation is also available through the use of the delay form
Philosophy

* Minimalist with small standard core and powerful tools to extend
the language

o
i
©
o
S~
—
S~
o
i
(%]
(O]
Qo
©
=)
oY)
=
©
—
o]
=
<
<
©
=
o
(@]
o
o
1
O
(@]
~
V)
<<
O

Data Types (Simple)

Simple Data Types
* Booleans

* True is represented by #t

* False is represented by #f
* Numbers
* Integer Numbers (e.g. 12, #d12, #b1100, #014, #xc)

The #d prefix is optional when representing integers in decimal

* Rational Numbers (e.g. 22/7)
* Real Numbers (e.g. 3.1416)
* Complex Numbers (e.g. 2+3i)

* Note: Every Integer is Rational, Every Rational is Real, Every Real is Complex and Every
Complex is a Number

* Characters

* Graphical Characters (e.g. #\a, #\b, #\c)

* Non Graphical Characters (e.g. #\newline, #\tab, #\space)
* Symbols

* Used in scheme as an identifiers for variables

* To use a symbol without making Scheme think it is a variable, you need to quote the symbol
(e.g. "xyz or (quote xyz)).
* Using xyz without the quote will return the value associated with 'xyz identifier

12/1/2010

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

Data Types (Compound)

Compound Data Types
Strings (e.g. "Hello, World!" , "Hello, World!", "123")
Vectors (e.g. '#(0 1 #(34)56), '#(0 "Zero" #\0))

* Vectors are sequences like strings but their elements can be any
thing not just characters (mixed types are allowed)

Dotted Pairs and Lists

* Dotted pairs are compound values made by combining 2 values in
an order couple. (e.g. '(1 . #t), '((1.2) . 3))

* Lists are a special case of Dotted pairs where the nested dotting
occurs along the second element (e.g. '(1.(2.(3.(4.()))) (123

4))

Procedure (e.g. display, max, min)

o
i
©
o
S~
—
S~
o
i
(%]
(O]
Qo
©
=)
oY)
=
©
—
o]
=
<
<
©
=
o
(@]
o
o
1
O
(@]
N~
V)
<<
O

Data Types (Dotted Pairs and Lists)

* Some procedures on Dotted Pair and Lists
* Lists are a special form of dotted pairs
* Car procedure: return the first element of the list
* Cdr procedure: return the second element of the list (tricky!)
* Cons procedure: combines 2 values into an ordered pair

define x (cons 1 #t))

(

X => (1 . #t)
(car x) => 1

(cdr x) => #t

(define y (cons (cons 1 2) 3))

¥ = ((1 . 2) . 3)

(car (car y)) => 1

(cdr (car y)) => 2

(caar vy) => 1 ;abbreviation of (car (car y))

(cdar vy) => 2 ;abbreviation of (cdr (car vy))

12/1/2010

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
oo
o)
S
o
1
©
O
[
%)
<<
(@)

Data Types (Conversion)

* Since scheme has a Strong Dynamic typing system, we need
* A way to determine variable types
* A way to convert from one type to another

* Scheme provides a wide range of procedure to achieve that
* Type checking Examples:

12/1/2010

(boolean? #t) => f#t
(complex? 2+31) => #t
(integer? 42) => #t
(symbol? 'xvyz) => #t
(list? " (1 3)) => #t

Note that the ? Character is part of the procedure name

* Type conversion Examples:

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

(number->string 16) => "lo"
(string->number "16") => 16

(char->integer #\d) => 100
(integer->char 100) => #\d

Note that the -> symbols are part of the procedure name and
that they are not pointers

Naming Conventions

* Procedure naming convention

* The name of procedures that always return a boolean value usually
ends with ?

* Examples (boolean?, integer?, list?, empty?)

* The name of procedures that always stores values in previously
allocated locations usually ends with !

* Examples (set!, vector-set!, string-set!)

* The name of procedures that convert an object from one type to
another usually contains ->

* Examples (integer->string, integer->complex)
* |dentifiers can contain letters, digits and (1$% &*+-./:<=>?@*_~)
* |dentifiers can not start with a digit
* |dentifiers are case insensitive (Foo is the same as foo)
* The ; keyword is used to create comments
* (Example: ;this is a comment)
* Only single line comments are supported

12/1/2010

(%]
()
o
©
S
o
c
©
-
0o
£
S
S
©
P .
oo
o)
—
a
1
te)
=)
~
(7))
<
(@)

Expressions

* Expressions are the main building block in scheme
* Expressions can be evaluated, producing a value
* Expression in scheme can be

12/1/2010

* Literal Expressions
it => #t
23 => 23
¢ Compound Expressions

Have the following format
* (Operator Operand-1 ... Operand-N)

where operands can be simple or compound expressions
° (+ 23 42) => 65
(+ 14 (* 23 42)) => 980

* Note that the parenthesis are not optional

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

=
o

Sequencing

* We use the begin form to bunch together a group of sub
forms that needs to be evaluated in a sequence

12/1/2010

(begin

(display "Hello")
(display " ")
(display "World")
(display " ")
(display "!")
(newline))

(%]
(O]
oo
©
=)
oo
=
©
—
oo
=
£
£
©
P .
o
(@]
S
o
1
(Vo)
o
N~
V)
<<
O

Hello World !

[HEY
[HEY

Procedures

* User defined procedures can be created using the special form
lambda

* The following example defines a procedure that adds 2 to a
number

* (lambda (x X 7

* To apply this function to an argument

lambda (x X 7 5

o
i
©
o
S~
—
S~
o
i
(%]
(O]
Qo
©
=)
oY)
=
©
—
o]
=
<
<
©
=
o
(@]
o
o
1
O
(@]
N~
V)
<<
O

=
N

Procedures

* To reuses the same procedure in our code, we can use a
variable to hold the procedure value

12/1/2010

define add?
lambda (x X 7

add2 4

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

=
(98]

Procedures

* Procedures can have multiple arguments
* Procedure arguments are local to the body of the procedure

12/1/2010

define area
lambda (length breadth
length breadth

area 5 10

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

=
IS

Procedures

* Procedures can have variable number of arguments

* To achieve that replace the parameters list by a single symbol
that will bind to a list of arguments

12/1/2010

suml
args
apply args

suml 5

suml 5 10 15

(%]
(O]
oo
©
=)
oo
=
©
—
oo
=
£
£
©
P .
o
(@]
S
o
1
(Vo)
o
N~
V)
<<
O

=
(92}

Scope Rules

* Scheme variables have lexical scope
* Global Variables have the program text as their scope
* Local variables

12/1/2010

Lambda parameters have the lambda body as their scope

x 9
add?2 X x 2

add2 3

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

add2 x

=
(9))]

Scope Rules

* The form set! modifies the lexical binding of a variable.

x 20

* The above modifies the global binding of x from 9 to 20,
because that is the binding of x that is visible to set!.

* If the set! was inside add2's body, it would have modified the
local x

o
i
©
o
S~
—
S~
o
i
(%]
(O]
Qo
©
=)
oY)
=
©
—
o]
=
<
<
©
=
o
(@]
o
o
1
O
(@]
~
V)
<<
O

X
=
~

Scope Rules

* Local variables can be created without creating a procedure
using the special form let.

* Let introduces a list of local variable the have the body of let
as it lexical scope.

let

12/1/2010

N X
w N

list xy z

1 2 3

define x 20
let x 1

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

X Y

=
(0¢]

Scope Rules

x 20

L PN
X

12/1/2010

* Sometimes, it is convenient to have let's list of lexical variables
be introduced in sequence, so that the initialization of a later
variable occurs in the lexical scope of earlier variables.

x 20
x 1
X

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

Yy
Xy

=
O

Conditional

* If statement

* |f the test condition evaluates to #t (any value other than #f) then
the “then” branch is evaluated otherwise the else branch is
evaluated.

12/1/2010

* The else branch is optional in Scheme

pressure 80
pressure /0
'safe
'unsafe

safe

pressure 80
pressure /0
'safe

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

N
o

safe

Conditionals

* Cond statement
* The cond form is convenient for expressing nested if-expressions.

1f (char<? c #\c 1
if (char=2 c #\c) 0
1

12/1/2010

* Can be written as

cond char<? c #\c 1
char=? ¢ #\c) 0O
else 1

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

* Begin is added implicitly to the condition actions

N
=

Conditionals

* Case statement
* Case is a special form of cond

case C
#\a) 1
#\b) 2
#\c) 3

else 4

o
i
©
o
S~
—
S~
o
i
(%]
(O]
Qo
©
=)
oY)
=
©
—
o]
=
<
<
©
=
o
(@]
o
o
1
O
(@]
N~
V)
<<
O

N
N

Recursion

* A procedure body can contains calls to other procedure
including itself.

(@)
—
define factorial '§
lambda (n '5
if n 0) 1
n (factorial n 1

* Mutual recursion is also possible in Scheme

define is-even?
lambda (n
if n 0) #t
is-odd? n 1

(%]
(O]
oo
©
=)
oo
=
©
—
oo
=
£
£
©
P .
o
(@]
S
o
1
(Vo)
o
N~
V)
<<
O

define is-odd?
lambda (n
if n 0) #f
is—-even? n 1

N
w

Recursion

* If you want to use the is-even? And is-odd? procedures as
local variable use the letrec keyword

(@)
—
letrec local-even? (lambda (n -§
if n 0) #t '5

local-odd? n 1

local-odd? (lambda (n
if n 0) #f
local-eve? n 1

display (list (local-even? 23 local-odd? 23

#f #t

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

* Note: Looping is achieved in Scheme using recursion

N
D

Input / Output

* Scheme has input / output procedures that will let you read
from an input port or write to an output port
* If no port is specified, Scheme uses the console for input and
output.

* We can read one character at a time, one line at time or one
expression at a time using the read-char, read-line, and read
procedures respectively.

* Assume we have a text file called hello.txt and it contains the
“hello” string

i "hello.txt"

12/1/2010

(%]
()
o
©
S
o
c
©
-
0o
£
S
S
©
P .
oo
o)
—
a
1
te)
=)
~
(7))
<
(@)

N
(92

Input / Output

* Writing can be done 1 character at a time or 1 expression at a
time using write-char and write respectively.

 display procedure can be used instead of the write to outputin a
non machine readable format

o
i
©
o
S~
—
S~
o
i

(write “CAS 706”) will write “CAS 706” on the console with g
quotation S
(display “CAS 706”) will display CAS 706 on the console without =
guotation g
o) "greeting.txt" E
"hello" o g
#\space o R
'world o S

O

N
(@)}

Libraries

* Scheme code can be organized into libraries
* Libraries can import other libraries
* Libraries can import all or some of their content

12/1/2010

library (hello
export hello-world
import (rnrs base
rnrs 1o simple
define (hello-world
display "Hello World"
newline

(%]
(O]
oo
©
=)
oo
=
©
—
oo
=
£
£
©
P .
o
(@]
S
o
1
(Vo)
o
N~
V)
<<
O

* To import a library use the import procedure. (example below)

import (hello

N
~

References

The Revised® Report on the Algorithmic Language Scheme
(http://www.r6rs.org/)

Teach Yourself Scheme in Fixnum Days
(http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html)

Scheme (programming language)
(http://en.wikipedia.org/wiki/Scheme (programming language))

History of the Scheme programming language
(http://en.wikipedia.org/wiki/Historv of the Scheme programming Ianguage)

12/1/2010

(%]
)
a0
©
S
a0
c
©
—
Q0
=
£
£
©
—
0o
o)
S
a
1
©
o
~
%)
<<
(@)

N
(00]

http://www.r6rs.org/
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://en.wikipedia.org/wiki/Scheme_(programming_language)
http://en.wikipedia.org/wiki/History_of_the_Scheme_programming_language
http://en.wikipedia.org/wiki/History_of_the_Scheme_programming_language

(@)}
N

0T0¢/1/2T1 se3en3ueq Suiwwes3old - 90/ SV

—

Thank You

