
Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Continuing

Yinghui Wang,Mehrdad Alemzadeh

CAS 706

November 4, 2010

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Covariant Subtyping
lower bound and upper bound
Least Type

Collection
Hierarchy
List

List Declaration and Initialization
Some Operations
Higher Order methods

Other Collection types
Tuple

Implicit Conversion
Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

View Bounds

Concurrency in Scala
Signals and Monitors
SynVars
Futures
Mailbox and Actors

Treat Thread as Actor

Combine Scala with Java
General rule
Classes are classes
Traits are interfaces
Generics in Scala

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

lower bound and upper bound
Least Type

Covariant Subtyping

I Should stack[A] be stack[B]’s subtype if A is B’s subtype?

I Generic type in Scala non-Covariant by default

I Class stack[+A](co) or class stack[-A](contra)

I

Figure: subtyping

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

lower bound and upper bound
Least Type

Covariant Subtyping

I Should stack[A] be stack[B]’s subtype if A is B’s subtype?

I Generic type in Scala non-Covariant by default

I Class stack[+A](co) or class stack[-A](contra)

I

Figure: subtyping

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

lower bound and upper bound
Least Type

Covariant Subtyping

I Should stack[A] be stack[B]’s subtype if A is B’s subtype?

I Generic type in Scala non-Covariant by default

I Class stack[+A](co) or class stack[-A](contra)

I

Figure: subtyping

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

lower bound and upper bound
Least Type

Covariant Subtyping

I Should stack[A] be stack[B]’s subtype if A is B’s subtype?

I Generic type in Scala non-Covariant by default

I Class stack[+A](co) or class stack[-A](contra)

I

Figure: subtyping

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

lower bound and upper bound
Least Type

lower bound and upper bound

I Covariant type parameters of a class are only allowed appear
in positions:

I types of values in the class
I the result types of methods in the class
I type arguments to other covariant types

I So:
class Array[+A] {

def apply(index: Int): A
def update(index: Int, elem: A)

I class stack[+A]{def push(x:A): Stack[A]}

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

lower bound and upper bound
Least Type

lower bound and upper bound

I Covariant type parameters of a class are only allowed appear
in positions:

I types of values in the class
I the result types of methods in the class
I type arguments to other covariant types

I So:
class Array[+A] {

def apply(index: Int): A
def update(index: Int, elem: A)

I class stack[+A]{def push(x:A): Stack[A]}

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

lower bound and upper bound
Least Type

lower bound and upper bound

I Covariant type parameters of a class are only allowed appear
in positions:

I types of values in the class
I the result types of methods in the class
I type arguments to other covariant types

I So:
class Array[+A] {

def apply(index: Int): A
def update(index: Int, elem: A)

I class stack[+A]{def push(x:A): Stack[A]}

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

lower bound and upper bound
Least Type

class Stack[+A] {def push[B >: A](x: B): Stack[B] = new
NonEmptyStack(x, this)}

Here B >: A denotes push can accept parameterized type B which
is restricted over the superType of A

Now, we can push any element of supertype of A, and the type of
stack will change accordingly

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

lower bound and upper bound
Least Type

Least Type

Nothing is subtype of any type.

I object EmptyStack extends Stack[Nothing] ...

I val x = EmptyStack.push(”abc”)

Figure: type covariant of push

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

Immutable Hierarchy

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

Mutable Hierarchy

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

List

There are immutable and mutable list in scala. By default, list is
immutable.
so: you can not use List(i) in the left hand of ”=”
Switch from immutable to mutable List?

I Should worrying about making copies of mutable list
I Explicitly import scala.collection.mutalbe or declare a list

variable using ”var”

I var ls = List(3,4);ls = ls::: List(4,5)

I val ls = List(3,4)

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

List

There are immutable and mutable list in scala. By default, list is
immutable.
so: you can not use List(i) in the left hand of ”=”
Switch from immutable to mutable List?

I Should worrying about making copies of mutable list
I Explicitly import scala.collection.mutalbe or declare a list

variable using ”var”

I var ls = List(3,4);ls = ls::: List(4,5)
I val ls = List(3,4)

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

Declaration and Initialization

I val a = List(”abc”, ”hello”) % a immutable list of Type String

I val a: List[Int] = List()

I val a: List[List[Int]]=List(List(0,2,4),List(2,3,4))

I val a: List[Int] = 3::4::5::Nil

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

Constructor

All lists are built from fundamental constructors, Nil and ::. And ::
operator associate from right.
So val a: List[Int] = 3::4::5::Nil == 3::(4::(5::Nil))

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

Operations on List

Name Form Function
head:A xs.head returns the first element of a list

tail:List[A] xs.tail returns the list consisting of all
elements except the first

isEmpty:Booelan xs.isempty check empty

take(n:Int):List[A] xs take n return first n elems or the whole
list

drop(n:Int):List[A] xs drop n return elems except first n el-
ems

apply(n: Int): A xs.apply(n)
or xs(n)

return nth elems

:::[B>:A](List[B]):
List[B]

xs:::ys concatenating lists

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

Cont

I No append operation appending single element to a
list.Because the time it takes to append to a list grows linearly
with the size of the list.

I List buffers can solve the problem.
val buf = new ListBuffer[Int]; buf+= elem; buf.toList

I ::: also associate to the right, and takes time proportional to
the length of its first operand

I You can use pattern matching in list:
def isort(xs: List[Int]): List[Int] = xs match

case List() => List()
case x :: xs1 => insert(x, isort(xs1))

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

Higher Order methods

I Mapping
I map def map[B](f: A => B):List[B]this match{

case Nil => this
case x :: xs => f(x) :: xs.map(f)}

e.g. xs map(x => x∗factor)
I foreach: xs foreach (x => println(x))
I flatmap:The combination of mapping and then concatenating

sublists resulting from the map
def flatmap[B](f:A=>List[B]):List[B] this match{

case Nil => this
case x :: xs => f(x):::xs.map(f)}

I Filterring: filter(p: A => Boolean): List[A]
def posElems(xs: List[Int]): List[Int] = xs filter (x => x > 0)

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

Higher Order methods

I Mapping
I map def map[B](f: A => B):List[B]this match{

case Nil => this
case x :: xs => f(x) :: xs.map(f)}

e.g. xs map(x => x∗factor)
I foreach: xs foreach (x => println(x))
I flatmap:The combination of mapping and then concatenating

sublists resulting from the map
def flatmap[B](f:A=>List[B]):List[B] this match{

case Nil => this
case x :: xs => f(x):::xs.map(f)}

I Filterring: filter(p: A => Boolean): List[A]
def posElems(xs: List[Int]): List[Int] = xs filter (x => x > 0)

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

Cont.

I Folding: Applies a binary operator to a start value z and all
elements of this sequence, according to some association rule.
def foldLeft[B](z: B)(op: (B, A) => B): B
(List(x1, ..., xn) foldLeft z)(op) = ((z op x1) op ...) op xn
Also known as operator / :. So xs foldLeft z (op) = z /: xs
(op)

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

Other collection type

I Array: Array is mutable by default. Unlike List, you can
efficiently access an element at an arbitrary position by using
the index in parenthesis.
Apply of List for indexing however is much more costly than in
the case of arrays

I val fiveInts = new Array[Int](5)
I val fiveInts = Array(1,3,4,5,6)

I Set: By default you get an immutable object.

I Map: Maps let you associate a value with each element of
the collection.
By importing scala.collection.immutable.TreeSet or TreeMap,
one can get sorted set and map.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Hierarchy
List
Other Collection types
Tuple

Tuple

Tuple combines a fixed number of items of different types together
so that they can be passed around as a whole.
This is helpful when you want to define a function returning two or
more values.For example,under the definition of:
package scala

case class Tuple2[A, B](1 : A, 2 : B)
One can define:
def divmod(x: Int, y: Int) = new Tuple2[Int, Int](x/y , x%y)
And then access the element in tuple:
val xy = divmod(x, y)
println(”quotient : ” + xy . 1 + ”, rest : ” + xy . 2)

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Implicit Conversion

I Want to convert a String in Java to a
RandomAccessSeq[Char] and use the method say ”exist” in it.
However, Java’s String class does not extend Scala’s
RandomAccessSeq trait.

I Now What should we do?

I Implicit Conversion

I implicit def stringWrapper(s: String) =
new RandomAccessSeq[Char] {

def length = s.length
def apply(i: Int) = s.charAt(i) }

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Implicit Conversion

I Want to convert a String in Java to a
RandomAccessSeq[Char] and use the method say ”exist” in it.
However, Java’s String class does not extend Scala’s
RandomAccessSeq trait.

I Now What should we do?

I Implicit Conversion

I implicit def stringWrapper(s: String) =
new RandomAccessSeq[Char] {

def length = s.length
def apply(i: Int) = s.charAt(i) }

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Implicit Conversion

I Want to convert a String in Java to a
RandomAccessSeq[Char] and use the method say ”exist” in it.
However, Java’s String class does not extend Scala’s
RandomAccessSeq trait.

I Now What should we do?

I Implicit Conversion

I implicit def stringWrapper(s: String) =
new RandomAccessSeq[Char] {

def length = s.length
def apply(i: Int) = s.charAt(i) }

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Implicit Conversion

I Want to convert a String in Java to a
RandomAccessSeq[Char] and use the method say ”exist” in it.
However, Java’s String class does not extend Scala’s
RandomAccessSeq trait.

I Now What should we do?

I Implicit Conversion

I implicit def stringWrapper(s: String) =
new RandomAccessSeq[Char] {

def length = s.length
def apply(i: Int) = s.charAt(i) }

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Cont.

Now with the implicit conversion function, one can:

I stringWrapper(”abc123”) exists (.isDigit)

I ”abc123” exists (.isDigit)

I scala compiler did the conversion for you.

I Through doing implicit conversion, class StringWrapper gets
every method in RandomAccessSeq for free. This means in
scala all implicit conversions pick up newly added method
automatically.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Cont.

Now with the implicit conversion function, one can:

I stringWrapper(”abc123”) exists (.isDigit)

I ”abc123” exists (.isDigit)

I scala compiler did the conversion for you.

I Through doing implicit conversion, class StringWrapper gets
every method in RandomAccessSeq for free. This means in
scala all implicit conversions pick up newly added method
automatically.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Cont.

Now with the implicit conversion function, one can:

I stringWrapper(”abc123”) exists (.isDigit)

I ”abc123” exists (.isDigit)

I scala compiler did the conversion for you.

I Through doing implicit conversion, class StringWrapper gets
every method in RandomAccessSeq for free. This means in
scala all implicit conversions pick up newly added method
automatically.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Cont.

Now with the implicit conversion function, one can:

I stringWrapper(”abc123”) exists (.isDigit)

I ”abc123” exists (.isDigit)

I scala compiler did the conversion for you.

I Through doing implicit conversion, class StringWrapper gets
every method in RandomAccessSeq for free. This means in
scala all implicit conversions pick up newly added method
automatically.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Rules for conversion

I Marking Rule: Only definitions marked implicit are available.
The Functions, Objects, Variables definition are all can be
marked as implict
For example: implicit def IntToDouble(x:Int)

I Scope:An inserted implicit conversion must be in scope as a
single identifier, or be associated with the source or target
type of the conversion.
One exception, the compiler will look for implicit definition in
the the companion object of source or target type.
object Dollar {

implicit def dollarToEuro(x:): Euro = ...}
class Dollar ...

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Rules for conversion

I Marking Rule: Only definitions marked implicit are available.
The Functions, Objects, Variables definition are all can be
marked as implict
For example: implicit def IntToDouble(x:Int)

I Scope:An inserted implicit conversion must be in scope as a
single identifier, or be associated with the source or target
type of the conversion.
One exception, the compiler will look for implicit definition in
the the companion object of source or target type.
object Dollar {

implicit def dollarToEuro(x:): Euro = ...}
class Dollar ...

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Rules for conversion

I Non-Ambiguity Rule: An implicit conversion is only inserted
if there is no other possible conversion to insert

scala > val i : Int = 3 + 3.5
This will cause ambiguous conversion error cause the compiler
will get two implicit definition of function accepting int as
source type: int2double, int2float

I Where implicit are tried.:
I Implicit conversion to an expected type
I conversions of the receiver of a selection
I implicit parameters

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Rules for conversion

I Non-Ambiguity Rule: An implicit conversion is only inserted
if there is no other possible conversion to insert

scala > val i : Int = 3 + 3.5
This will cause ambiguous conversion error cause the compiler
will get two implicit definition of function accepting int as
source type: int2double, int2float

I Where implicit are tried.:
I Implicit conversion to an expected type
I conversions of the receiver of a selection
I implicit parameters

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

To expected type

Whenever compiler need type X but see a Y, it search for a implicit
conversion that converts Y to X
scala >implicit def doubleToInt(x: Double) = x.toInt
scala > val i: Int = 3.5
i: Int = 3

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Conversion of receiver

Applying conversion to a receiver of certain method call.
class Rational(n: Int, d: Int) {
def + (that: Rational): Rational...
def + (that: Int): Rational ...
} Suppose we want to compute the expression 1 + Rational(1, 2) ,
where the receiver of plus,’1’, dose not have the corresponding +
operator.
implicit def intToRational(x: Int)=

new Rational(x,1)
Then 1 + Rational(1, 2) = 3/2

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Implicit Parameters I

The compilers will replace some function call somecall(a) with
somecall(a)(b)or (a)(b,c,d),by adding the missing parameters to
complete a function call.
Both the last parameter of the function definition and the inserted
identifiers should be marked as implicit
class PrePrompt(val pre: String)
class PreDrink(val pre: String)
object Greeter {

def greet(name: String)
(implicit prompt: PrePrompt, drink: PreDrink) {

println(”Welcome, ”+ name +”. The system is
ready.”)

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Implicit Parameters II

println(”why not enjoy a cup of ”+ drink.pre +”?”)
println(prompt.pre)

}
}
object Prefs {
implicit val prompt = new PrePrompt(”Yinghui> ”)
implicit val drink = new PreDrink(”Tea”) }

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

Cont.

If use: import Prefs. , now we can call the greet function without
giving the implicit parameters
scala > Greeter .greet(”Jane”) print
”while you work, why not enjoy a cup of Tea? Yinghui >”

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

ViewBounds I

Here the implicit parameter function orderer allows the whole
function can be applied to T which is not the subtype of
Ordered[T]
def maxList[T](elements: List[T])

(implicit orderer: T => Ordered[T]): T =
elements match {

case List() =>
throw new IllegalArgumentException(”empty list!”)

case List(x) => x
case x :: rest =>

val maxRest = maxList(rest)(orderer)
if (orderer(x) > maxRest) x

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Rules for conversion
To expected type
Conversion of receiver
Implicit Parameters
View Bounds

ViewBounds II

else maxRest }
Because this pattern is common, Scala lets you leave out the name
of this parameter and shorten the method header by using a view
bound:
def maxList[T< % Ordered[T]](elements: List[T])

You can pass List[Int] to the maxList function even that Int is not
the subtype of Ordered[Int] as long the implicit conversion is
available

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Signals and Monitors
SynVars
Futures
Mailbox and Actors

Signals and Monitors I

Every instance of class AnyRef can be used as a monitor by calling
one or more of the methods below:

I def synchronized[A] (e: => A): A execute in mutual
exclusive mode

I def wait()

I def wait(msec: Long)

I def notify()

I def notifyAll()

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Signals and Monitors
SynVars
Futures
Mailbox and Actors

Signals and Monitors II

These methods as well as class Monitor are primitive in scala, we
can use them to solve basic concurrent problems.
class BoundedBuffer[A](N: Int) {

var in = 0, out = 0, n = 0
val elems = new Array[A](N)
def put(x: A) = synchronized {

while (n >= N) wait()
elems(in) = x ; in = (in + 1)%N ; n = n + 1
if (n == 1) notifyAll() }

def get: A = synchronized {
while (n == 0) wait()
val x = elems(out) ; out = (out + 1)%N ; n = n − 1

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Signals and Monitors
SynVars
Futures
Mailbox and Actors

Signals and Monitors III

if (n == N-1) notifyAll();x}

Now we can use this synchronized buffer to communicate between
producers and consumers:
val buf = new BoundedBuffer[String](10)
spawn { while (true) { val s = produceString ; buf.put(s) } }
spawn { while (true) { val s = buf.get ; consumeString(s) } }

def spawn(p: => Unit) {
val t =new Thread() { override def run() = p }} t.start()

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Signals and Monitors
SynVars
Futures
Mailbox and Actors

SynVars

A Synchronized variable offers get and set methods to read and set
variable. Get block until the variable is set, and after setting the
value, set notify all blocked thread who want to read the value of
variable to wake up.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Signals and Monitors
SynVars
Futures
Mailbox and Actors

Futures

A future is a value which is computed in parallel to some other
client thread, to be used by the client thread at some future time.

def future[A](p: => A): Unit => A = {
val result = new SyncVar[A]
fork { result.set(p)}
(() => result.get)}

Future generate a guard result which is a synchronized variable.
Then it forks another thread to compute the result. In parallel to
this thread, the function returns a anonymous function. When
called, this function will wait until the result guard is invoked.
Once this happen, return the result argument.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Signals and Monitors
SynVars
Futures
Mailbox and Actors

Mailbox and Actors I

Mailboxes are high-level, constructs for process synchronization
and communication.
class MailBox {
def send(msg: Any)
def receive[A](f: PartialFunction[Any, A]): A
def receiveWithin[A](msec: Long)(f: PartialFunction[Any, A]): A}
The state of mailbox consists of a multiset of messages. Send
method adds msg within mailbox, while receive remove the msg.
An actor is a thread-like entity that has a mailbox for receiving
messages. You can import scala.actor. , then subclass Actor and
then implement its act method to implement an actor:
import scala.actors.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Signals and Monitors
SynVars
Futures
Mailbox and Actors

Mailbox and Actors II

object myActor extends Actor {
def act() {

for (i < 1 to 5) {
println(”Acting!”)
Thread.sleep(1000)}}}

Or using utility method actor: val someActor = actor{...}
I You can pass a message to an actor by someActor ! msg

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Signals and Monitors
SynVars
Futures
Mailbox and Actors

Mailbox and Actors III

I An actor will only process messages matching one of the cases
in the partial function passed to receive.
val intActor = actor {

receive {
case x: Int =>
println(”Got an Int: ”+ x) }}

intActor ! ”hello”, then the actor will ignore the message

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

Signals and Monitors
SynVars
Futures
Mailbox and Actors

Treat Thread as Actor

The real model of scala actor is more complex than one thread one
actor. It can be understood as all the actors share a single thread
pool. Whenever an actor start, the system assign a thread to it. If
the actor use receive model(mailbox), then the thread always
belong to it. If the actor use react model(Future), then scala throw
an exception when finish react and the thread can be used by other
actors.

If you want to use an thread as an actor,you cannot use
Thread.current directly, because it does not have the necessary
methods. Instead, you should use Actor.self if you want to view
the current thread as an actor.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

General rule
Classes are classes
Traits are interfaces
Generics in Scala

General rule

Scala is implemented as a translation to standard Java bytecodes.
As much as possible, Scala features map directly onto the
equivalent Java features.Scala classes, methods, strings,
exceptions, for example, are all compiled to the same in Java
bytecode as their Java counterparts.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

General rule
Classes are classes
Traits are interfaces
Generics in Scala

Classes are classes

Scala classes are real JVM classes.
In Java:
public class Person {

public String getName() {
return ”Daniel Spiewak”; } }

The same as in scala:
class Person {

def getName() = ”Daniel Spiewak” }
So one can extend a Java class within Scala, overriding some
methods. Or in turn extend this Scala class from within Java

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

General rule
Classes are classes
Traits are interfaces
Generics in Scala

Traits are interfaces I

Because traits allow method definitions, while interfaces must be
purely-abstract. Code cannot be mapped directly to a Java
construct. Scala is still able to compile traits into interfaces at the
bytecode level with some minor enhancements.
In scala:
trait Model {

def value: Any }
Then it will generate bytecode actually equivalent to Java code
below:
public interface Model {

public Object value(); }

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

General rule
Classes are classes
Traits are interfaces
Generics in Scala

Traits are interfaces II

When comes to traits with method definition, Scala solves this
problem by introducing an ancillary class which contains all of the
method definitions for a given trait:
The following scala code:
trait Model {

def value: Any
def printValue(){println(value)

}
}
Will be translated into bytecode equivalent to the Java code below:
public interface Model extends ScalaObject {

public Object value();
public void printValue(); }

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

General rule
Classes are classes
Traits are interfaces
Generics in Scala

Traits are interfaces III

public class Model$class {
public static void printValue(Model self) {

System.out.println(self.value());}
}
So you can implement the Model trait as:
public class StringModel implements Model {

public Object value() { return ”Hello, World!”;}
public void printValue() {

Model$class.printValue(this);}
...

}

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

General rule
Classes are classes
Traits are interfaces
Generics in Scala

Generics in Scala

The code in Scla:
abstract class List[+A] { ...}
will be translated by type erasure to Java:
public abstract class List< A > { ...}
The variance annotation is gone, but Java wouldnt be able to
make anything of it anyway.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

General rule
Classes are classes
Traits are interfaces
Generics in Scala

Resources I

Scala Org
http://www.scala-lang.org/

Martin Odersky
Scala By Example.
PROGRAMMING METHODS LABORATORY,
SWITZERLAND, 2009.

Martin Odersky, Lex Spoon, Bill Venners
Programming in Scala.
ARTIMA PRESS, CALIFORNIA, 2007.

Yinghui Wang,Mehrdad Alemzadeh Continuing

Outline
Covariant Subtyping

Collection
Implicit Conversion

Concurrency in Scala
Combine Scala with Java

General rule
Classes are classes
Traits are interfaces
Generics in Scala

Resources II

Dean Wampler
Interop Between Java and Scala.
http://www.codecommit.com/blog/java/interop-between-

java-and-scala

Yinghui Wang,Mehrdad Alemzadeh Continuing

	Covariant Subtyping
	lower bound and upper bound
	Least Type

	Collection
	Hierarchy
	List
	Other Collection types
	Tuple

	Implicit Conversion
	Rules for conversion
	To expected type
	Conversion of receiver
	Implicit Parameters
	View Bounds

	Concurrency in Scala
	Signals and Monitors
	SynVars
	Futures
	Mailbox and Actors

	Combine Scala with Java
	General rule
	Classes are classes
	Traits are interfaces
	Generics in Scala

