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Exercise 3.1 — Program Correctness Concepts

(a) Define precisely what the phrase “Program P is partially correct with respect to the precondition Q and

the postcondition R” means.

(b) Define precisely what the phrase “Program P is totally correct with respect to the precondition Q and the

postcondition R” means.

Exercise 3.2 — Partial Correctness — Simple Hoare Triples

For each of the following Hoare triples, determine whether it holds; if yes, prove it using the rules of axiomatic

semantics, and if no, prove a counter-example using the rules of operational semantics (you may abbreviate

each expression evaluation into a single step).

(a) {x ≥ − 5} z := 5 − x {z ≤ 11}

(b) {x ≥ − 5} z := 5 − x {z ≤ 11 ∧ x ≥ − 7}

(c) {x ≥ − 5} z := 5 − x ; x := x + z {z ≤ 11 ∧ x = 2}

(d) {z = 0} if x = 0 then w := True else z := 1/ x fi {¬w → xz = 1}

(e) {z = abs(x)} if x ≥ 0 then z := − z fi {xz = 2− x }

Exercise 3.3 Partial Correctness Proof

Consider the following program in a language providing a Java-like printing statement:

s

:= 1 ; 

r

:= 0 ; 

while s ≤ n do 

r

:= r + 1 ; 
s

:= s + 2 ∗ r + 1 ; 
println(r + "  " + s)

 od

(a) What is the output of this program for n = 30?

(b) Give an equation relating the values of r and s in each println state-

ment.

(c) For this program without the println statement, prove partial cor-

rectness with respect to the precondition { n ≥ 0 } and the postcondi-

tion { 2r ≤ n ∧ n < 2(r + 1) }.

Hint: Use the equation from (b) as part of the invariant!



Exercise 3.4 Correctness Proof for Gödel Numbering

Let int variables a, b, p, and i, and the following program fragment P in a Pascal-like programming language

be given:

(a,i) := (p,0);

while a > i do

i:=i+1;

a:=a−i

od;

b:=i−a;

Prove (doumenting all intermediate steps, and showing also the implications used) partial

correctness of P with respect to the precondition {p ≥ 0} and the postcondition

p =
(a + b)(a + b + 1)

2
+ a ∧ a ≥ 0 ∧ b ≥ 0

Hint: For producing this proof, you need no creativity at all, but a high degree of

diligence.

Background: P decodes the natural number stored in p as a pair (a, b) of two natural numbers; this encoding is

a simple kind of Gödel numbering.

Exerceise 3.5 Correctness Proof for Bisection

The following program fragment implements the bisection method for finding a root of the function

f : IR → IR , where e, m, s, x, u are all variables of type IR :

s

:= signum(f (x)) ; 

while u > x + e do 

m

:= u − (u − x)/ 2 ; 
if signum(f (m)) ≡ s then x

:= m else u

:= m fi
 od

signum is the usual signum (sign) function:

signum(z) = { 1 if z > 0

0 if z = 0

− 1 if z < 0

(a) Using the global assumptions that f is a continuous function and that e > 0 (i.e., no need to carry this

explicitly through every proof step; justmentionwhere youuse it),prove partial correctness of the above

program with respect to

• the precondition u > x ∧ signum(f (x)) ≠ signum(f (u))

• and the postcondition ∃ w ∈ [x, x + e] • f (w) = 0 .

(The bracket notation [x, x + e] here denotes the interval containing exactly those real numbers z with

x ≤ z and z ≤ x + e.)

Hint: Induce the invariant from the precondition in this case!

(I.e., not from the postcondition as in most previous examples.)

(b) (independent from the solution of (a)!)

The postcondition given in (a) asserts that the resulting x is an approximation to an arbitrary root.

However, the root produced by this program fragment will actually be between the starting values of x and

u. Provide a precondition-postcondition specification that includes this fact.



Exerceise 3.6 — Correctness Proof for Horner’s Rule

Written in the simple imperative programming language for which the axiomatic semantics rules are available

on the distributed rule sheet (with simultaneous assignment), and using a type real for real numbers for which

you are allowed to assume precise arithmetic operations (i.e., operations satisfying the laws of the field of real

numbers), let the following program fragment P, with a real array variable a, with int variables k and n, and

with real variables s and x be given:

( k, s ) := ( n, 0 ) ;

while k ≠ 0 do

(k, s) := (k − 1, s ∗ x + a[k−1])

od

This program fragment is intended to use Horner’s rule to evalu-

ate a polynomial with coefficients stored in the array a.

Formally prove that P is partially correct with respect to the

precondition n ≥ 0 and the following postcondition:

s =
n−1

∑
i = 0

ia[i] ∗ x

Include all intermediate steps of the proof, and show also the implications used.

Explicitly state the invariant!



Exercise 3.7 — Operational and Axiomatic Semantics: Base-2-Logarithm — 30% of SE3E03 Fi-

nal 2005

(a) ≈ 3% Define what the phrase “Statement S is partially correct with respect to the preconditionQ and the

postcondition R” means in terms of operational semantics.

Written in the simple imperative programming language for which operational and axiomatic semantics rules

are available on the distributed rule sheet, let the following program fragment P, with int variables i, k, and n,

be given in two variants, one with simultaneous assignments, and one without::

( k, i ) := ( 1, −1 );

while k ≤ n do

( k, i ) := ( k ∗ 2, i + 1 )

od;

k := 1;

i := −1;

while k ≤ n do

k := k ∗ 2;

i := i + 1

od;

This program fragment is intended to calculate the base-2-logarithm of n, as expressed by the following

post-condition Post:

i2 ≤ n ∧ n < i+12

(b) ≈ 6% Provide a derivation in the operational semantics that shows that the precondition “True” is too

weak, i.e., that the program P (in the right variant without simultaneous assignments) is not partially

correct with respect to the precondition “True” and the above postcondition. (You may omit the details for

expression evaluation.)

Explain why your derivation shows that.

(c) ≈ 4% Identify the weakest precondition for which the program fragment P can be proven partially correct

with respect to the above postcondition. Explain!

(True is “weaker” than every other condition Q, since Q ⇒ True holds for every Q.)

(d) ≈ 18% Formally prove that P is partially correct with respect to the precondition you stated in (c) and the

above postcondition:

Post : ⇔ i2 ≤ n ∧ n < i+12

only the version with simultaneous assignments (left), or

only the version without (right).

Choose whether you consider

Include all intermediate steps of the proof, and show also the implications used.


