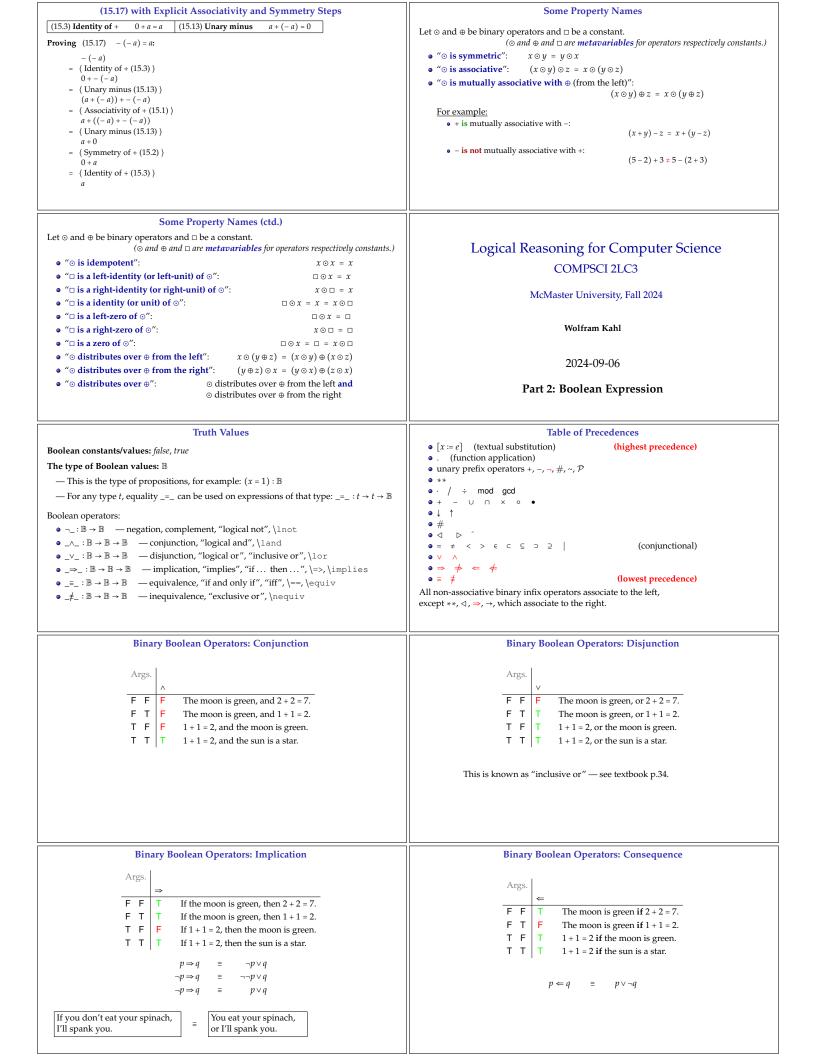

	What is This Course About?
	Calendar description:
	Introduction to logic and proof techniques for practical reasoning:
Logical Reasoning for Computer Science	propositional logic, predicate logic, structural induction; rigorous
COMPSCI 2LC3	proofs in discrete mathematics and programming.
McMaster University, Fall 2024	Discrete Mathematics is the math of data – whether complex or hir
WCWaster University, rail 2024	 the math of data— whether complex or big the math of reasoning—logic
W-16 16-11	• the math of some kinds of AI— machine reasoning
Wolfram Kahl	 the math of specifying software
	 Logical Reasoning is used for exploring the theoretical limits of computability
2024-09-03	 proving sophisaticated algorithms correct
	 justifying software designs
	proving software implementations correct
Goals and Rough Outline	Textbook: "LADM"
Understand the mechanics of mathematical expressions and proof	TEXTS AND MONOGRAPHS IN COMPUTER SCIENCE
— starting in a familiar area: Reasoning about integers	A LOGICAL APPROACH
 Develop skill in propositional calculus "propositional": statements that can be true or false, not numbers 	TO DISCRETE MATH "This is a rather extraordinary book, and deserves to be read by everyone involved in computer science
 Groups and a statements that can be true of faise, not numbers "calculus": formalised reasoning, calculation — B, ¬, ∧, ∨, ⇒, … 	David Gries be read by everyone involved in computer science and — perhaps more importantly — software engi-
• Develop skill in predicate calculus	neering. I recommend it highly $[\dots]$. If the book is taken seriously the right that it unfolds and the clarity
 "predicate": statement about some subjects. — ∀, ∃ Develop skill in using basic theories of "data mathematics" 	
 Sets, Functions, Relations, Sequences, Trees, Graphs, 	way in which software is conceived and developed."
• Develop skill in correctness reasoning about (imperative) programs	- Peter G. Neumann
• skill development takes time and effort	$\left \begin{array}{c} 0_{0} \circ u(t-u) \\ - (0_{0} \circ u(t-u)) = 0 \\ 0 \text{ or } u(t-u) = 0 \end{array}\right $ (Founder of ACM SIGSOFT)
All along: • Encounter computer support for logical reasoning, mechanised discrete mathematics	
 Introduction to mechanised software correctness tools 	Springer
— Formal Methods: increasingly important in industry	
The Importance of Proof in CS	2023 COMPSCI 1DM3 Final 1(a) — Calculational Proof Presentation
ACM's Computer Science Curricula recognize proofs as one of several areas of	
mathematics that are integral to a wide variety of sub-fields of computer science:	Lemma "F1(a)": $(\neg q \land (p \Rightarrow q)) \Rightarrow \neg p$ Proof: Proof: Lemma "F1(a)": $(\neg q \land (p \Rightarrow q)) \Rightarrow \neg p$
an ability to create and understand a proof — either a formal symbolic proof or a less	$(\neg q \land (p \Rightarrow q)) \Rightarrow \neg p \qquad (\neg q \land (p \Rightarrow q)) \Rightarrow \neg p$
formal but still mathematically rigorous argument — is important in virtually every area of computer science, including (to name just a few) formal specification, verification,	$ = \langle \text{ "Material implication"} \rangle \qquad = \langle \text{ "Material implication"} \rangle \neg (\neg q \land (\neg p \lor q)) \lor \neg p \qquad (\neg q \land (\neg p \lor q)) \Rightarrow \neg p $
databases, and cryptography.	$\equiv \langle \text{"De Morgan"} \rangle \qquad \qquad \equiv \langle \text{"Absorption"} \rangle$
ACM/IEEE: Computer Science Curricula 2013, p. 79	$ = \neg -q \lor (\neg -p \land -q) \lor -p \qquad (\neg q \land -p) \Rightarrow \neg p $ $ = \langle \text{"Double negation"} \rangle \qquad = \langle \text{"De Morgan"} \rangle $
"Mathematically rigorous" — "if I really needed to formalise it, I could."	$q \lor (p \land \neg q) \lor \neg p \qquad \neg (q \lor p) \Rightarrow \neg p$
 Rigorous (informal) proofs (e.g. in LADM) strive to "make the eventual formalisation effort minimal". 	$ = \langle \text{"Distributivity of } \lor \text{ over } \land \text{"} \rangle \qquad = \langle \text{"Contrapositive"} \rangle (q \lor p \lor \neg p) \land (q \lor \neg q \lor \neg p) \qquad p \Rightarrow q \lor p $
 There is value to readable proofs, no matter whether formal or informal. 	≡ ("Excluded middle ") ≡ ("Weakening ")
• There is value to formal, machine-checkable proofs,	$ \begin{array}{ c c c } (q \lor true) \land (true \lor \neg p) & true \\ \equiv \langle "Zero \text{ of } \lor " \rangle \end{array} $
especially in the software context, where the world of mathematics is not watching.	true ∧ true
Strive for readable formal proofs!	$\equiv ("Idempotency of \land ") true$
2023 COMPSCI 1DM3 Final 1(b) — Calculational Proof Presentation	First Tool: CALCCHECK
	• CALCCHECK: A proof checker for the textbook logic
Lemma "F1(b)": $(\exists x \bullet P \Rightarrow Q) \equiv (\forall x \bullet P) \Rightarrow (\exists x \bullet Q)$	CALCCHECK analyses textbook-style presentations of proofs
Proof: $(\exists x \bullet B \Rightarrow O)$	• CALCCHECK _{Web} : A notebook-style web-app interface to CALCCHECK
$(\exists x \bullet P \Rightarrow Q)$ = ("Material implication ")	• You can check your proofs before handing them in!
$(\exists x \bullet \neg P \lor Q)$	• Will be used in exams!
$\equiv \langle \text{"Distributivity of } \exists \text{ over } \lor \text{"} \rangle$	 — initially with proof checking turned off but curtax checking left on
$(\exists x \bullet \neg P) \lor (\exists x \bullet Q)$	but syntax checking left on Will be used in exams
$\equiv \langle$ "Generalised De Morgan" \rangle	- as far as possible
$\neg (\forall x \bullet P) \lor (\exists x \bullet Q)$	You need to be able to do both:
$\equiv \langle$ "Material implication" \rangle	Write formalisations and proofs using CALCCHECK Write formalisations and proofs by hand an appar
$(\forall x \bullet P) \Rightarrow (\exists x \bullet Q)$	Write formalisations and proofs by hand on paper (Firefox and Chrome can be expected to work with CALCCHECK _{Web} .
	Safari, Edge, IE not necessarily.)
From the LADM Instructor's Manual	CALCCHECK: A Recognisable Version of the Textbook Proof Language
Emphasis on <u>skill acquisition</u> :	$[(11.5) S = \{x \mid x \in S : x\} $
• "a course taught from this text will give students a solid understanding of what	According to axiom Extensionality (11.4), it suffices to prove that $v \in S \equiv v \in \{x \mid x \in S : x\}$, for arbitrary v . We have,
 constitutes a proof and a skill in developing, presenting, and reading proof." "We believe that teaching a skill in formal manipulation makes learning the other 	$v \in \{x \mid x \in S : x\}$ Theorem (11.5): $S = \{x \mid x \in S \cdot x\}$ Decof:
material easier."	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
• "Logic as a tool is so important to later work in computer science and mathematics	= (Trading (9.19), twice) = ("Set membership" (11.3))
that students must understand the use of logic and be sure in that understanding."	$(\exists x \mid x = v : x \in S) \qquad (\exists x \mid x \in S \cdot v = x) = ("Trading for \exists" (9.19))$
 "One benefit of our new approach to teaching logic, we believe is that students become more effective in communicating and thinking in other scientific and 	$ = (One-point rule (8.14)) v \in S $ $ (\exists x \mid x = v \cdot x \in S) = ("One-point rule for \exists" (8.14), substitution) $
engineering disciplines."	v є s
• "Frequent but shorter homeworks ensure that students get practice"	Note:
Consciously departing from existing mechanised logics:	1. The calculation part is transliterated into Unicode plain text (only minimal notation changes).
"Our equational logic is a "People Logic", instead of a "Machina Logic" [2. The prose top-level of the proof is formalised
"Machine Logic"." • CALCCHECK mechanises this "People Logic"	into Using and For any structures in the spirit of LADM

From the LADM Instructor's Manual: "Some Hints on Mechanics"	From the LADM Instructor's Manual: "Some Hints on Mechanics" (ctd.)
• "We have been successful (in a class of 70 students) with occasionally writing a few	• "There is no substitute for practice accompanied by ample and timely feedback"
problems on the board and walking around the class as the students work on them."	Most "timely feedback" is provided by interaction with CALCCHECK _{Web}
COMPSCI&SFWRENG 2DM3: ≈240 students in 2016, 360 in 2020 COMPSCI 2LC2: Over 180 students in 2001, over 200 in 2002	Autograding for homework and assignments produces some additional feedback
 COMPSCI 2LC3: Over 180 students in 2021; over 200 in 2023 Tutorials normally have 20-40 students and use this approach, with 	CALCCHECK is intentionally a proof checker, not a proof assistant
students working on their computers	Providing ample TA office hours (and now a "Course Help" channel) helps
— this still worked with online course delivery	students overcome roadblocks.
• "Frequent short homework assignments are much more effective than longer but	• "We tell the students that they are all capable of mastering the material (for they are)."
less frequent ones. Handing out a short problem set that is due the next lecture forces the students to practice the material	• and CALCCHECK homework makes more of them
immediately, instead of waiting a week or two."	actually master the material.
Since 2018, giving homework up to three times per week	
 Only feasible due to online submission and autograding Clear improvement in course results 	
Organisation	Schedule
• Schedule	Mon Tue Wed Thu Fri 10:30-11:20 T1-4 T1-4
• Grading	10:30-11:20 11-4 11:30-12:20 Lecture T1-4 Lecture Lecture
• Exams	12:30- T5
Avenue	-14:20 Office hour
	14:30- -16:20 T7
• Course Page: http://www.cas.mcmaster.ca/~kahl/CS2LC3/2024/ — check in case of Avenue and MSTeams outage!	16:30- T6
— cieck in case of Avenue and M5 learns outage!	-18:20
— See the Outline (on course page and on Avenue)	 Lectures: attend!, take notes! 2-hour Tutorials — starting tomorrow, Wednesday, September 4
- Read the Outline!	 discuss student approaches to "Exercise" questions.
- Reau tile Outline:	• TA office hours: TBA
	• Studying and <u>Homework</u> : — Reading the textbook
	- Writing proofs in CALCCHECK _{Web}
Grading	Exams
• Homework, from one lecture to the next — in total: 10%	 Exercise questions, assignment questions, and the questions on midterm tests, and on the final —
 (Not Thursday to Friday) Homework will be more frequent in the first part of the term 	— will be somewhat similar
 The weakest 2 or 3 homeworks are dropped (see outline) MSAFs for homework are not processed 	All tests and exams are closed-book.
• Roughly-biweekly assignments — in total: 10%	 The main difference to open-book lies in how you prepare Knowledge is important:
 Assignments will be less frequent in the first part of the term 	Without the right knowledge, you would not even know what to look up where!
 The weakest 1 or 2 assignments are dropped (see outline) MSAFs for assignments are not processed 	• You need to be able and prepared to do both:
• 2 Midterm Tests, closed book, on CALCCHECK _{Web} / on paper, each:	 Write formalisations and proofs using CALCCHECK Write formalisations and proofs <u>by hand on paper</u>
 10% if not better than your final 20% if better than your final 	Know your stuff!
— in total at least: 20%	— and not only in the exams
- in total up to: 40%	— and not only for this term
• Final (closed book, 2.5 hours, on CALCCHECK _{Web} / on paper) 40% to 60% = 100%	— similar to learning a new language
The Language of Logical Reasoning	
The mathematical foundations of Computing Science involve language skills and knowledge :	Logical Reasoning for Computer Science
Vocabulary: Commonly known concepts and technical terms	COMPSCI 2LC3
• Syntax/Grammar: How to produce complex statements and arguments	
• Semantics: How to relate complex statements with their meaning	McMaster University, Fall 2024
• Pragmatics: How people actually use the features of the language	
	Wolfram Kahl
Conscious and fluent use of the	
language of logical reasoning	2024-09-03
is the foundation for	
precise specification and rigorous argumentation	Part 2: Expressions and Calculations
in Computer Science and Software Engineering.	
7 · 8 The Answer	Calculational Proof Format
$-(Fact^{8} - 7 + 1^{5})$	
$\frac{7 \cdot (7 + 1)}{(7 + 1)^2} = (Fact \mathbf{\hat{7}} = 10 - 3^{\circ})$	r.
$(10 - 3) \cdot (7 + 1)$ = ("Distributivity of over +")	E_0
$ \begin{array}{c} \bullet \\ \bullet $	$= \langle \text{ Explanation of why } E_0 = E_1 \rangle$ $= E_1$
$= ("Distributivity of over - ") 10 \cdot 7 - 3 \cdot 7 + 10 \cdot 1 - 3 \cdot 1$	$= \langle \text{Explanation of why } E_1 = E_2 \rangle$
$= \langle \text{"Identity of ."} - \text{twice} \rangle \\ 10 \cdot 7 - 3 \cdot 7 + 10 - 3$	E_2
$= (Fact^{3} \cdot 7 = 21^{\circ})$	= \langle Explanation of why $E_2 = E_3 \rangle$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E_3
70 - 21 + 10 - 3 = (Fact `10 - 3 = 7`)	
70 - 21 + 7	This is a proof for:
70 – 28	$E_0 = E_3$
$= \langle Fact 70 - 28 = 42^{\circ} \rangle$	


Calculational Proof Forma	t	Syntax of Conventional Mathematical Expressions
E_0 = \langle Explanation of why $E_0 = E_1 \rangle$		LADM 1.1, p. 7 • A constant (e.g., 231) or variable (e.g., <i>x</i>) is an expression
E_1 = (Explanation of why $E_1 = E_2$)		• If <i>E</i> is an expression, then (<i>E</i>) is an expression
E_2 = (Explanation of why $E_2 = E_3$)		 If ∘ is a unary prefix operator and <i>E</i> is an expression, then ∘<i>E</i> is an expression, with operand <i>E</i>.
E_3		<i>For example</i> , the negation symbol – is used as a unary prefix operator, so – 5 is an expression.
The calculational presentation <u>as such</u> is conjunctional: T $E_0 = E_1 \land E_1 = E_2 \land E_2 = E_2$		 If ⊗ is a binary infix operator and <i>D</i> and <i>E</i> are expressions, then <i>D</i> ⊗ <i>E</i> is an expression, with operands <i>D</i> and <i>E</i>.
Because = is transitive , this justifies:		For example , the symbols + and \cdot are binary infix operators, so $1 + 2$ and $(-5) \cdot (3 + x)$ are expressions.
<i>E</i> ₀ = <i>E</i> ₃		
Syntax of Conventional Mathematical	•	Why is this an expression? 2 · 3 + 4
 A constant (e.g., 231) or variable (e.g., <i>x</i>) is an expression If <i>E</i> is an expression, then (<i>E</i>) is an expression If ∘ is a unary prefix operator and <i>E</i> is an expression, the expression of <i>E</i> is an expression of <i>E</i> is an expression. 		• If \otimes is a binary infix operator and <i>D</i> and <i>E</i> are expressions, then $D \otimes E$ is an expression, with operands <i>D</i> and <i>E</i> .
 operand E. If ⊗ is a binary infix operator and D and E are express 	-	• or the application of some binary infix operator to two simpler expressions
expression, with operands <i>D</i> and <i>E</i> . The intention of this is that each expression is at least one of	of the following alternatives:	Which expression is it?
either some constantor some variable		
 or some simpler expression in parentheses or the application of some unary prefix operator 		2 3 3 4 Why?
to some simple: • or the application of some binary infix operator to two simpler	•	⇒ The multiplication operator · has higher precedence than the addition operator +.
Table of Precedences		Why are these expressions? Which expressions are these? n - k - 1
• . (function application)	precedence)	
 unary prefix operators +, -, -, #, ~, P ** (i prod. cod 		
• · / ÷ mod god • + - $\cup \cap \times \circ$ •		● 5-6+7 +
• #		- 7 5 +
● <	njunctional)	5 6 6 7
● ✓ ^ ● ⇒ ← ● =(owest	near dan ca)	a+b-c + + + + + + + + + + + + + + + + + + +
All non-associative binary infix operators associate to the le	precedence) eft,	$a \rightarrow b \qquad a \rightarrow b \rightarrow c$
except **, \triangleleft , \Rightarrow , \rightarrow , which associate to the right.		The operators + and – associate to the left , also mutually.
Associativity versus Associat • If we write <i>a</i> + <i>b</i> + <i>c</i> , there appears to be no need to disc		An Equational Theory of Integers — Axioms (LADM Ch. 15)
(a+b) + c or $a + (b+c)$, because they evaluate to the s	ame values:	(15.1) Axiom, Associativity: $(a+b)+c = a + (b+c)$ $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
• If we write $a - b - c$, we mean $(a - b) - c$:	ociative	(15.2) Axiom, Symmetry: $a + b = b + a$ $a \cdot b = b \cdot a$
"-" associates to the left $9 - (5 - 2) \neq (9 - 5)$) – 2	(15.3) Axiom, Additive identity: $0 + a = a$
• If we write a^{b^c} , we mean $a^{(b^c)}$: exponentiation associates to the right $2^{(3^2)}$	$\neq (2^3)^2$	$a + 0 = a$ (15.4) Axiom, Multiplicative identity: $1 \cdot a = a$
• If we write <i>a</i> ** <i>b</i> ** <i>c</i> , we mean <i>a</i> ** (<i>b</i> ** <i>c</i>): "**" associates to the right		$a \cdot 1 = a$ (15.5) Axiom, Distributivity: $a \cdot (b + c) = a \cdot b + a \cdot c$ $(b + c) \cdot a = b \cdot a + c \cdot a$
• If we write $a \Rightarrow b \Rightarrow c$, we mean $a \Rightarrow (b \Rightarrow c)$:		(15.13) Axiom, Unary minus: $a + (-a) = 0$
" \Rightarrow " associates to the right (false \Rightarrow (true \Rightarrow for the false \Rightarrow)	$alse)) \neq ((false \Rightarrow true) \Rightarrow false)$	(15.14) Axiom, Subtraction: $a - b = a + (-b)$
An Equational Theory of Integers — Axio	oms (CalcCheck)	Calculational Proofs of Theorems — (15.17) $-(-a) = a$
Declaration: \mathbb{Z} : Type Declaration: _+_ : $\mathbb{Z} \rightarrow \mathbb{Z}$		(15.3) Identity of $+ 0 + a = a$ (15.13) Unary minus $a + (-a) = 0$
Declaration: $_$ $_$ $: \mathbb{Z} \to \mathbb{Z}$ Axiom (15.1) (15.1 <i>a</i>) "Associativity of + ": (<i>a</i> + <i>b</i>) + <i>c</i> =	a + (b + c)	LADM: CALCCHECK: Theorem (15.17) "Self-inverse of unary minus":
Axiom (15.1) (15.1b) "Associativity of \cdot ": $(a \cdot b) \cdot c = a$		Theorem (15.17): $-(-a) = a$ $-(-a) = a$
$b0$ Axiom (15.2) (15.2a) "Symmetry of +": $a + b = b + a$ Axiom (15.2) (15.2b) "Symmetry of ·": $a \cdot b = b \cdot a$		-(-a) $-(-a)$
Axiom (15.3) "Additive identity" "Identity of +": 0 + a Axiom (15.4) "Multiplicative identity" "Identity of .": 1		= (Identity of + (15.3)) = ("Identity of + ") 0 + -(-a) 0 + - (-a)
Axiom (15.5) "Distributivity of \cdot over $+$ ": $a \cdot (b + c) = a$		= (Unary minus (15.13)) = ("Unary minus")
$ \overrightarrow{\text{Axiom (15.9)}} \text{ "Zero of } \cdot \text{": } a \cdot 0 = 0 $ $ \overrightarrow{\text{Declaration: } -_} : \mathbb{Z} \to \mathbb{Z} $		= (Unary minus (15.13)) = ("Unary minus ")
Declaration : $\$: $\mathbb{Z} \to \mathbb{Z}$ Axiom (15.13) "Unary minus": $a + (-a) = 0$		$a + 0 \qquad a + 0$ = (Identity of + (15.3)) = ("Identity of +")
Axiom (15.14) "Subtraction": $a - b = a + (-b)$		a a

7 · 8 Get Started with CALCCHECK Now!	
$ \begin{array}{l} \label{eq:constraints} IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	Logical Reasoning for Computer Science COMPSCI 2LC3
$= \langle \text{"Distributivity of } \circ \text{over } - \text{"} \rangle \qquad \text{tutorial!}$ $= \langle \text{"Identity of } \cdot \text{"} - \text{twice} \rangle$	McMaster University, Fall 2024
• Get started working on Exercises 1.* $10 \cdot 7 - 3 \cdot 7 + 10 - 3$ $= \{ \text{Fact } 3 \cdot 7 - 21 + 10 - 3$	Wolfram Kahl
• Go to your tutorial to continue working 70 - 21 + 10 - 3 $= \langle Fact `10 - 3 = 7' \rangle$ • Go to your tutorial to continue working on Ex1 — bring your laptop!	2024-09-05
$\begin{array}{cccccccc} & 70 & - & 21 & + & 7 \\ = \langle \ Fact \ '21 & + & 7 & = 28 \ & \\ & 70 & - & 28 \\ = \langle \ Fact \ '70 & - & 28 & = 42 \ & \\ & 42 \end{array} $	Expressions and Substitution — LADM Chapter 1
	Term Tree Presentation of Mathematical Expression (Using linear notation $x ** y$ for exponentiation x^y)
Logical Reasoning for Computer Science	$b^2 \le n \le (b+1)^2$
COMPSCI 2LC3	$\frac{b^2 \leq n \land n \leq (b+1)^2}{(b+1)^2}$
McMaster University, Fall 2024	

Wolfram Kahl	b 2 + 2
2024 00 05	b 1
2024-09-05 Part 1: Syntax of Mathematical Expressions (ctd.)	We write strings, but we think trees. All the rules we have for implicit parentheses only serve to encode the tree structure.
	(These term trees are the essence of the abstract syntax trees (ASTs) used centrally in compilers.)
Recall: Syntax of Conventional Mathematical Expressions	Recall: Syntax of Conventional Mathematical Expressions
• A constant (e.g., 231) or variable (e.g., <i>x</i>) is an expression	• A constant (e.g., 231) or variable (e.g., <i>x</i>) is an expression
• If <i>E</i> is an expression, then (<i>E</i>) is an expression	 If <i>E</i> is an expression, then (<i>E</i>) is an expression If ∘ is a unary prefix operator and <i>E</i> is an expression, then ∘<i>E</i> is an expression, with
	operand <i>E</i> . • If \otimes is a binary infix operator and <i>D</i> and <i>E</i> are expressions, then $D \otimes E$ is an
• If ∘ is a unary prefix operator and <i>E</i> is an expression, then ∘ <i>E</i> is an expression, with operand <i>E</i> .	expression, with operands <i>D</i> and <i>E</i> .
For example , the negation symbol – is used as a unary prefix operator, so –5 is an expression.	The intention of this is that each expression is at least one of the following alternatives: either some constant
	 or some variable or some simpler expression in parentheses
 If ⊗ is a binary infix operator and <i>D</i> and <i>E</i> are expressions, then <i>D</i> ⊗ <i>E</i> is an expression, with operands <i>D</i> and <i>E</i>. 	• or the application of some unary prefix operator
<i>For example</i> , the symbols + and \cdot are binary infix operators, so $1 + 2$ and $(-5) \cdot (3 + x)$ are expressions.	to some simpler expression or the application of some binary infix operator
	to two simpler expressions
Precedences and Association — We write strings, but we think trees	Associativity versus Association
All the rules we have for implicit parentheses only serve to encode the tree structure.	• If we write $a + b + c$, there appears to be no need to discuss whether we mean $(a + b) + c$ or $a + (b + c)$, because they evaluate to the same values:
(We use underscores to denote operator argument positions. So $_{\otimes}_{-}$ is a binary infix operator, and \square_{-} is a unary prefix operator.)	(a + b) + c = a + (b + c) ""+" is associative
$a \otimes b \odot c = (a \otimes b) \odot c$	• If we write $a - b - c$, we mean $(a - b) - c$:
	"−" associates to the left 9 - (5 - 2) ≠ (9 - 5) - 2 • If we write a^{b^c} , we mean $a^{(b^c)}$:
$\Box_{a} \text{ has higher precedence than } \Box_{a} \text{ means } \Box_{a} \otimes b = \Box_{a} \otimes b$	• If we write a^{ν} , we mean a^{ν} ?: exponentiation associates to the right $2^{(3^2)} \neq (2^3)^2$
$ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _$	• If we write <i>a</i> ** <i>b</i> ** <i>c</i> , we mean <i>a</i> ** (<i>b</i> ** <i>c</i>):
$_\otimes_$ associates to the right means $a \otimes b \otimes c = a \otimes (b \otimes c)$	"**" associates to the right
_ $_\otimes_$ mutually associates to the left with (same prec.) _ $\bigcirc_$ means $a \otimes b \odot c = (a \otimes b) \odot c$	• If we write $a \Rightarrow b \Rightarrow c$, we mean $a \Rightarrow (b \Rightarrow c)$: $\begin{array}{c} \textcircled{"\Rightarrow" associates to the right} \\ \hline F \Rightarrow (T \Rightarrow F) \neq (F \Rightarrow T) \Rightarrow F \end{array}$
_ $_\otimes_$ mutually associates to the right with (same prec.) _ $_\odot_$ means $a \otimes b \odot c = a \otimes (b \odot c)$	$\Rightarrow \text{ associates to the nght} \qquad r \Rightarrow (1 \Rightarrow r) + (r \Rightarrow 1) \Rightarrow r$
Conjunctional Operators	Mathematical Expressions, Terms, Formulae
	· · · · · · · · · · · · · · · · · · ·
$1 < i \leq j < 5 = k$	"Expression" is not the only word used for this kind of concept. Related terminology:
$\equiv \langle \text{"Reflexivity of } = x = x - \text{conjunctional operators} \rangle$ 1 < i \land i < j \land j < 5 \land 5 = k	 Both "term" and "expression" are frequently used names for the same kind of concent
$= \langle \text{"Reflexivity of ="}^{1 < l \land 1 < j \land 3 < 3 \land 3 = k} $	for the same kind of concept.The textbook's "expression" subsumes both "term" and "formula" of conventional
Chains can involve different conjunctional operators: $1 < i \le j < 5 = k$ $\equiv \langle \text{"Reflexivity of ="`x = x` conjunctional operators } \rangle$ $1 < i \land i \le j \land j < 5 \land 5 = k$ $\equiv \langle \text{"Reflexivity of ="} \land \text{ has lower precedence } \rangle$ $(1 < i) \land (i \le j) \land (j < 5) \land (5 = k)$ $Reflexive the second $	first-order predicate logic.
Rei	Remember: • Expressions are understood as tree-structures
$x < 5 \in S \subseteq T$ = ("Reflexivity of =" — conjunctional operators)	— ubstruct syntax
$x < 5 \land 5 \in S \land S \subseteq T$	 Expressions are written as strings — "concrete syntax"
$\equiv \langle \text{"Reflexivity of ="} - \wedge \text{ has lower precedence} \rangle$ $(x < 5) \land (5 < 5) \land (5 < 7)$	Parentheses, precedences, and association rules
$(x < 5) \land (5 \in S) \land (S \subseteq T)$	only serve to disambiguate the encoding of trees in strings.

	Plan for Part 2
	• Substitution as such: Replaces variables with expressions in expressions, e.g.,
Logical Reasoning for Computer Science	$(x+2 \cdot y)[x, y := 3 \cdot a, b+5]$
COMPSCI 2LC3	$= (Substitution) 3 \cdot a + 2 \cdot (b + 5)$
McMaster University, Fall 2024	
	• Applying substitution instances of theorems and making the substitution explicit:
Wolfram Kahl	$2 \cdot y + -(2 \cdot y)$
2024.00.05	$= \langle \text{"Unary minus"}^{*}a + -a = 0 \text{ with }^{*}a := 2 \cdot y^{*} \rangle$ 0
2024-09-05	
Part 2: Substitution	
Textual Substitution	Textual Substitution
Let E and R be expressions and let x be a variable. We write:	Let E and R be expressions and let x be a variable. We write:
$E[x \coloneqq R]$ or E_R^x	E[x := R]
to denote an expression that is the same as E but with all occurrences of x replaced by (R	to denote an expression that is the same as E but with all occurrences of x replaced by (R) .
Example 1:	Example 2:
$(x+y)[x \coloneqq z+2]$	$(x \cdot y)[x \coloneqq z + 2]$
= (Substitution — performing substitution) ((z+2)+y)	$= \langle \text{Substitution} \rangle ((z+2) \cdot y)$
= ("Reflexivity of =" — removing unnecessary parentheses)	= ("Reflexivity of =" — removing unnecessary parentheses)
z + 2 + y	$(z+2)\cdot y$
Textual Substitution	Textual Substitution Let E and R be expressions and let x be a variable. We write:
Let <i>E</i> and <i>R</i> be expressions and let <i>x</i> be a variable. We write: $F(x,y) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_$	E[x := R]
E[x := R]	to denote an expression that is the same as E but with all occurrences of x replaced by (R)
to denote an expression that is the same as <i>E</i> but with all occurrences of <i>x</i> replaced by (<i>R</i>	Example 4:
Example 3: (0+a)[a:=-(-a)]	$x + y[x \coloneqq z + 2]$
= (Substitution)	= \langle "Reflexivity of =" — adding parentheses for clarity \rangle x + (y[x := z + 2])
(0 + (-(-a)))	= (Substitution)
= \langle "Reflexivity of =" — removing (some) unnecessary parenth. \rangle 0 + - (-a)	x + (y)
	= \langle "Reflexivity of =" — removing unnecessary parentheses \rangle x + y
	Note: Substitution [<i>x</i> := <i>R</i>] is a highest precedence postfix operator
Textual Substitution	Sequential Substitution
Let E and R be expressions and let x be a variable. We write:	(x+y)[x := y-3][y := z+2]
$E[x := R]$ or E_R^x	= ("Reflexivity of =" — adding parentheses for clarity)
to denote an expression that is the same as E but with all occurrences of x replaced by (R	$ \frac{((x+y)[x:=y-3])[y:=z+2]}{(x=y-3)[y:=z+2]} $
Examples: Unnecessary parentheses	$\frac{((y-3)+y)[y=z+2]}{(((y-3)+y))[y=z+2]}$
ExpressionResultremoved $x[x := z + 2]$ $(z + 2)$ $z + 2$	= (Substitution — performing outer substitution)
$\begin{array}{c} x_{\lfloor x := 2+2 \rfloor} & (2+2) & 2+2 \\ (x+y)[x:=z+2] & ((z+2)+y) & z+2+y \end{array}$	$\left(\left(\left(\left(\left(z+2 \right) -3 \right) + \left(z+2 \right) \right) \right) \right)$ = ("Reflexivity of =" — removing unnecessary parentheses")
$(x \cdot y)[x := z + 2] \qquad ((z + 2) \cdot y) \qquad (z + 2) \cdot y$ $x + y[x := z + 2] \qquad x + y \qquad x + y$	z+2-3+z+2
$x + y[x := z + 2] \qquad x + y \qquad x + y$ Note: Substitution [x := R] is a highest precedence postfix operator	
Simultaneous Textual Substitution	Simultaneous Textual Substitution
If <i>R</i> is a list $R_1,, R_n$ of expressions and <i>x</i> is a list $x_1,, x_n$ of distinct variables , we write:	If <i>R</i> is a list $R_1,, R_n$ of expressions and <i>x</i> is a list $x_1,, x_n$ of distinct variables, we write:
E[x := R]	E[x := R]
to denote the simultaneous replacement of the variables of <i>x</i>	to denote the simultaneous replacement of the variables of x
by the corresponding expressions of <i>R</i> , each expression being enclosed in parentheses.	by the corresponding expressions of <i>R</i> , each expression being enclosed in parentheses.
Example:	Examples: Unnecessary
(x + y)[x, y := y - 3, z + 2] = (Substitution — performing substitution)	Expression Result removed
= (substitution - performing substitution) ((y-3) + (z+2))	$x[x, y := y - 3, z + 2] \qquad (y - 3) \qquad y - 3$
= ("Reflexivity of =" — removing unnecessary parentheses)	$ \begin{array}{c} (y+x)[x,y:=y-3,z+2] \\ (x+y)[x,y:=y-3,z+2] \end{array} ((z+2)+(y-3)) & z+2+y-3 \\ (y+y)[x,y:=y-3,z+2] \end{array} $
y - 3 + z + 2	$\begin{vmatrix} (x + y)(x, y) = y - 3, z + 2 \\ x + y[x, y) = y - 3, z + 2 \\ x + (z + 2) \\ x + z + 2 \end{vmatrix} \begin{vmatrix} (y - y) + (z + 2) \\ x + z + 2 \\ y + z + 2 \end{vmatrix}$

What is an Inference Rule?	Inference Rule: Substitution
$\frac{\text{premise}_1 \dots \text{premise}_n}{\text{conclusion}}$	(1.1) Substitution: $\frac{E}{E[x := R]}$ ("If <i>E</i> is a theorem, then $E[x := R]$ is a theorem as well"
 If all the premises are theorems, then the conclusion is a theorem. A theorem is a "proved truth" — either an axiom, — or the result of an inference rule application. 	Example:If $a + 0 = a$ is a theorem,"Identity of +"then $3 \cdot q + 0 = 3 \cdot q$ is also a theorem."Identity of +" with 'a := $3 \cdot q'$
 Inference rules are the building blocks of proofs. The premises are also called hypotheses. The conclusion and each premise all have to be Boolean. Axioms are inference rules with zero premises 	$\frac{a+0 = a}{(a+0 = a)[a:=3 \cdot q]} \qquad \qquad \frac{a+0 = a}{3 \cdot q+0 = 3 \cdot q}$
(1.1) Substitution: $ \frac{E}{E[x := R]} $ $ \begin{array}{c} "If E is a theorem, \\ then E[x := R] is a theorem as well" \end{array} $	Inference Rule Scheme: Substitution — Also for Simultaneous Substitution (1.1) Substitution: $\frac{E}{E[x := R]}$
Really an inference rule scheme : works for every (well-typed) combination of • expression <i>E</i> , • variable <i>x</i> , and • expression <i>R</i> . Example: If $a + 0 = a$ is a theorem, $\frac{a + 0 = a}{3 \cdot q + 0 = 3 \cdot q}$	Really an inference rule scheme:works for every (well-typed) combination of• expression E ,• variable list x , and• corresponding expression list R .Example: IfIf $a + b = b + a$ is a theorem,
then $3 \cdot q + 0 = 3 \cdot q$ is also a theorem. • expression <i>E</i> is $a + 0 = a$ • the variable <i>x</i> substituted into is <i>a</i> • the substituted expression <i>R</i> is $3 \cdot q$	then $2 \cdot y + 3 = 3 + 2 \cdot y$ is also a theorem. • expression <i>E</i> is $a + b = b + a$ • variable list <i>x</i> is a, b • corresponding expression list <i>R</i> is $2 \cdot y, 3$
Logical Definition of Equality	Using Leibniz' Rule in (15.21)
Two axioms (i.e., postulated as theorems): • (1.2) Reflexivity of =: $x = x$	Given: (15.20) $-a = (-1) \cdot a$ E[z := X] = E[z := Y]
• (1.3) Symmetry of =: $(x = y) = (y = x)$ Two inference rule schemes: • (1.4) Transitivity of =: $\frac{X = Y Y = Z}{X = Z}$ • (1.5) Leibniz: $\frac{X = Y}{E[z := X] = E[z := Y]}$ — the rule of "replacing equals for equals"	Proving (15.21) $(-a) \cdot b = a \cdot (-b)$: $(-a) \cdot b$ $= \langle (15.20) - \text{via Leibniz (1.5) with } E \text{ chosen as } z \cdot b \rangle$ $((-1) \cdot a) \cdot b$ $= \langle \text{Associativity (15.1) and Symmetry (15.2) of } \cdot \rangle$ $a \cdot ((-1) \cdot b)$ $= \langle (15.20) \rangle$ $a \cdot (-b)$
Using Leibniz together with Substitution in (15.21)Given: $(15.20) - a = (-1) \cdot a$ $\boxed{\frac{X = Y}{E[z := X] = E[z := Y]}}$ Proving $(15.21) (-a) \cdot b = a \cdot (-b)$: $(-a) \cdot b$ $= \langle (15.20) - via$ Leibniz (1.5) with <i>E</i> chosen as $z \cdot b \rangle$ $((-1) \cdot a) \cdot b$ $= \langle Associativity (15.1) and Symmetry (15.2) of \cdot \rangle$ $a \cdot ((-1) \cdot b)$ $= \langle (15.20)$ with $a := b$ via Leibniz (1.5) with <i>E</i> chosen as $a \cdot z \rangle$ $a \cdot (-b)$	Using Leibniz together with Substitution in (15.21)Theorem (15.21): $(-a) \cdot b = a \cdot (-b)$ Proof: $(-a) \cdot b$ $= (Substitution)$ $(z \cdot b)[z := -a]$ $= (15.20) - via$ "Leibniz" with $z \cdot b$ as E) $(z \cdot b)[z := (-1) \cdot a]$ $= (Substitution)$ $(-1) \cdot a \cdot b$ $= ("Symmetry of \cdot")$ $a \cdot (-1) \cdot b$ $= (Substitution)$ $(a \cdot z)[z := (-1) \cdot b]$ $= (Substitution)$ $(a \cdot z)[z := -b]$ $= (Substitution)$ $(a \cdot z)[z := -b]$ $= (Substitution)$ $a \cdot (-b)$
Combining Leibniz' Rule with Substitution (1.5) Leibniz: $\frac{X = Y}{E[z := X] = E[z := Y]}$ (15.20) $-a = (-1) \cdot a$ (1.1) Substitution: $\frac{F}{F[v := R]}$ Using Leibniz: E[z := X] Using them together: E[z := X] Example: $a \cdot ((-1) \cdot b)$	Automatic Application of Associativity and Symmetry LawsAxiom (15.1) (15.1a) "Associativity of +": $(a + b) + c = a + (b + c)$ Axiom (15.1) (15.1b) "Associativity of ·": $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ Axiom (15.2) (15.2a) "Symmetry of +": $a + b = b + a$ Axiom (15.2) (15.2b) "Symmetry of ·": $a \cdot b = b \cdot a$ • You have been trained to reason "up to symmetry and associativity"• Making any participation of the participation
$\begin{bmatrix} 1 & 2 & 1 \\ z & X & Y \\ E[z := Y] \end{bmatrix} = \langle X = Y \rangle$ $E[z := Y[v := R]]$ $\begin{bmatrix} x = Y \\ E[z := X[v := R] = Y[v := R] \end{bmatrix}$ $\begin{bmatrix} x = Y \\ a \cdot (-b) \end{bmatrix}$ $\begin{bmatrix} x = y \\ a \cdot (-b) \end{bmatrix}$ $\begin{bmatrix} x = y \\ E[z := X[v := R] = F[v := R] \end{bmatrix}$ $\begin{bmatrix} x = y \\ E[z := X[v := R] = F[v := R] \end{bmatrix}$ $\begin{bmatrix} x = y \\ E[z := X[v := R] = F[v := R] \end{bmatrix}$	 Making symmetry and associativity steps explicit is always allowed sometimes very useful for readability CALCCHECK allows selective activation of symmetry and associativity laws

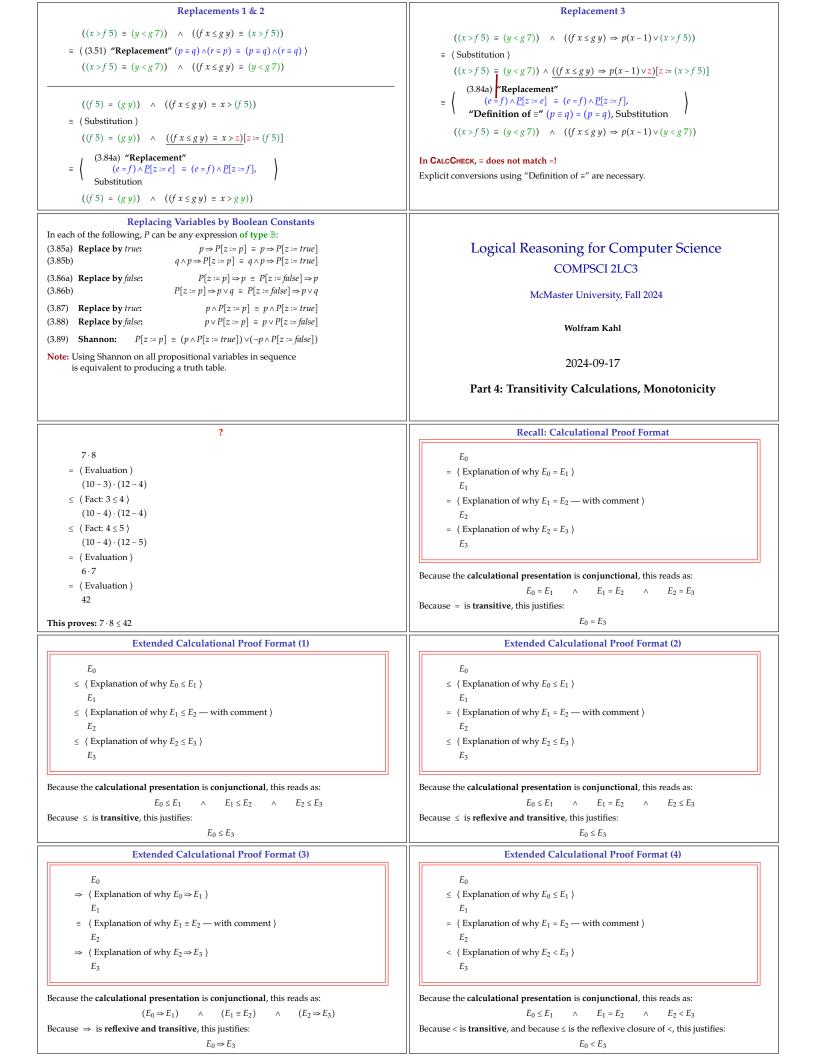
Binary Boolean Operators: Equivalence	Binary Boolean Operators: Inequivalence ("exclusive or")
Equality of Boolean values is also called equivalence and written =	
(In some other places: \Leftrightarrow)	Args.
$p \equiv q$ can be read as: <i>p</i> is equivalent to <i>q</i>	F F F Either the moon is green, or $2 + 2 = 7$.
or: <i>p</i> exactly when <i>q</i>	F T T Either the moon is green, or $1 + 1 = 2$.
or: <i>p</i> if-and-only-if <i>q</i>	T F T Either $1 + 1 = 2$, or the moon is green.
or: $p $ iff q	T T F Either $1 + 1 = 2$, or the sun is a star.
$p q p \equiv q$	
<i>false false true</i> The moon is green iff $2 + 2 = 7$.	
false true false The moon is green iff $1 + 1 = 2$.	
truefalse $1 + 1 = 2$ iff the moon is green.truetrue $1 + 1 = 2$ iff the sun is a star.	
Table of Precedences	Expression Evaluation (LADM 1.1 end)
 [x := e] (textual substitution) (highest precedence) . (function application) 	• 2 · 3 + 4
 unary prefix operators +, -, -, #, ~, P 	• 2 · (3 + 4)
● ** ● · / ÷ mod gcd	• 2· <i>y</i> +4
\bullet + - U \cap x \bullet	A state is a "list of variables with associated values". E.g.:
●↓↑	$s_1 = [(x,5), (y,6)]$ — (using Haskell notation for informal lists)
$\bullet = \neq \langle \rangle \in \subseteq \Box \supseteq \qquad (conjunctional)$	Evaluating an expression in a state: "Replace variables with their values; then evaluate":
	• $x - y + 2$ in state s_1
● ≡ ≠ (lowest precedence)	$\xrightarrow{\longrightarrow} 5-6+2 \longrightarrow (5-6)+2 \longrightarrow (-1)+2 \longrightarrow 1$
All non-associative binary infix operators associate to the left, except $**, \triangleleft, \Rightarrow, \rightarrow$, which associate to the right.	• $x \cdot 2 + y$
	• $x \cdot (2+y)$
	• x · (z + y)
Evaluation of Boolean Expressions	Evaluation of Boolean Expressions Using Truth Tables
Example: Using the state $\langle (p, false), (q, true), (r, false) \rangle$:	$p q \mid \neg p q \land \neg p p \lor (q \land \neg p)$
$p \lor (q \land \neg r)$	FFTFF
<pre>= (replace variables with state values) false \(true \ -false)</pre>	
$= \langle -false = true \rangle$	T F F F T T T F F T
$false \lor (true \land true)$	
$= (true \wedge true = true)$	Identify variablesIdentify subexpressions
false v true	 Enumerate possible states (of the variables)
= (false v true = true) true 5	• Evaluate (sub-)expressions in all states
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
F F F F F F F F F F T T T T T T T T F T F F F F	
T F F F T T F F T T F F T T F F T T T T F T F	
	Madeline English Propositions 1
Validity and Satisfiability • A boolean expression is satisfied in state s $p = q - p = q \wedge \neg p = p \lor (q \wedge \neg p)$	Modeling English Propositions 1
iff it evaluates to <i>true</i> in state <i>s</i> .	• Henry VIII had one son and Cleopatra had two.
A boolean expression is satisfiable F T T T T F F F T	Henry VIII had one son and Cleopatra had two sons.
iff there is a state in which it is satisfied.	Declarationer
A boolean expression is valid	Declarations:
iff it is satisfied in every state.	h := Henry VIII had one son c := Cleopatra had two sons
• A valid boolean expression is called a tautology.	c := Cleopatra had two sons Formalisation:
• A boolean expression is called a contradiction	$h \wedge c$
iff it evaluates to <i>false</i> in every state.	
 Two boolean expressions are called logically equivalent iff they evaluate to the same truth value in every state. 	
These definitions rely on states / truth tables: Semantic concepts	
Modeling English Propositions — Recipe	Ladies or Tigers
• Transform into shape with clear subpropositions	Raymond Smullyan provides, in The Lady or the Tiger? , the following context for a number of puzzles to follow:
 Introduce Boolean variables to denote subpropositions 	number of puzzles to follow: [] the king explained to the prisoner that each of the two rooms contained
	either a lady or a tiger, but it could be that there were tigers in both rooms, or
• Replace these subpropositions by their corresponding Boolean variables	ladies in both rooms, or then again, maybe one room contained a lady and the other room a tiger.
 Translate the result into a Boolean expression, using (no perfect translation rules are possible!) for example: 	In the first case, the following signs are on the doors of the rooms:
I	
and, but becomes \wedge	In this room there is a lady, and in the other room there is lady, and in one of these rooms
or becomes v not becomes ¬	a tiger. I have a tiger.
it is not the case that becomes \neg	We are told that one of the signs is true, and the other one is false.
if p then q becomes $p \Rightarrow q$	"Which door would you open (assuming, of course,
	that you preferred the lady to the tiger?"
	L

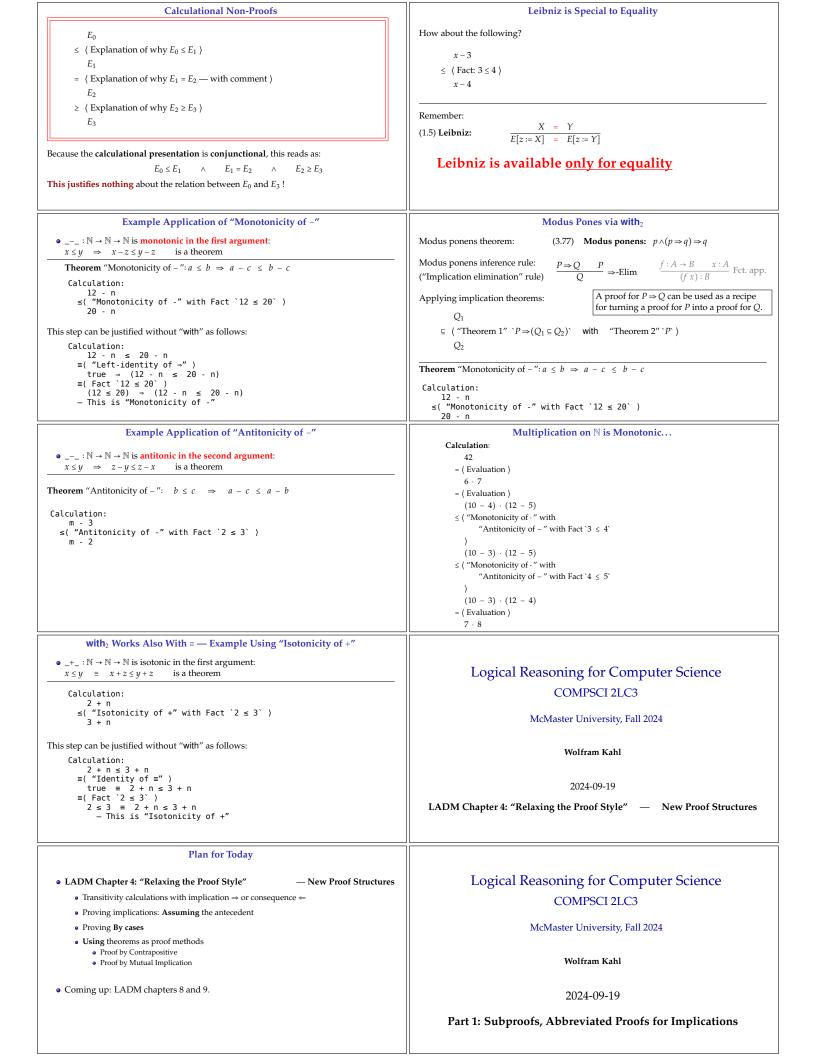
Ladies or Tigers — The First Case — Starting Formalisation	Equality "=" versus Equivalence "="
Raymond Smullyan provides, in The Lady or the Tiger?, the following context for a	The operators = (as Boolean operator) and \equiv
number of puzzles to follow:	 have the same meaning (represent the same function),
[] the king explained to the prisoner that each of the two rooms contained either a lady or a tiger, but it <i>could</i> be that there were tigers in both rooms, or ladies in both rooms, or	 but are used with different notational conventions:
then again, maybe one room contained a lady and the other room a tiger.	 o different precedences (≡ has lowest)
R1L := There is a lady in room 1	
R1T := There is a tiger in room 1	different chaining behaviour:
R2L := There is a lady in room 2	• = is associative:
R2T := There is a tiger in room 2	$(p \equiv q \equiv r) = ((p \equiv q) \equiv r) = (p \equiv (q \equiv r))$
	• = is conjunctional:
[] We are told that one of the signs is true, and the other one is false.	
$S_1 := \text{Sign 1 is true}$	$(x = y = z) = ((x = y) \land (y = z))$
$S_2 :=$ Sign 2 is true	
	Plan for Today
Logical Reasoning for Computer Science	• Reasoning about Assignment Commands in Imperative Programs (≈ LADM 1.6):
COMPSCI 2LC3	Correctness of programs with respect to pre-/post-condition specifications
	Reasoning using "Hoare logic"
McMaster University, Fall 2024	\implies Homework 3 – due Friday, 8:30
	Propositional Calculus (LADM Chapter 3)
Wolfram Kahl	Equivalence
	Negation, InequivalenceDisjunction
2024-09-10	Conjunction
	\implies Exercises 2.4–2.7
Command Correctness, Propositional Calculus	\implies Work through at least Exercise 2.4 before your tutorial!
	States as Program States
Logical Reasoning for Computer Science	LADM 1.1: A state is a "list of variables with associated values". E.g.:
	$s_1 = [(x,5), (y,6)] - (using Haskell notation for informal lists)$
COMPSCI 2LC3	Evaluating an expression in a state:
McMaster University, Fall 2024	"Replace variables with their values; then evaluate"
Welviaster University, Fair 2024	 In logic, "states" are usually called "variable assignments"
	• States can serve as a mathematical model of program states
Wolfram Kahl	• Execution of imperative programs induces state transformation:
	[(x,5), (y,6)]
2024-09-10	\rightarrow ($x := x + y$)
	[(x,11), (y,6)]
Part 1: Correctness of Assignment Commands	\rightarrow ($y := x - y$)
	[(x,11), (y,5)]
State Predicates	Precondition-Postcondition Specifications
Execution of imperative programs induces state transformation:	Program correctness statement in LADM (and much current use):
$[(x,5), (y,6)] \qquad \qquad \text{`x} < y` \text{ holds}$	$\{P\}C\{Q\}$
$ \langle x := x + y \rangle $ $ [(x, 11), (y, 6)] $ $ x < y does not hold$	This is called a "Hoare triple".
$\begin{bmatrix} (x,11), (y,6) \end{bmatrix} \qquad \qquad \text{`x} < y` \text{ does not hold}$ $\sim (y := x - y)$	• Meaning: If command <i>C</i> is started in a state in which the precondition <i>P</i> holds,
$ \langle y := x - y \rangle $ $ [(x, 11), (y, 5)] \qquad \qquad x < y \text{ does not hold} $	then it will terminate only in a state in which the postcondition <i>Q</i> holds.
	a Hoare's original notation:
 Boolean expressions containing variables can be used as state predicates: 	Hoare's original notation:
P "holds in state s " iff P evaluates to <i>true</i> in state s	$P \{ C \} Q$
	• Dynamic logic notation (will be used in CALCCHECK):
	$P \Rightarrow [C] Q$
Correctness of Assignment Commands P C Q	Correctness of Assignment Commands — Longer Example Recall: Hoare triple: {P } C { Q }
• Dynamic logic notation (will be used in CALCCHECK): $P \Rightarrow [C] Q$	Dynamic logic notation (will be used in CALCCHECK):
• Meaning: If command <i>C</i> is started in a state in which the precondition <i>P</i> holds, then it will terminate only in a state in which the measure divisor O holds.	$P \Rightarrow [C]Q$
it will terminate only in a state in which the postcondition <i>Q</i> holds. • Assignment Axiom: $\{Q[x := E] \mid x := E \mid Q\}$ $Q[x := E] \Rightarrow [x := E \mid Q]$	• Meaning: If command <i>C</i> is started in a state in which the precondition <i>P</i> holds, then it will terminate only in a state in which the postcondition <i>Q</i> holds.
• Assignment Axiom: $\{Q[x := E] \} x := E \{Q\}$ • Example:	• Assignment Axiom: $\{Q[x := E]\} x := E \{Q\}$ $Q[x := E] \Rightarrow x := E [Q]$
• $(x = 5)[x := x + 1] \implies [x := x + 1] x = 5$	 Longer example (these proofs are developed from the bottom to the top!):
• $(x+1=5) \implies [x := x+1] x = 5$	true
x + 1 = 5	$\equiv \langle \text{Zero of } \lor \rangle$
$\equiv (Substitution) (x = 5)[x := x + 1]$	$1 = 0 \lor true$
(x = 5)[x := x + 1] $\Rightarrow [x := x + 1] (Assignment)$	$\equiv (\text{ Reflexivity of } =) $ 1 = 0 \times 1 = 1
x = 5	$\equiv \langle \text{Substitution} \rangle$
Substitution ":=": Assignment ":= ": Out Union to the start to t	$(x=0\lor x=1)[x:=1]$
One Unicode character; type "\:=" Two characters; type ":="	$\Rightarrow [x := 1] (\text{Assignment})$
- JEC V. JEC	$x = 0 \lor x = 1$

Example Proof for a Proof:	Sequential Composition of Commands
Sequence of Assignments $ \begin{array}{l}x = 5\\ \equiv \langle \text{"Cancellation of +"} \rangle \\ x + 1 = 5 + 1\\ \equiv \langle \text{Fact} {}^{5} + 1 = 6 \rangle \end{array} $	Primitive inference rule "SEQ":Primitive inference rule "Sequence":`{P} C_1 {Q}`, `{Q} C_2 {R}``P \rightarrow [C1] Q`, `Q \rightarrow [C2] R`
Lemma (4): $x = 5$ $x + 1 = 6$ \equiv (Substitution)	$\vdash \qquad \qquad \vdash \qquad \vdash \qquad \qquad \vdash \qquad \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash $
$ \Rightarrow \begin{bmatrix} y := x + 1 \\ y := y + y \\ x := y + y \\ y = \begin{bmatrix} y := x + 1 \\ y := x + 1 \end{bmatrix} $ (<i>y</i> = 6)[<i>y</i> := <i>x</i> + 1] (<i>y</i> := 6)[<i>y</i> := <i>x</i> + 1] ("Assignment")	Activated as transitivity rule
$ \begin{array}{l} y = 6 \\ x = 12 \\ \hline = (\text{"Cancellation of } \cdot \text{" with Fact } 2 \neq 0 \) \end{array} $	• Therefore used implicitly in calculations, e.g., proving $P \Rightarrow [C_1; C_2] R$ by:
$2 \cdot y = 2 \cdot 6$ = (Evaluation)	Р
$(1 + 1) \cdot y = 12$ = ("Distributivity of \cdot over +")	$\Rightarrow [C_1] (\dots)$
$1 \cdot y + 1 \cdot y = 12$ = ("Identity of .")	Q
$y + y = 12$ Read and write $\equiv \langle \text{Substitution} \rangle$	$\Rightarrow \begin{bmatrix} C_2 \end{bmatrix} \langle \dots \rangle$ R
such " $_\Rightarrow [_]_$ " proofs $(x = 12)[x := y + y]$ $\neg [x := y + y]$ ("Assignment")	No need to refer to this rule explicitly.
from the bottom to the top! $-1(x - y + y)$ (Assignment 7) x = 12	
Specification Pattern: "Auxiliary Variables"	What Does this C Program Fragment Do?
Lemma: $x = x_0 \implies [x := x + 1] x = x_0 + 1$ Proof: $x = x_0$	Let x and y be variables of type int.
From: $x = x_0$ = (Cancellation of +)	
$x + 1 = x_0 + 1$	x = x + y;
$\equiv \langle \text{Substitution} \rangle$	
$(x = x_0 + 1)[x := x + 1]$ $\Rightarrow [x := x + 1] (\text{Assignment})$	y = x - y;
$x = x_0 + 1$	x = x - y;
Variable x_0	
• is not assigned in the program	(There is a similar-looking program in H3)
• "remembers" the value of <i>x</i> in the start state for referencing it in the postcondition Such variables are called "auxiliary variables" in the context of pre-/post-condition	
specification.	
	Propositional Calculus
	Calculus: method of reasoning by calculation with symbols
Logical Reasoning for Computer Science	Propositional Calculus: calculating with Boolean expressions
COMPSCI 2LC3	• containing propositional variables
McMaster University, Fall 2024	The Textbook's Propositional Calculus: Equational Logic E a set of axioms defining operator properties
	four inference rules:
Wolfram Kahl	• (1.5) Leidniz: $\overline{E[z := X]} = E[z := Y]$ inside expressions.
2024-09-10	• (1.4) Transitivity: $\frac{X = Y Y = Z}{X = Z}$ We can chain equalities.
Part 2: LADM Propositional Calculus: \equiv , \neg , \neq , \lor , \land	• (1.1) Substitution: $\frac{E}{E[x := R]}$ We can can use substitution instances of theorems.
1 , , , , , ,	• Equanimity: $\frac{X = Y - X}{Y}$ — This is
Theorems — Remember!	Equivalence Axioms
A theorem is	(3.1) Axiom, Associativity of \equiv : $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$
 either an axiom or the conclusion of an inference rule where the premises are theorems 	$(5.1) \text{ Axion, Associativity of } = . \qquad ((p = q) = r) = (p = (q = r))$
 or a Boolean expression proved (using the inference rules) equal to an axiom or a 	(3.2) Axiom, Symmetry of \equiv : $p \equiv q \equiv q \equiv p$
previously proved theorem . ("— This is")	Can be used as: • $(p \equiv q) = (q \equiv p)$
Such proofs will be presented in the calculational style .	• $p = (q \equiv q \equiv p)$
Note: • The theorem definition does not use evaluation/validity	• $(p \equiv q \equiv q) = p$ Example theorem — shown differently in the textbook:
• But: • All theorems in E are valid	Proving $p \equiv p \equiv q \equiv q$:
All valid Boolean expressions are theorems in E Important:	p = p = q = q
 We will prove theorems without using validity! This trains an essential mathematical skill! 	$= \langle (3.2) \text{ Symmetry of } \equiv, \text{ with } p, q := p, q \equiv q \rangle$
• This trains an essential mathematical skin:	$p \equiv q \equiv q \equiv p$ — This is (3.2) Symmetry of \equiv
Equivalence Axioms — Example Proof with Parentheses	Equivalence Axioms — Introducing true
(3.1) Axiom, Associativity of \equiv : $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$	(3.1) Axiom, Associativity of \equiv : $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$
(3.2) Axiom, Symmetry of \equiv : $p \equiv q \equiv q \equiv p$	(3.2) Axiom, Symmetry of \equiv : $p \equiv q \equiv q \equiv p$
Can be used as:	Can be used as:
• $(p \equiv q) = (q \equiv p)$ • $p = (q \equiv q \equiv p)$	• $(p \equiv q) = (q \equiv p)$ • $p = (q \equiv q \equiv p)$
• $p = (q \equiv q \equiv p)$ • $(p \equiv q \equiv q) = p$	• $p = (q \equiv q \equiv p)$ • $(p \equiv q \equiv q) = p$
Example theorem — shown differently in the textbook:	(3.3) Axiom, Identity of \equiv : $true \equiv q \equiv q$
Proving $p \equiv p \equiv q \equiv q$:	Can be used as:
$p \equiv (p \equiv (q \equiv q))$	• $(true = q) = q$
$\equiv \langle (3.2) \text{ Symmetry of } =, \text{ with } p, q := p, (q \equiv q) - \text{via Leibniz with } p \equiv z \text{ as } E \rangle$	• $true = (q \equiv q)$
$p \equiv ((q \equiv q) \equiv p)$ — This is (3.2) Symmetry of \equiv	

Equivalence Axioms, and Theorem (3.4)	Equivalence Axioms and Theorems
(3.1) Axiom, Associativity of \equiv : $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$	(3.1) Axiom, Associativity of \equiv : $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$
(3.2) Axiom, Symmetry of \equiv : $p \equiv q \equiv q \equiv p$	(3.2) Axiom, Symmetry of $\equiv: p \equiv q \equiv q \equiv p$ — Can be used as:
	• $(p \equiv q) = (q \equiv p)$
(3.3) Axiom, Identity of \equiv : $true \equiv q \equiv q$ Can be used as: $true = (q \equiv q)$	(3.3) Axiom, Identity of $\equiv:$ true $\equiv q \equiv q$ • $p = (q \equiv q \equiv p)$
The least interesting theorem:	Theorems and Metatheorems: • $(p \equiv q \equiv q) = p$
	(3.4) <i>true</i>
Proving (3.4) true:	(3.5) Reflexivity of $\equiv p \equiv p$
true	(3.6) Proof Method : To prove that $P \equiv Q$ is a theorem, transform <i>P</i> to <i>Q</i> or <i>Q</i> to <i>P</i> using Leibniz.
= $\langle \text{ Identity of } \equiv (3.3), \text{ with } q \coloneqq true \rangle$	(3.7) Metatheorem : Any two theorems are equivalent.
$true \equiv true$	Proof Method Equanimity : To prove <i>P</i> , prove $P \equiv Q$
= (Identity of \equiv (3.3), with $q := q$ — via Leibniz with true $\equiv z$ as E) true $= a = a$. This is Identity of $= (2, 2)$	where Q is a theorem. (Document via "– This is ".)
<i>true</i> $\equiv q \equiv q$ — This is Identity of \equiv (3.3)	Special case : To prove P , prove $P \equiv true$.
Negetien Asieme	Nuestien Automa and Theorem
Negation Axioms	Negation Axioms and Theorems (3.8) Axiom, Definition of false: $false = \neg true$
(3.8) Axiom, Definition of <i>false</i> : $false \equiv \neg true$	
(3.9) Axiom, Commutativity of \neg with \equiv : $\neg (p \equiv q) \equiv \neg p \equiv q$	(3.9) Axiom, Commutativity of \neg with \equiv : $\neg(p \equiv q) \equiv \neg p \equiv q$
(LADM: "Distributivity of \neg over \equiv ")	(3.10) Axiom, Definition of \neq : $(p \neq q) \equiv \neg (p \equiv q)$
(LADM: Distributivity of \neg over \equiv)	Theorems:
Can be used as:	$(3.11) \neg p \equiv q \equiv p \equiv \neg q$
• $\neg(p \equiv q) = (\neg p \equiv q)$	$(3.11) \neg p = q = p = \neg q$
• $(\neg(p \equiv q) \equiv \neg p) = q$	- can be used as " Connection ". $(p = q) = (p = q)$ - can be used as " Cancellation of \neg ": $(\neg p \equiv \neg q) \equiv (p \equiv q)$
• $(\neg (p \equiv q) \equiv q) = \neg p$	(3.12) Double negation: $\neg \neg p \equiv p$
(3.10) Axiom, Definition of \neq : $(p \neq q) \equiv \neg (p \equiv q)$	
	(3.13) Negation of false: \neg false \equiv true
	$(3.14) (p \neq q) \equiv \neg p \equiv q$
	(3.15) Definition of \neg via \equiv : $\neg p \equiv p \equiv false$
Inequivalence Theorems	(3.23) Heuristic of Definition Elimination
*	
(3.16) Symmetry of $\not\equiv$: $(p \not\equiv q) \equiv (q \not\equiv p)$	To prove a theorem concerning an operator \circ that is defined in terms of another,
(3.17) Associativity of \neq : $((p \neq q) \neq r) \equiv (p \neq (q \neq r))$	say •, expand the definition of \circ to arrive at a formula that contains •; exploit
(3.18) Mutual associativity: $((p \neq q) \equiv r) \equiv (p \neq (q \equiv r))$	properties of • to manipulate the formula, and then (possibly) reintroduce • us- ing its definition.
(3.19) Mutual interchangeability: $p \neq q \equiv r \equiv p \equiv q \neq r$	ng is definition.
	Textbook, p. 48
Note: Mutual associativity is not (yet) automated!	
(But omission of parentheses is implemented, similar to	"Unfold-Fold strategy"
(But omission of parentheses is implemented, similar to • $k - m + n$	"Unfold-Fold strategy"
 (But omission of parentheses is implemented, similar to <i>k</i> − <i>m</i> + <i>n</i> <i>k</i> + <i>m</i> − <i>n</i> 	"Unfold-Fold strategy"
 (But omission of parentheses is implemented, similar to <i>k</i> − <i>m</i> + <i>n</i> <i>k</i> + <i>m</i> − <i>n</i> <i>k</i> − <i>m</i> − <i>n</i> 	"Unfold-Fold strategy"
 (But omission of parentheses is implemented, similar to <i>k</i> − <i>m</i> + <i>n</i> <i>k</i> + <i>m</i> − <i>n</i> 	"Unfold-Fold strategy"
 (But omission of parentheses is implemented, similar to <i>k</i> − <i>m</i> + <i>n</i> <i>k</i> + <i>m</i> − <i>n</i> <i>k</i> − <i>m</i> − <i>n</i> — None of these has <i>m</i> − <i>n</i> as subexpression! 	"Unfold-Fold strategy"
 (But omission of parentheses is implemented, similar to <i>k</i> − <i>m</i> + <i>n</i> <i>k</i> + <i>m</i> − <i>n</i> <i>k</i> − <i>m</i> − <i>n</i> — None of these has <i>m</i> − <i>n</i> as subexpression! 	"Unfold-Fold strategy"
 (But omission of parentheses is implemented, similar to <i>k</i> - <i>m</i> + <i>n</i> <i>k</i> + <i>m</i> - <i>n</i> <i>k</i> - <i>m</i> - <i>n</i> None of these has <i>m</i> - <i>n</i> as subexpression! But the second one is equal to <i>k</i> + (<i>m</i> - <i>n</i>)) 	
 (But omission of parentheses is implemented, similar to <i>k</i> - <i>m</i> + <i>n</i> <i>k</i> + <i>m</i> - <i>n</i> <i>k</i> - <i>m</i> - <i>n</i> None of these has <i>m</i> - <i>n</i> as subexpression! But the second one is equal to <i>k</i> + (<i>m</i> - <i>n</i>)) 	"Unfold-Fold strategy" Logical Reasoning for Computer Science
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$	Logical Reasoning for Computer Science
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry	
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$	Logical Reasoning for Computer Science
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq :	Logical Reasoning for Computer Science COMPSCI 2LC3
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq : $p \neq q$	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq : $p \neq q$ $\equiv ((3.10)$ Definition of \neq) Unfold	Logical Reasoning for Computer Science COMPSCI 2LC3
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq : $p \neq q$ $= \langle (3.10)$ Definition of $\neq \rangle$ Unfold $-\langle p \equiv q \rangle$ $= \langle (3.2)$ Symmetry of $\equiv \rangle$ $-\langle q \equiv p \rangle$	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq : $p \neq q$ $= \langle (3.10)$ Definition of $\neq \rangle$ Unfold $-(p \equiv q)$ $= \langle (3.2)$ Symmetry of $\equiv \rangle$	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq : $p \neq q$ $= \langle (3.10)$ Definition of $\neq \rangle$ Unfold $-(p \equiv q)$ $= \langle (3.2)$ Symmetry of $\equiv \rangle$ $-(q \equiv p)$	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-12
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $p \neq q$ = $\langle (3.10)$ Definition of $\neq \rangle$ -(p = q) = $\langle (3.2)$ Symmetry of $\equiv \rangle$ $-(q \equiv p)$ = $\langle (3.10)$ Definition of $\neq \rangle$ manual Definition of $\neq \rangle$ $-(q \equiv p)$ = $\langle (3.10)$ Definition of $\neq \rangle$ manual Definition of $\neq \rangle$ manual Definition of $\neq \rangle$	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $p \neq q$ = $\langle (3.10)$ Definition of $\neq \rangle$ -(p = q) = $\langle (3.2)$ Symmetry of $\equiv \rangle$ $-(q \equiv p)$ = $\langle (3.10)$ Definition of $\neq \rangle$ manual Definition of $\neq \rangle$ $-(q \equiv p)$ = $\langle (3.10)$ Definition of $\neq \rangle$ manual Definition of $\neq \rangle$ manual Definition of $\neq \rangle$	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-12
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $p \neq q$ = $\langle (3.10)$ Definition of $\neq \rangle$ -(p = q) = $\langle (3.2)$ Symmetry of $\equiv \rangle$ $-(q \equiv p)$ = $\langle (3.10)$ Definition of $\neq \rangle$ manual Definition of $\neq \rangle$ $-(q \equiv p)$ = $\langle (3.10)$ Definition of $\neq \rangle$ manual Definition of $\neq \rangle$ manual Definition of $\neq \rangle$	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-12
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $p \neq q$ = $((3.10)$ Definition of \neq) Unfold $-(p \equiv q)$ = $((3.2)$ Symmetry of \equiv) $-(q \equiv p)$ = $((3.10)$ Definition of \neq) Fold $q \neq p$	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-12 Propositional Calculus: ¬, ≠, ∨, ∧
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq : $p \neq q$ $= \langle (3.10)$ Definition of $\neq \rangle$ Unfold $-(p \equiv q)$ $= \langle (3.10)$ Definition of $\neq \rangle$ Fold $q \neq p$ Equivalence Axioms LADM p. 42 Footnote 2: "Remember that = and = are interchangeable in formulas, without special mention (subject to the caveats mentioned in Sec. 2.2)."	$Logical Reasoning for Computer ScienceCOMPSCI 2LC3McMaster University, Fall 2024Wolfram Kahl2024-09-12Propositional Calculus: \neg, \neq, \lor, \landEquivalence Axioms, and Theorem (3.4)(3.1) Axiom, Associativity of \equiv: [(p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))]$
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \notin : $(p \notin q) \equiv (q \notin p)$ Proving (3.16) Symmetry of \notin : $p \notin q$ $= \langle (3.10)$ Definition of $\notin \rangle$ Unfold $-(p \equiv q)$ $= \langle (3.2)$ Symmetry of $\equiv \rangle$ $-(q \equiv p)$ $= \langle (3.10)$ Definition of $\notin \rangle$ Fold $q \notin p$ Equivalence Axioms LADM p. 42 Footnote 2: "Remember that \equiv and \equiv are interchangeable in formulas, without special mention (subject to the caveats mentioned in Sec. 2.2)."	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-12 Propositional Calculus: ¬, ≠, ∨, ∧
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $p \neq q$ = $\langle (3.10)$ Definition of $\neq \rangle$ Unfold $-\langle p \equiv q \rangle$ = $\langle (3.10)$ Definition of $\neq \rangle$ Unfold $-\langle q \equiv p \rangle$ = $\langle (3.10)$ Definition of $\neq \rangle$ Fold $q \neq p$ Equivalence Axioms LADM p. 42 Footnote 2: "Remember that = and = are interchangeable in formulas, without special mention (subject to the caveats mentioned in Sec. 2.2)." Note: In CALCCHECK, "without special mention" is replaced with: "Definition of $=$ ": $(p \neq q) = (p = q)$ (only for Boolean p and q)	$Logical Reasoning for Computer ScienceCOMPSCI 2LC3McMaster University, Fall 2024Wolfram Kahl2024-09-12Propositional Calculus: \neg, \neq, \lor, \landEquivalence Axioms, and Theorem (3.4)(3.1) Axiom, Associativity of \equiv: [(p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))]$
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \notin : $(p \notin q) \equiv (q \notin p)$ Proving (3.16) Symmetry of \notin : $p \notin q$ $= \langle (3.10)$ Definition of $\notin \rangle$ Unfold $-(p \equiv q)$ $= \langle (3.2)$ Symmetry of $\equiv \rangle$ $-(q \equiv p)$ $= \langle (3.10)$ Definition of $\notin \rangle$ Fold $q \notin p$ Equivalence Axioms LADM p. 42 Footnote 2: "Remember that \equiv and \equiv are interchangeable in formulas, without special mention (subject to the caveats mentioned in Sec. 2.2)."	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-12 Propositional Calculus: \neg, \neq, \lor, \land Equivalence Axioms, and Theorem (3.4) (3.1) Axiom, Associativity of $\equiv: ((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r)))$ (3.2) Axiom, Symmetry of $\equiv: p \equiv q \equiv q \equiv p$
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq : $p \neq q$ $= \langle (3.10)$ Definition of $\neq \rangle$ Unfold $-(p \equiv q)$ $= \langle (3.2)$ Symmetry of $\equiv \rangle$ $-(q \equiv p)$ $= \langle (3.10)$ Definition of $\neq \rangle$ Fold $q \neq p$ Equivalence Axioms LADM p. 42 Footnote 2: "Remember that = and = are interchangeable in formulas, without special mention (subject to the caveats mentioned in Sec. 2.2)." Note: In CALCHECK, "without special mention" is replaced with: "Definition of $\equiv : [(p \equiv q) = (p = q)]$ (only for Boolean p and q) (3.1) Axiom, Associativity of $\equiv: [((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))]$	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-12 Propositional Calculus: \neg, \neq, \lor, \land Equivalence Axioms, and Theorem (3.4) (3.1) Axiom, Associativity of $\equiv: ((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r)))$ (3.2) Axiom, Symmetry of $\equiv: p \equiv q \equiv q$ (3.3) Axiom, Identity of $\equiv: true \equiv q \equiv q$
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq : $p \neq q$ $= \langle (3.10)$ Definition of $\neq \rangle$ Unfold $-(p \equiv q)$ $= \langle (3.2)$ Symmetry of $\equiv \rangle$ $-(q \equiv p)$ $= \langle (3.10)$ Definition of $\neq \rangle$ Fold $q \neq p$ LADM p. 42 Footnote 2: "Remember that \equiv and \equiv are interchangeable in formulas, without special mention (subject to the caveats mentioned in Sec. 2.2)." Note: In CALCCHECK, "without special mention" is replaced with: "Definition of \equiv ": $(p \equiv q) = (p = q)$ (only for Boolean p and q) (3.1) Axiom, Associativity of \equiv : $((p \equiv q \equiv p) \equiv$	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-12 Propositional Calculus: $\neg, \notin, \lor, \land$ Equivalence Axioms, and Theorem (3.4) (3.1) Axiom, Associativity of $\equiv: ((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r)))$ (3.2) Axiom, Symmetry of $\equiv: p \equiv q \equiv q \equiv p$ (3.3) Axiom, Identity of $\equiv: [true \equiv q \equiv q]$ Can be used as: $true = (q \equiv q)$ The least interesting theorem:
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \notin : $p \notin q$ = $\{(3.10)$ Symmetry of \notin $p \notin q$ = $\{(3.10)$ Definition of \notin } Unfold $-(p \in q)$ = $\{(3.2)$ Symmetry of \equiv } $-(q \equiv p)$ = $\{(3.10)$ Definition of \notin } Fold $q \notin p$ LADM p. 42 Footnote 2: "Remember that = and \equiv are interchangeable in formulas, without special mention (subject to the caveats mentioned in Sec. 2.2)." Note: In CALCCHECK, "without special mention" is replaced with: "Definition of $=$ ": $(p = q) = (p = q)$ (only for Boolean p and q) (3.1) Axiom, Associativity of \equiv : $((p \equiv q \equiv p) \equiv (p \equiv (q \equiv p))]$ By associativity, can be read as: Therefore can be used for Leibniz as:	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-12 Propositional Calculus: \neg, \neq, \lor, \land (3.1) Axion, Associativity of $\equiv: ((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r)))$ (3.2) Axion, Symmetry of $\equiv: p \equiv q \equiv q \equiv p$ (3.3) Axion, Identity of $\equiv: [rue \equiv q \equiv q]$ Can be used as: $true = (q \equiv q)$ The least interesting theorem: Proving (3.4) true:
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq : $p \neq q$ $= ((3.10)$ Definition of \neq) Unfold $-(p \equiv q)$ $= ((3.2)$ Symmetry of \equiv) $-(q \equiv p)$ $= ((3.10)$ Definition of \neq)	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-12 Propositional Calculus: \neg, \neq, \lor, \land (3.1) Axion, Associativity of $\equiv: ((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r)))$ (3.2) Axion, Symmetry of $\equiv: p \equiv q \equiv q \equiv p$ (3.3) Axion, Identity of $\equiv: [rue \equiv q \equiv q]$ Can be used as: $true = (q \equiv q)$ The least interesting theorem: Proving (3.4) true: true
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq : $p \neq q$ $= ((3.10)$ Definition of \neq)	$Logical Reasoning for Computer ScienceCOMPSCI 2LC3McMaster University, Fall 2024Wolfram Kahl2024-09-12Propositional Calculus: \neg, \neq, \lor, \land\frac{Equivalence Axioms, and Theorem (3.4)}{(3.1) Axiom, Associativity of \equiv : [(p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))]}(3.2) Axiom, Symmetry of \equiv : [rue \equiv q \equiv q](3.3) Axiom, Identity of \equiv : [rue \equiv q \equiv q](3.3) Axiom, Identity of \equiv : [rue \equiv q \equiv q]Can be used as: true = (q \equiv q)The least interesting theorem:Proving (3.4) true:true= (Identity of \equiv (3.3), with q := true)$
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $p \neq q$ = ((3.10) Definition of \neq) $-(p \equiv q)$ = ((3.2) Symmetry of \equiv) $-(q \equiv p)$ = ((3.10) Definition of \neq) $-(q \equiv p)$ = ((3.10) Definition of \neq) $q \neq p$ Fold $q \neq p$ Equivalence Axioms LADM p. 42 Footnote 2: "Remember that $=$ and \equiv are interchangeable in formulas, without special mention (subject to the caveats mentioned in Sec. 2.2)." Note: In CALCCHECK, "without special mention" is replaced with: "Definition of $=$ ": $(p \equiv q) = (p = q)$ (only for Boolean p and q) (3.1) Axiom, Associativity of \equiv : $((p \equiv q \equiv p)$ By associativity, can be read as: • $(p \equiv q) = (q \equiv p)$ • $p = (q \equiv q \equiv p)$ • $(p = q = q) \equiv p$ Therefore can be used for Leibniz as: • $(p \equiv q = q) \equiv p$	$ \begin{array}{c} \textbf{Logical Reasoning for Computer Science} \\ COMPSCI 2LC3 \\ McMaster University, Fall 2024 \\ Wolfram Kahl \\ 2024-09-12 \\ Propositional Calculus: \neg, \neq, \lor, \land \begin{array}{c} \textbf{Equivalence Axioms, and Theorem (3.4)} \\ (3.1) Axiom, Associativity of \equiv: ((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))) \\ (3.2) Axiom, Symmetry of \equiv: (p \equiv q \equiv q \equiv p) \\ (3.3) Axiom, Identity of \equiv: (rue \equiv q \equiv q) \\ (3.3) Axiom, Identity of \equiv: (rue \equiv q \equiv q) \\ (3.3) Axiom, Identity of \equiv: (rue \equiv q \equiv q) \\ (3.3) Axiom, Identity of \equiv: (rue \equiv q \equiv q) \\ The least interesting theorem: \\ Proving (3.4) true: \\ true \\ = (Identity of \equiv (3.3), with q \coloneqq true) \\ true \equiv true \end{array} $
(But omission of parentheses is implemented, similar to • $k - m + n$ • $k + m - n$ • $k - m - n$ — None of these has $m - n$ as subexpression! — But the second one is equal to $k + (m - n)$) Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $p \neq q$ = $((3.10)$ Definition of \neq) Unfold $-(p \equiv q)$ = $((3.2)$ Symmetry of \equiv) Unfold $-(q \equiv p)$ = $((3.10)$ Definition of \neq) Fold $q \neq p$ Equivalence Axioms LADM p. 42 Footnote 2: "Remember that = and \equiv are interchangeable in formulas, without special mention (subject to the caveats mentioned in Sec. 2.2)." Note: In CALCCHECK, "without special mention" is replaced with: "Definition of \equiv ": $(p \equiv q) = (p = q)$ (only for Boolean p and q) (3.1) Axiom, Associativity of \equiv : $((p \equiv q \equiv r) \equiv$ By associativity, can be read as: • $(p \equiv q) = (q \equiv p)$ • $p = (q \equiv q = p)$ • $(p = q = q) \equiv p$ • $(p = q = q) \equiv p$ • $(p = q = q) = p$	$ \begin{array}{c} \textbf{Logical Reasoning for Computer Science}\\ \textbf{COMPSCI 2LC3}\\ \textbf{McMaster University, Fall 2024}\\ \textbf{Wolfram Kahl}\\ 2024-09-12\\ \textbf{Propositional Calculus: }\neg, \neq, \lor, \land\\ \end{array} $ $ \begin{array}{c} \textbf{Equivalence Axioms, and Theorem (3.4)}\\ (3.1) Axiom, Associativity of \equiv: [((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))]\\ (3.2) Axiom, Symmetry of \equiv: [rue \equiv q \equiv q]\\ (3.3) Axiom, Identity of \equiv: [rue \equiv q = q]\\ Can be used as: true = (q \equiv q)\\ \textbf{The least interesting theorem:}\\ \textbf{Proving (3.4) true:}\\ true\\ = (Identity of \equiv (3.3), with q := true) \end{array} $

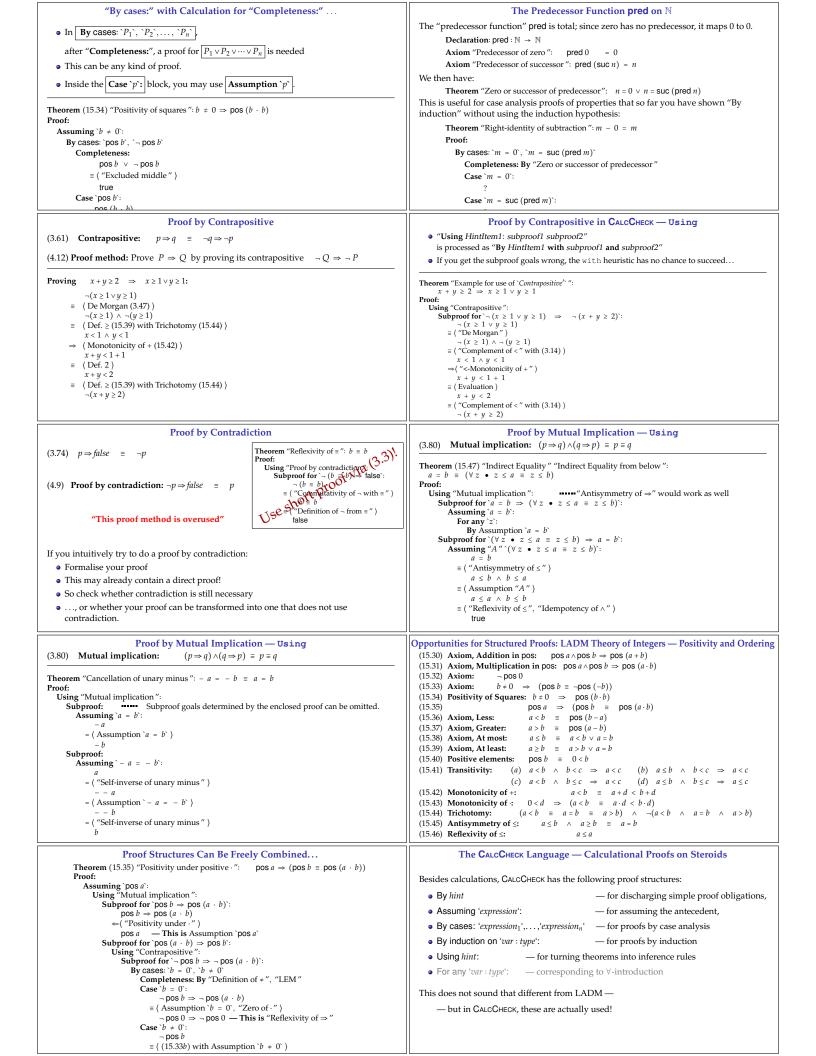
Equivalence Axioms and Theorems(3.1) Axiom, Associativity of $\equiv:$ $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$ (3.2) Axiom, Symmetry of $\equiv:$ $p \equiv q \equiv q \equiv p$ —(3.3) Axiom, Identity of $\equiv:$ $true \equiv q \equiv q$ —(3.4) Axiom, Identity of $\equiv:$ $true \equiv q \equiv q$ —(3.4) true(3.5) Reflexivity of $\equiv:$ $p \equiv p$ (3.6) Proof Method: To prove that $P \equiv Q$ is a theorem, transform P to Q or Q to P using Leibniz.(3.7) Metatheorem: Any two theorems are equivalent.Proof Method Equanimity: To prove P, prove $P \equiv Q$ where Q is a theorem. (Document via "- This is".)Special case: To prove P, prove $P \equiv true.$	Negation Axioms (3.8) Axiom, Definition of false: $false = -true$ (3.9) Axiom, Commutativity of \neg with \equiv : $\neg(p \equiv q) \equiv \neg p \equiv q$ (LADM: "Distributivity of \neg over \equiv ") Can be used as: \circ $(\neg(p \equiv q) = (\neg p \equiv q))$ \bullet $(\neg(p \equiv q) \equiv \neg p) = q$ \bullet $(\neg(p \equiv q) \equiv q) = -p$ (3.10) Axiom, Definition of \neq : $(p \neq q) \equiv \neg(p \equiv q)$
Negation Axioms and Theorems (3.8) Axiom, Definition of false: $false \equiv \neg true$ (3.9) Axiom, Commutativity of \neg with \equiv : $\neg (p \equiv q) \equiv \neg p \equiv q$ (3.10) Axiom, Definition of \neq : $(p \neq q) \equiv \neg (p \equiv q)$ Theorems: (3.11) $\neg p \equiv q \equiv p \equiv \neg q$ \neg can be used as " \neg connection": $(\neg p \equiv q) \equiv (p \equiv \neg q)$ \neg can be used as "Cancellation of \neg ": $(\neg p \equiv \neg q) \equiv (p \equiv q)$ (3.12) Double negation: $\neg \neg p \equiv p$ (3.13) Negation of false: $\neg false \equiv true$ (3.14) $(p \neq q) \equiv \neg p \equiv q$ (3.15) Definition of \neg via \equiv : $\neg p \equiv p \equiv false$	Inequivalence Theorems (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ (3.17) Associativity of \neq : $((p \neq q) \neq r) \equiv (p \neq (q \neq r))$ (3.18) Mutual associativity: $((p \neq q) \equiv r) \equiv (p \neq (q \equiv r))$ (3.19) Mutual interchangeability: $p \neq q \equiv r \equiv p \equiv q \neq r$ Note: Mutual associativity is not (yet) automated! (But omission of parentheses is implemented, similar to $e \ k - m + n$ $e \ k - m - n$ $e \ k - m - n$ $= b \ k - m - n$ $= b \ m - n$
(3.23) Heuristic of Definition Elimination To prove a theorem concerning an operator \circ that is defined in terms of another, say •, expand the definition of \circ to arrive at a formula that contains •; exploit properties of • to manipulate the formula, and then (possibly) reintroduce \circ us- ing its definition. Textbook, p. 48 "Unfold-Fold strategy"	Inequivalence Theorems: Symmetry (3.16) Symmetry of \neq : $(p \neq q) \equiv (q \neq p)$ Proving (3.16) Symmetry of \neq : $p \neq q$ $= \langle (3.10)$ Definition of $\neq \rangle$ $-(p \equiv q)$ $= \langle (3.2)$ Symmetry of $\equiv \rangle$ $-(q \equiv p)$ $= \langle (3.10)$ Definition of $\neq \rangle$ $= \langle (3.10)$ Definition of $\neq \rangle$ Fold $q \neq p$ $q \neq p$
Disjunction Axioms (3.24) Axiom, Symmetry of \lor : $p \lor q \equiv q \lor p$ (3.25) Axiom, Associativity of \lor : $(p \lor q) \lor r \equiv p \lor (q \lor r)$ (3.26) Axiom, Idempotency of \lor : $p \lor p \equiv p$ (3.27) Axiom, Distributivity of \lor over \equiv : $p \lor (q \equiv r) \equiv p \lor q \equiv p \lor r$ (3.28) Axiom, Excluded middle: $p \lor -p$	The Law of the Excluded Middle (LEM) Aristotle: there cannot be an intermediate between contradictories, but of one subject we must either affirm or deny any one predicate Bertrand Russell in "The Problems of Philosophy": Three "Laws of Thought": 1. Law of identity: "Whatever is, is." 2. Law of noncontradiction: "Nothing can both be and not be." 3. Law of excluded middle: "Everything must either be or not be." (3.28) Axiom, Excluded Middle: $p \lor \neg p$ — this will often be used as:
Disjunction Axioms and Theorems(3.24) Axiom, Symmetry of \vee : $p \lor q \equiv q \lor p$ (3.25) Axiom, Associativity of \vee : $(p \lor q) \lor r \equiv p \lor (q \lor r)$ (3.26) Axiom, Idempotency of \vee : $p \lor p \equiv p$ (3.27) Axiom, Distr. of \vee over \equiv : $p \lor (q \equiv r) \equiv p \lor q \equiv p \lor r$ (3.28) Axiom, Excluded Middle: $p \lor \neg p$ Theorems:(3.29) Zero of \vee : $p \lor true \equiv true$ (3.30) Identity of \vee : $p \lor false \equiv p$ (3.31) Distrib. of \vee over \vee : $p \lor (q \lor r) \equiv (p \lor q) \lor (p \lor r)$ (3.32) (3.32) $p \lor q \equiv p \lor \neg q \equiv p$	Heuristics of Directing Calculations(3.33) Heuristic: To prove $P \equiv Q$, transform the expression with the most structure (either P or Q) into the other.Proving $(3.29) p \lor true \equiv true:$ $p \lor true = true:$ $p \lor true = true:$ $p \lor true = true:$ $p \lor true = true:$ (Identity of $\equiv (3.3)$) $p \lor (q \equiv q)$ \equiv (Identity of $\equiv (3.3)$) $p \lor (q \equiv q)$ \equiv (Distr. of \lor over $\equiv (3.27)$) $p \lor (q \equiv p \lor q)$ \equiv (Identity of $\equiv (3.3)$) $true$ \equiv (3.34)Principle: Structure proofs to minimize the number of rabbits pulled out of a hat — make each step seem obvious, based on the structure of the expression and the goal of the manipulation.


The Conjunction Axiom: The "Golden Rule"	Conjunction Theorems: Symmetry
(3.35) Axiom, Golden rule: $p \land q \equiv p \equiv q \equiv p \lor q$	(3.36) Symmetry of \land : $(p \land q) \equiv (q \land p)$
Can be used as: • $p \land q = (p \equiv q \equiv p \lor q)$ — Definition of \land	Proving (3.36) Symmetry of ∧:
• $(p \equiv q) = (p \land q \equiv p \lor q)$ • Theorems: (3.36) Symmetry of \land : $p \land q \equiv q \land p$ (3.37) Associativity of \land : $(p \land q) \land r \equiv p \land (q \land r)$ (3.38) Idempotency of \land : $p \land p \equiv p$ (3.39) Identity of \land : $p \land true \equiv p$ (3.40) Zero of \land : $p \land false \equiv false$ (3.41) Distributivity of \land over \land : $p \land (q \land r) \equiv (p \land q) \land (p \land r)$ (3.42) Contradiction: $p \land \neg p \equiv false$ Theorems Relating \land and \lor (3.43) Absorption: $p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv p$ (3.44) Absorption: $p \land (\neg p \lor q) \equiv p \land (\neg p \lor q)$	Boolean Lattice Duality A Boolean-lattice expression is • either a variable, • or an application of \neg_{-} to a Boolean-lattice expressions.
$p \lor (\neg p \land q) \equiv p \lor q$ (3.45) Distributivity of \lor over \land : $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	 The dual of a Boolean-lattice expressions is obtained by replacing <i>true</i> with <i>false</i> and vice versa, replacing _∧_ with _∨_ and vice versa.
(3.46) Distributivity of \land over \lor : $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	The dual of a Boolean-lattice equation (equivalence) is the equation
(3.47) De Morgan : $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	between the duals of the LHS and the RHS. Metatheorem "Boolean lattice duality": Every Boolean-lattice equation is valid iff its dual is valid.
	Metatheorem "Boolean-lattice equation is valid in its dual is valid." Every Boolean-lattice equation is a theorem iff its dual is a theorem.
Theorems Relating ∧ and ≡	Alternative Definitions of ≡ and ≢
(3.48) (3.48) $p \land q \equiv p \land \neg q \equiv \neg p$ (3.49) Semi-distributivity of \land over \equiv $p \land (q \equiv r) \equiv p \land q \equiv p \land r \equiv p$ (3.50) Strong modus ponens for \equiv $p \land (q \equiv p) \equiv p \land q$ (3.51) Replacement : $(p \equiv q) \land (r \equiv p) \equiv (p \equiv q) \land (r \equiv q)$	(3.52) Alternative definition of $\equiv:$ $p \equiv q \equiv (p \land q) \lor (\neg p \land \neg q)$ (3.53) Alternative definition of $\notin:$ $p \notin q \equiv (\neg p \land q) \lor (p \land \neg q)$
(3.21) Heuristic	What is a natural number?
Identify applicable theorems by matching the structure of expressions or subex- pressions. The operators that appear in a boolean expression and the shape of its subexpressions can focus the choice of theorems to be used in manipulating it. Obviously, the more theorems you know by heart and the more practice you have in pattern matching, the easier it will be to develop proofs. Textbook, p. 47	How is the set N of all natural numbers defined? (Without referring to the integers) (From first principles)
Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-13 • Natural Numbers, Natural Induction • Propositional Calculus: Implication ⇒	Natural Numbers — N • The set of all natural numbers is written N. • In Computing, zero "0" is a natural number. • If n is a natural number, then its successor "SuC n" is a natural number, too. • We write • "1" for "suc 0" • "2" for "suc 1" • "3" for "suc 2" • "4" for "suc 3" • • In Haskell (data constructors start with upper-case letters): data Nat = Zero Suc Nat


Natural Numbers — Rigorous Definition	Factorial — Inductive Definition
• The set of all natural numbers is written \mathbb{N} .	● The set of all natural numbers is written N.
• Zero "0" is a natural number.	• $\underline{\text{zero}}$ "0" is a natural number.
	 If <i>n</i> is a natural number, then its <u>successor</u> "SUC <i>n</i>" is a natural number, too. Nothing else is a natural number.
• If <i>n</i> is a natural number, then its <u>successor</u> "SUC <i>n</i> " is a natural number, too.	 Two natural numbers are only equal if constructed in the same way.
 Nothing else is a natural number. 	\mathbb{N} is an inductively-defined set.
• Two natural numbers are equal if and only if they are constructed in the same way.	The factorial operator "_!" on \mathbb{N} can be defined as follows:
Example: suc suc suc $0 \neq$ suc suc suc suc 0	• The factorial of a natural number is a natural number again:
	$_!: \mathbb{N} \to \mathbb{N}$
This is an inductive definition. (Like the definition of expressions)	• 0!=1
(like the definition of expressions)	• For every $n : \mathbb{N}$, we have:
Every inductive definition gives rise to an induction principle	$(\operatorname{suc} n)! = (\operatorname{suc} n) \cdot (n!)$
- a way to prove statements about the inductively defined elements	_! is an inductively-defined function.
Natural Number Addition — Inductive Definition	Natural Numbers Induction Drivelals
	Natural Numbers — Induction Principle
 The set of all natural numbers is written N. zero "0" is a natural number. 	● The set of all natural numbers is written N.
 If n is a natural number, then its <u>successor</u> "SUC n" is a natural number, too. 	• \underline{Zero} "0" is a natural number.
Nothing else is a natural number.	• If <i>n</i> is a natural number, then its <u>successor</u> "suc <i>n</i> " is a natural number, too.
 Two natural numbers are only equal if constructed in the same way. 	Proving properties of inductively-defined functions on $\mathbb N$
N is an inductively-defined set.	frequently requires use of the induction principle for \mathbb{N} .
Addition on \mathbb{N} can be defined as follows:	
• The (infix) addition operator "+", when applied to two natural numbers, produces	Induction principle for the natural numbers:
again a natural number	• if $P(0)$ If P holds for 0
$_+_:\mathbb{N}\to\mathbb{N}\to\mathbb{N}$	• and if $P(m)$ implies $P(s c m)$
• For every $q : \mathbb{N}$, we have:	• and if <i>P</i> (<i>m</i>) implies <i>P</i> (suc <i>m</i>), and whenever <i>P</i> holds for <i>m</i> , it also holds for suc <i>m</i> ,
 0 + q = q For every n : N we have: (suc n) + q = suc (n + q) 	and whenever r noids for m, it also holds for SUC m,
	• then for all $m : \mathbb{N}$ we have $P(m)$.
+ is an inductively-defined function.	then <i>P</i> holds for all natural numbers.
Natural Numbers — Induction Proofs	Proving "Right-Identity of +"
Induction principle for the natural numbers:	Theorem "Right-identity of $+$ ": $m + 0 = m$
• if $P[m := 0]$ If P holds for 0	Proof: An induction proof looks as follows:
• and if we can obtain <i>P</i> [<i>m</i> := suc <i>m</i>] from <i>P</i> ,	By induction on $M: \mathbb{N}^{2}$: Theorem: P
and whenever <i>P</i> holds for <i>m</i> , it also holds for suc <i>m</i> ,	Base case: Proof: 0 + 0
• then <i>P</i> holds. then <i>P</i> holds for all natural numbers.	= ("Definition of + for 0") By induction on $m : \mathbb{N}$:
	0 Base case:
An induction proof using this looks as follows:	Induction step: Proof for P[m := 0]
Theorem: P	suc $m + 0$ Induction step:
Proof:	$=\langle "Definition of + for Suc" \rangle$
By induction on $m : \mathbb{N}$: $P[m := 0]$ $P[m := \operatorname{suc} m]$	$suc (m + 0) \qquad Proof for P[m := suc m]$ $= \langle Induction hypothesis \rangle \qquad using Induction hypothesis P$
Base case: $Proof for P[m := 0]$	suc m
Induction step:	
Proof for $P[m := suc m]$	
using Induction hypothesis P	
Proving "Right-Identity of +" — With Details	Proving "Right-Identity of +" — Indentation!
Theorem "Right-identity of $+$ ": $m + 0 = m$	Theorem "Right-identity of +": m + 0 = m Proof:
Proof: An induction proof looks as follows:	By induction on `m : N`:
By induction on $m: \mathbb{N}$: Theorem: P	Base case:
Base case $0 + 0 = 0$: 0 + 0 Proof:	المانية 0 + 0 ماليونونية ("Definition of + for 0")
= ("Definition of + for 0") By induction on $m : \mathbb{N}$:	
0 Base case:	Induction step:
Induction step `suc $m + 0 = suc m$ `: $Proof for P[m := 0]$	uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
suc m + 0 Induction step:	suc (m + 0)
= ("Definition of + for `suc`") Proof for P[m := suc m]	uuuuu=(Induction hypothesis)
suc (m + 0) = (Induction hypothesis `m + 0 = m`) using Induction hypothesis P	SUC M
SUC m	Press "Ctrl-Shift-y" to toggle "visible spaces"
SUC m	Press "Ctrl-Shift-v" to toggle "visible spaces".
SUC m	Press "Ctrl-Shift-v" to toggle "visible spaces".
Read Parse Error Messages!	Carefully Check Indentation: Each Level ≥ 2 Spaces!
Read Parse Error Messages!	Carefully Check Indentation: Each Level ≥ 2 Spaces! = { Substitution }
Read Parse Error Messages!	Carefully Check Indentation: Each Level ≥ 2 Spaces! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked (Parse error: "Cell 12" (line 18, column 25):
Read Parse Error Messages! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked. & Parse error: "Cell 12" (line 19, column 16): unexpected "="	Carefully Check Indentation: Each Level ≥ 2 Spaces! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked ((Parse error: "Cell 12" (line 18, column 25): unexpected "**")
Read Parse Error Messages! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked. (§ Parse error: "Cell 12" (line 19, column 16):	Carefully Check Indentation: Each Level ≥ 2 Spaces! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked (Parse error: "Cell 12" (line 18, column 25):
Read Parse Error Messages! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked. & Parse error: "Cell 12" (line 19, column 16): unexpected "="	Carefully Check Indentation: Each Level ≥ 2 Spaces! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked ((Parse error: "Cell 12" (line 18, column 25): unexpected """ expecting white space, "", or gexpression»
Read Parse Error Messages! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked. (% Parse error: "Cell 12" (line 19, column 16): unexpected "=" expecting white space, "", ",", or := «expressions» Image: The space of the space	Carefully Check Indentation: Each Level ≥ 2 Spaces! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked ((Parse error: "Cell 12" (line 18, column 25): unexpected """
Read Parse Error Messages! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked.	Carefully Check Indentation: Each Level ≥ 2 Spaces! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked ((Parse error: "Cell 12" (line 18, column 25):
Read Parse Error Messages! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked. (% Parse error: "Cell 12" (line 19, column 16): unexpected "=" expecting white space, "", ", ", or := «expressions» # = { y := z - y } ("Assignment") — CalcCheck: Found "Assignment" — CalcCheck: Due to parse error in the expression above, this calculation step cannot be checked.	Carefully Check Indentation: Each Level ≥ 2 Spaces! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked ((Parse error: "Cell 12" (line 18, column 25):
Read Parse Error Messages! = { Substitution } CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked. (% Parse error: "Cell 12" (line 19, column 16): unexpected "=" expecting white space, "", ",", or := «expressions» →	$Carefully Check Indentation: Each Level \ge 2 Spaces!$ $= \{ Substitution \} \\ CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked ("Parse error: "Cell 12" (line 18, column 25): unexpected "''" expression white space, "", or expression") 16: = { Substitution } 17: (y = z - y) [y = z - y] 18:$
Read Parse Error Messages! = { Substitution } CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked. ((Parse error: "Cell 12" (line 19, column 16): unexpected "=" expecting white space, "", ",", or := «expressions» # => [y := z - y] ("Assignment") CalcCheck: Found "Assignment" CalcCheck: Due to parse error in the expression above, this calculation step cannot be checked. 18: =(Substitution /)	Carefully Check Indentation: Each Level ≥ 2 Spaces! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked ((Parse error: "Cell 12" (line 18, column 25):
Read Parse Error Messages! = { Substitution }	Carefully Check Indentation: Each Level ≥ 2 Spaces!= { Substitution }
Read Parse Error Messages! = { Substitution } CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked. (% Parse error: "Cell 12" (line 19, column 16): unexpected "=" expecting white space, "", ",", or := «expressions» →	$Carefully Check Indentation: Each Level \ge 2 Spaces!$ $= \{ Substitution \} \\ CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked ("Parse error: "Cell 12" (line 18, column 25): unexpected "''" expression white space, "", or expression") 16: = { Substitution } 17: (y = z - y) [y = z - y] 18:$
Read Parse Error Messages! = { Substitution }	Carefully Check Indentation: Each Level ≥ 2 Spaces! = { Substitution } — CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked (Parse error: "Cell 12" (line 18, column 25): unexpected "*" expecting white space, "" or gexpression» 16: = { Substitution } 17: (y = z - y) [y = z - y] 18: =-{ F y := z - y } 19: y = 42 Hint item where the parser expects an expression — calculation operators need to be aligned

You need to solve the Homeworks yourself!	
 Assuming that you can pass this course without actually acquiring the expected reasoning skills is most likely unrealistic. 	Logical Reasoning for Computer Science COMPSCI 2LC3
You acquire the skills by doing Homeworks and Assignments yourself!	COMPSCI 2LC3
 If you provide your solutions to others, that constitutes academic dishonesty as well! 	McMaster University, Fall 2024
• If you provide your solutions to others, that actually reduces their chances of acquiring the skills and passing the course!	Wolfram Kahl
• Large/many clusters of extremely similar submissions strongly suggest that large numbers of students are not getting the expected learning: \implies I need to act!	2024-09-13 Part 2: Propositional Calculus: Implication ⇒
• If homeworks were to be done with pen and paper, you would submit imperfect solutions without hesitation	
Implication	All Propositional Axioms of the Equational Logic E
(3.57) Axiom, Definition of implication,	G.1) Axiom, Associativity of =
Definition of \Rightarrow from \lor : $p \Rightarrow q \equiv p \lor q \equiv q$	 ④ (3.2) Axiom, Symmetry of = ● (3.3) Axiom, Identity of =
(3.58) Axiom, Consequence: $p \leftarrow q \equiv q \Rightarrow p$	 (3.5) Axion, identity of = (3.8) Axion, Definition of <i>false</i>
	(3.9) Axiom, Commutativity of ¬ with $≡$
Rewriting Implication:	 ③ (3.10) Axiom, Definition of ≠ ④ (3.24) Axiom, Symmetry of ∨
(3.59) Material implication,	G (3.25) Axiom, Associativity of ∨
(Alternative) Definition of implication: $p \Rightarrow q \equiv \neg p \lor q$	 Q (3.26) Axiom, Idempotency of ∨ Q (3.27) Axiom, Distributivity of ∨ over =
(3.60) (Dual) Definition of implication, Definition of \Rightarrow from \land : $p \Rightarrow q \equiv p \land q \equiv p$	 (3.2) Axion, Excluded middle
Definition of \Rightarrow from \land : $p \Rightarrow q \equiv p \land q \equiv p$	(a) (3.35) Axiom, Golden rule
(3.61) Contrapositive : $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$	 (3.57) Axiom, Definition of implication (3.58) Axiom, Definition of consequence
The "Golden Rule" and Implication	Some Implication Theorems
(3.35) Axiom, Golden rule: $p \land q \equiv p \equiv q \equiv p \lor q$	$(3.62) p \Rightarrow (q \equiv r) \equiv p \land q \equiv p \land r$
Can be used as: $p \land q = p = q = p \lor q$	
• $p \land q = (p \equiv q \equiv p \lor q)$	$(3.63) \text{ Distributivity of } \Rightarrow \text{ over } \equiv: \qquad p \Rightarrow (q \equiv r) \equiv p \Rightarrow q \equiv p \Rightarrow r$
• $(p \equiv q) = (p \land q \equiv p \lor q)$	$(3.64) \text{Self-distributivity of} \Rightarrow: \qquad p \Rightarrow (q \Rightarrow r) \equiv (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$
• • $(p \land q \equiv p) \equiv (q \equiv p \lor q)$	$(3.65) \text{Shunting:} \qquad \qquad p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$
	How do start to prove the following? (For example,)
(3.57) Axiom, Definition of implication: $p \Rightarrow q \equiv p \lor q \equiv q$	$(3.66) p \land (p \Rightarrow q) \equiv p \land q \qquad (\dots p \land q \equiv p)$
(3.60) (Dual) Definition of implication : $p \Rightarrow q \equiv p \land q \equiv p$	$(3.67) p \land (q \Rightarrow p) \equiv p \qquad (\dots \ p \land q \equiv p)$
	$ \begin{array}{cccc} (3.68) & p \lor (p \Rightarrow q) & \equiv & true & & \langle \dots & \neg p \lor q \rangle \\ (3.69) & p \lor (q \Rightarrow p) & \equiv & q \Rightarrow p & & \langle \dots & p \lor q \equiv q \rangle \end{array} $
	$(3.5) p \lor (q \Rightarrow p) = q \Rightarrow p \land q \equiv p \equiv q \qquad (\dots \text{ Golden Rule } \dots)$
Additional Immediate Transform Theorem	We have a figure that is a Theorem
Additional Important Implication Theorems (3.71) Reflexivity of \Rightarrow : $p \Rightarrow p \equiv true$	Weakening/Strengthening Theorems
(3.72) Right-zero of \Rightarrow : $p \Rightarrow true \equiv true$	$"p \Rightarrow q"$ can be read "p is stronger-than-or-equivalent-to q"
(3.73) Left-identity of \Rightarrow : $true \Rightarrow p \equiv p$	" $p \Rightarrow q$ " can be read " p is at least as strong as q "
(3.74) Definition of \neg from \Rightarrow : $p \Rightarrow false \equiv \neg p$	(3.76a) Weakening/Strengthening: $p \Rightarrow p \lor q$
(3.15) Definition of \neg from \equiv : $\neg p \equiv p \equiv false$ (3.75) ex falso quodlibet: false $\Rightarrow p \equiv true$	(3.76b) Weakening/Strengthening: $p \land q \Rightarrow p$
(3.65) Shunting: $p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$	(3.76c) Weakening/Strengthening: $p \land q \Rightarrow p \lor q$
(3.77) Modus ponens: $p \land (p \Rightarrow q) \Rightarrow q$	
(3.78) Case analysis: $(p \Rightarrow r) \land (q \Rightarrow r) \equiv (p \lor q \Rightarrow r)$	(3.76d) Weakening/Strengthening: $p \lor (q \land r) \Rightarrow p \lor q$
(3.79) Case analysis: $(p \Rightarrow r) \land (\neg p \Rightarrow r) \equiv r$	$(3.76e) Weakening/Strengthening: p \land q \implies p \land (q \lor r)$
Implication as Order on Propositions " $p \Rightarrow q$ " can be read "p is stronger-than-or-equivalent-to q"	
— similar to " $x \le y$ " as " x is less-or-equal y "	Logical Reasoning for Computer Science
— similar to " $x \ge y$ " as " x is greater-or-equal y "	COMPSCI 2LC3
" $p \Rightarrow q$ " can be read " p is at least as strong as q " — similar to " $x \le y$ " as " x is at most y "	
- similar to " $x \ge y$ " as "x is at least y"	McMaster University, Fall 2024
(3.57) Axiom, Definition of \Rightarrow from disjunction: $p \Rightarrow q \equiv p \lor q \equiv q$ defines the order from maximum: $p \Rightarrow q \equiv (n \lor q) \equiv q$	
- defines the order from maximum: $p \Rightarrow q \equiv ((p \lor q) = q)$ - analogous to: $x \le y \equiv ((x \uparrow y) = y)$	Wolfram Kahl
— analogous to: $k \mid n \equiv ((lcm(k, n) = n))$	2024 00 17
(3.60) (Dual) Definition of \Rightarrow from conjunction: $p \Rightarrow q \equiv p \land q \equiv p$ — defines the order from minimum: $p \Rightarrow q \equiv ((p \land q) = p)$	2024-09-17
— analogous to: $x \le y \equiv ((x \downarrow y) = x)$	Implication as Order, Replacement, Monotonicity
— analogous to: $k \mid n \equiv ((gcd(k, n) = k))$	

Plan for Today	
 Continuing Propositional Calculus (LADM chapter 3) Implication as order, order relations Leibniz as axiom, and "Replacement" theorems 	Logical Reasoning for Computer Science COMPSCI 2LC3
Transitivity Calculations, Monotonicity (LADM section 4.1)	
 (Coming up: LADM chapter 4, and then chapters 8 and 9.) 	McMaster University, Fall 2024
• (Coming up. 12 (DA) chapter 4, and then chapters o and 7.)	Wolfram Kahl
	2024-09-17
	Part 1: Nested (Induction) Proofs
Recall: Simple Natural Induction Proofs	Defining (Monus) Subtraction Inductively
Addition $_+_: \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ Theorem "Right-identity of +": $m + 0 = m$	Axiom "Subtraction from zero": $0 - n = 0$ Axiom "Subtraction of zero from successor": $(suc m) - 0 = suc m$
is defined by induction over the first argument: By induction on `m : ℕ : Base case:	Axiom "Subtraction of successor from successor": $(\operatorname{Suc} m) = 0$ = $\operatorname{Suc} m$ Axiom "Subtraction of successor from successor": $(\operatorname{Suc} m) - (\operatorname{Suc} n) = m - n$
Axiom "Definition of + for 0" $0 + 0$ "Left-identity of +":= ("Definition of + for 0")	Note: In the natural numbers \mathbb{N} , we have: $2 - 5 = 0$
0 + n = n 0 Axiom "Definition of + for `suc` ": Induction step: (suc m) + n = suc (m + n) suc m + 0	Why does this define for all possible arguments? Because:
= ("Definition of + for `suc`") suc $(m + 0)$	 ● takes two arguments of type N ● Each of these arguments is always either 0, or SUC k for some smaller k: N
Many properties of _+_ can be proven = (Induction hypothesis)	 Of the four possible combinations, two are covered by "Subtraction from zero" The remaining two clauses cover one of the remaining cases each.
ments to _+_:	• The third clause "builds up" the domain of definition of from smaller to larger m and n.
Using Subtraction Defined Inductively Using Three Clauses	Nested Induction Proofs For Subtraction Defined Inductively Using Three Clauses
	Axiom "Subtraction from zero": $0 - n = 0$ Axiom "Subtraction of zero from successor": $(\text{suc } m) - 0 = \text{suc } m$
Axiom "Subtraction from zero ": $0 - n = 0$ Axiom "Subtraction of zero from successor ": $(suc m) - 0 = suc m$	Axiom "Subtraction of successor from successor ": $(SUC m) - (SUC n) = m - n$
Axiom "Subtraction of successor from successor ": $(SUC m) - (SUC n) = m - n$	see Ex3.3, e.g.: Theorem "Subtraction after addition ": $(m + n) - n = m$ Proof: By induction on $m: \mathbb{N}$:
	$\mathbf{B}_{\mathbf{B}\mathbf{a}\mathbf{e}} \mathbf{case}:$ $(0+n) - n$
⇒ Some properties of subtraction need nested induction proofs!	$= \langle ? \rangle$ 0 Induction step `(suc $m + n$) - $n =$ suc m `:
Syntactically, where one kind of proof can go, any kind of proof can be used	By induction on $n:\mathbb{N}$: Base case:
\implies Inside nested induction steps, used induction hypotheses <u>must</u> be made explicit!	$(suc m + 0) - 0$ Syntactically, $= \langle ? \rangle$ where one kind of proof can go $suc m$
	any kind of proof can be used \dots (suc $m + suc n$) – suc n
see Exercise 3.3.	= (?) (suc m + n) - n = (Induction hypothesis `(suc m + n) - n = suc m`)
	Recall: Weakening/Strengthening Theorems
	" $p \Rightarrow q$ " can be read "p is stronger-than-or-equivalent-to q"
Logical Reasoning for Computer Science	" $p \Rightarrow q$ " can be read " p is at least as strong as q "
COMPSCI 2LC3	$(3.76a) \ p \qquad \Rightarrow \ p \lor q$
McMaster University, Fall 2024	$(3.76b) \ p \land q \qquad \Rightarrow p$
Wolfram Kahl	$(3.76c) \ p \land q \qquad \Rightarrow \ p \lor q$
	$(3.76d) \ p \lor (q \land r) \Rightarrow p \lor q$
2024-09-17	$(3.76e) \ p \land q \qquad \Rightarrow p \land (q \lor r)$
Part 2: Implication as Order, Order Relations	
Implication as Order on Propositions	One View of Relations
" $p \Rightarrow q$ " can be read "p is stronger-than-or-equivalent-to q" — similar to " $x \le y$ " as "x is less-or-equal y"	• Let T_1 and T_2 be two types.
— similar to " $x \ge y$ " as " x is greater-or-equal y "	 A function of type T₁ → T₂ → B can be considered as <i>one view of</i> a relation from T₁ to T₂ We will see a different view of relations later
" $p \Rightarrow q$ " can be read " p is at least as strong as q " — similar to " $x \le y$ " as " x is at most y "	 and the way to switch between these views. With such a way of switching, the two views "are the same" in colloquial mathematics Therefore use will accessionally user use the term "relation" also for functions of types
$\text{ similar to } "x \ge y" \text{ as } "x \text{ is at least } y"$ (3.57) Axiom, Definition of \Rightarrow from disjunction: $p \Rightarrow q \equiv p \lor q \equiv q$	• Therefore we will occasionally just use the term "relation" also for functions of types $T_1 \rightarrow T_2 \rightarrow \mathbb{B}$
— defines the order from maximum: $p \Rightarrow q \equiv ((p \lor q) = q)$	 A function of type T → T → B may then be called a relation on T. Some relations you are familar with: _=_: T → T → B
- analogous to: $x \le y \equiv ((x \uparrow y) = y)$ - analogous to: $k \mid n \equiv ((\operatorname{Icm}(k, n) = n))$	$_=_:\mathbb{Z}\to \mathbb{Z}\to \mathbb{B}$
(3.60) (Dual) Definition of \Rightarrow from conjunction: $p \Rightarrow q \equiv p \land q \equiv p$ defines the order from minimum: $p \Rightarrow q \equiv ((p \land q) = p)$	$ \begin{array}{c} _\neq_:\mathbb{N}\rightarrow\mathbb{N}\rightarrow\mathbb{B} \\ _<_:\mathbb{N}\rightarrow\mathbb{N}\rightarrow\mathbb{B} \end{array} $
- defines the order from minimum: $p \Rightarrow q \equiv ((p \land q) = p)$ - analogous to: $x \le y \equiv ((x \downarrow y) = x)$	$_ \not=_: \mathbb{B} \to \mathbb{B} \to \mathbb{B}$
- analogous to: $k \mid n \equiv ((\gcd(k, n) = k))$	$_\epsilon_: T \to set \ T \to \mathbb{B}$


Order Relations	Order Properties of Implication in LADM Chapter 3
• Let <i>T</i> be a type.	
• A relation \leq on <i>T</i> is called: • reflexive iff $x \leq x$ is valid	$(3.71) \text{Reflexivity of} \Rightarrow: p \Rightarrow p$
• transitive iff $x \le y \land y \le z \Rightarrow x \le z$ is valid	(3.80.1) Reflexivity of \Rightarrow wrt. \equiv : $(p \equiv q) \Rightarrow (p \Rightarrow q)$
• antisymmetric iff $x \le y \land y \le x \Rightarrow x = y$ is valid • an order (or ordering) iff it is reflexive, transitive, and antisymmetric	(3.80) Mutual implication: $(p \Rightarrow q) \land (q \Rightarrow p) \equiv p \equiv q$
• Orders you are familiar with: $_=_: T \rightarrow T \rightarrow \mathbb{B}$	(3.81) Antisymmetry: $(p \Rightarrow q) \land (q \Rightarrow p) \Rightarrow (p \equiv q)$
$ \underline{\leq} : \mathbb{Z} \to \mathbb{Z} \to \mathbb{B} $ $\underline{\geq} : \mathbb{Z} \to \mathbb{Z} \to \mathbb{B} $	(3.82a) Transitivity: $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$
$\underline{-\underline{2}} : \underline{\mathbb{N}} \to \underline{\mathbb{N}} \to \underline{\mathbb{B}}$	(3.82b) Transitivity: $(p \equiv q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$
$\underline{>}: \mathbb{N} \to \mathbb{N} \to \mathbb{B}$	(3.82c) Transitivity: $(p \Rightarrow q) \land (q \equiv r) \Rightarrow (p \Rightarrow r)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\underline{\ }, \underline{\ }, $	
$_\subseteq_: set T \to set T \to \mathbb{B}$	
Monotonicity, Isotonicity, Antitonicity	Monotonicity and Antitonicity Theorems for \Rightarrow
• Let \leq be an order on T	
 Let f : T → T be a function on T Then f is called 	(4.2) Left-monotonicity of \lor : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$
• monotonic iff $x \le y \Rightarrow fx \le fy$ is a theorem • isotonic iff $x \le y \equiv fx \le fy$ is a theorem	(4.3) Left-monotonicity of \land : $(p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$
• antitonic iff $x \le y \Rightarrow fy \le fx$ is a theorem	
 Examples: suc_: N → N is isotonic 	
• pred : $\mathbb{N} \to \mathbb{N}$ is monotonic, but not isotonic	— You can prove these already in the context of chapter 3!
• _+_ : $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$ is isotonic in the first argument: $x \le y \equiv x + z \le y + z$ is a theorem	
• _+_ : $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$ is isotonic in the second argument: $x \le y \equiv z + x \le z + y$ is a theorem	
•: $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$ is monotonic in the first argument: $x \le y \Rightarrow x - z \le y - z$ is a theorem	
•: $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$ is antitonic in the second argument: $x \le y \Rightarrow z - y \le z - x$ is a theorem	
$x \le y \rightarrow 2 - y \le 2 - x$ is a month.	Leibniz's Rule as an Axiom
La siad Bassarina (an Camarutan Saianas	Recall the inference rule (scheme):
Logical Reasoning for Computer Science	(1.5) Leibniz: $\frac{X = Y}{rr}$
COMPSCI 2LC3	(1.5) Leibniz: $\overline{E[z \coloneqq X]} = E[z \coloneqq Y]$
McMaster University, Fall 2024	Axiom scheme (E can be any expression, and z any variable): (3.83) Axiom, Leibniz: $(e = f) \Rightarrow (E[z := e] = E[z := f])$
Wolfram Kahl	What is the difference?Given a theorem X = Y and an expression <i>E</i>,
	the inference rule (1.5) produces a new theorem $E[z := X] = E[z := Y]$
2024-09-17	• (3.83) is a theorem
Part 3: Leibniz as Axiom, Replacement Theorems	• $((e = f) \Rightarrow (E[z := e] = E[z := f])) = true$ Can be used deep inside nested expressions
(LADM pp. 60–61, end of chapter 3)	— making use of local assumptions (that are typically not theorems)
Leibniz's Rule as an Axiom — Examples	Leibniz's Rule Axiom, and Further Replacement Rules
Recall the inference rule (scheme): (1.5) Leitherin: $X = Y$	Axiom scheme (<i>E</i> can be any expression; <i>z</i> , <i>e</i> , <i>f</i> : <i>t</i> can be of any type <i>t</i>):
(1.5) Leibniz: $\overline{E[z \coloneqq X]} = E[z \coloneqq Y]$	(3.83) Axiom, Leibniz: $(e = f) \Rightarrow (E[z := e] = E[z := f])$
Axiom scheme (E can be any expression, and z any variable):	— Axiom (3.83) is rarely useful directly!
(3.83) Axiom, Leibniz: $(e = f) \Rightarrow (E[z := e] = E[z := f])$	— Almost all applications are via derived "Replacement" theorems
	the second and the second adjustice adjustice adjustice adjustice and the second adjustice adjus
Examples • $n = k + 1 \Rightarrow n \cdot (k - 1) = (k + 1) \cdot (k - 1)$	Replacement rules: (P can be any expression of type \mathbb{B})
• $n = k + 1 \Rightarrow n \cdot (k - 1) - (k + 1) \cdot (k - 1)$ • $n = k + 1 \Rightarrow (z \cdot (k - 1))[z := n] = (z \cdot (k - 1))[z := k + 1]$	$(3.84a) \text{ "Replacement": } (e=f) \land P[z:=e] \equiv (e=f) \land P[z:=f]$ $(3.84b) \text{ "Replacement": } (e=f) \Rightarrow P[z:=e] \equiv (e=f) \Rightarrow P[z:=f]$
• $(n = k + 1 \Rightarrow n \cdot (k - 1) = k^2 - 1) = true$	$(3.840) \text{ "Replacement": } (e=f) \Rightarrow P[z:=e] \equiv (e=f) \Rightarrow P[z:=f]$ $(3.84c) \text{ "Replacement": } q \land (e=f) \Rightarrow P[z:=e] \equiv q \land (e=f) \Rightarrow P[z:=f]$
$\Rightarrow (n > 5 \Rightarrow (n = k + 1 \Rightarrow n \cdot (k - 1) = k^{2} - 1))$	$(5.5\pi) \text{replacement} q \land (c - j) \rightarrow 1 [2 - c] = q \land (c - j) \rightarrow 1 [2 - j]$
$= (n > 5 \Rightarrow true)$	
Using a Replacement (LADM: "Substitution") Rule	Some Replacements
Replacement rule: (P can be any expression of type \mathbb{B})	$((x > f 5) \equiv (y < g 7)) \land ((f x \le g y) \equiv (x > f 5))$
(3.84a) " Replacement ": $(e = f) \land P[z := e] \equiv (e = f) \land P[z := f]$	$\equiv \langle ? \rangle$
Textbook-style application:	$((x > f 5) \equiv (y < g 7)) \land ((f x \le g y) \equiv (y < g 7))$
$k = n + 1 \land k \cdot (n - 1) = n^2 - 1$ = $\langle (3.84a) $ " Replacement " \rangle	
$k = n + 1$ \land $(n + 1) \cdot (n - 1) = n^2 - 1$	$((f 5) = (g y)) \land ((f x \le g y) = x > (f 5))$
Not so fast! — CALCCHECK cannot do second-order matching (yet)	≡ ⟨ ? ⟩
$k = n + 1 \land k \cdot (n - 1) = n \cdot n - 1$	$((f 5) = (g y)) \land ((f x \le g y) = x > g y))$
= $\langle \text{Substitution} \rangle$ $k = n + 1 \land (z \cdot (n - 1) = n \cdot n - 1)[z := k]$	$((x > f 5) \equiv (y < g 7)) \land ((f x \le g y) \Rightarrow p(x-1) \lor (x > f 5))$
= ((3.84a) "Replacement")	$= \langle \begin{array}{c} (x > y) \\ (x > y) \\ (y < y) \\ (y < y) \\ (y < y) \\ (y < y) \\ (x > $
$k = n + 1 \land (z \cdot (n - 1) = n \cdot n - 1)[z \coloneqq n + 1]$ = (Substitution)	$ \begin{array}{c} -\langle \cdot \cdot \rangle \\ ((x > f \ 5) \ \equiv \ (y < g \ 7)) \\ \wedge \ ((f \ x \le g \ y) \Rightarrow p(x - 1) \lor (y < g \ 7)) \end{array} $
$\overset{'}{k} = n+1 \wedge \overset{'}{(n+1)} \cdot (n-1) = n \cdot n - 1$	

CALCCHECK: Subproof Hint Items	Abbreviated Proofs for Implications
You have used the following kinds of hint items: • Theorem name references "Identity of ≡"	
• Theorem number references (3.32)	$ p = \langle Why p \equiv q \rangle $
• Certain key words and key phrases: Substitution, Evaluation, Induction hypothesis	
 Fact `Expression` Composed hint items: "Identity of +" with `Substitution` 	This: q proves: $p \Rightarrow r$ $\Rightarrow \langle Why q \Rightarrow r \rangle$
"Monotonicity of +" with <i>HintItem</i>	r
A new kind of hint item: Subproof for `Expression`: [Proof]	Because:
<i>For example,</i> Fact $3 = 2 + 1$ is really syntactic sugar for a subproof:	$(p \equiv q) \land (q \Rightarrow r)$
$3 \cdot x$	\Rightarrow ((3.82b) Transitivity of \Rightarrow)
= (Subproof for `3 = 2 + 1`:	$p \Rightarrow r$
By evaluation) $(2 + 1) \cdot x$	
	This proof style will not be allowed in questions "belonging" to LADM Chapter 3!
(4.1) — Creating the Proof "Bottom-up"	(4.1) Using "Consequence" Implicitly
Proving (4.1) $p \Rightarrow (q \Rightarrow p)$:	Theorem (4.1): $p \Rightarrow (q \Rightarrow p)$ Proof:
p $\Rightarrow \langle (3.76a) \text{ Weakening } p \Rightarrow p \lor q \rangle$ Rabbit!	$q \Rightarrow p$
$-q \lor p$	$\equiv \langle \text{ "Material implication "} \rangle \\ \neg q \lor p$
\equiv ((3.59) Material implication)	$\Leftarrow ("Strengthening" (3.76a) - used as p \lor q \Leftarrow p)$
$q \Rightarrow p$	μ
We have: Axiom (3.58) Consequence : $p \leftarrow q \equiv q \Rightarrow p$	In CALCCHECK, this requires that
This means that the \Leftarrow relation is the converse of the \Rightarrow relation.	Axiom (3.58) "Consequence" "Definition of \Leftarrow ": $p \Leftrightarrow q \equiv q \Rightarrow p$
Theorem: The converse of a transitive relation is transitive again, and the converse of an order is an order again.	is activated as converse property.
CALCCHECK supports activation of converse properties, enabling reversed presentations	
following mathematical habits of transitivity calculations such as the above.	
— " propositional logic following LADM chapters 3 and 4"	
(4.1) Using #Company of Explicitly #Depth for this #	
(4.1) Using "Consequence" Explicitly — "Proof for this:" In CALCCHECK, if "Consequence" is not activated as converse property, then ⇐ is a separate	(4.2) Left-Monotonicity of \lor : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$
operator requiring explicit conversion:	Start from the right because there is more structure — therefore aim for " \Leftarrow " at the end:
Theorem $(4.1): p \Rightarrow (q \Rightarrow p)$ Theorem $(4.1): p \Rightarrow (q \Rightarrow p)$ Proof:Proof:	$p \lor r \Rightarrow q \lor r$
$p \Rightarrow (q \Rightarrow p)$ $p \Rightarrow (q \Rightarrow p)$	$\equiv ((3.57) \text{ Definition of} \Rightarrow p \Rightarrow q \equiv p \lor q \equiv q)$
	$p \lor r \lor q \lor r \equiv q \lor r$
Proof for this: \equiv (Subproof for `($q \Rightarrow p$) \leftarrow p `: $q \Rightarrow p$ $q \Rightarrow p$	$\equiv ((3.26) \text{ Idempotency of } \lor)$
≡ ("Material implication ") ≡ ("Material implication ")	$p \lor q \lor r \equiv q \lor r$
$ \neg q \lor p \qquad \qquad \neg q \lor p \\ \Leftarrow ("Strengthening" (3.76a), \qquad \qquad \Leftarrow ("Strengthening" (3.76a), $	$\equiv \langle (3.27) \text{ Distributivity of } \lor \text{ over } \equiv \rangle$ $(p \lor q \equiv q) \lor r$
"Consequence") "Consequence")	
	$\equiv (3.57)$ Definition of $\Rightarrow n \Rightarrow q \equiv n \lor q \equiv q$
p p p	$\equiv \langle (3.57) \text{ Definition of } \Rightarrow p \Rightarrow q \equiv p \lor q \equiv q \rangle$ $(p \Rightarrow q) \lor r$
p p ("Proof for this:" is shorthand for the subproof to the right. It implements the frequent proof presentation pattern	
<i>p p p p p p p p p p</i>	$(p \Rightarrow q) \lor r$
p p ("Proof for this:" is shorthand for the subproof to the right. It implements the frequent proof presentation pattern of transforming the goal, and then using a different kind of proof for the transformed goal.))	$(p \Rightarrow q) \lor r$ $\Leftarrow \langle (3.76a) \text{ Strengthening } p \Rightarrow p \lor q \rangle$
<pre>p ("Proof for this:" is shorthand for the subproof to the right. It implements the frequent proof presentation pattern of transforming the goal, and then using a different kind</pre>	$(p \Rightarrow q) \lor r$ $\Leftarrow \langle (3.76a) \text{ Strengthening } p \Rightarrow p \lor q \rangle$
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $\Leftarrow \langle (3.76a) \text{ Strengthening } p \Rightarrow p \lor q \rangle$
$p \qquad p \\ ("Proof for this:" is shorthand for the subproof to the right. It implements the frequent proof presentation pattern of transforming the goal, and then using a different kind of proof for the transformed goal.) (4.3) \text{ Left-Monotonicity of } \land: (p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r \\ p \land r \Rightarrow q \land r \qquad (\Rightarrow \text{ associates to the right}) \\ \equiv \langle (3.60) \text{ Definition of } \Rightarrow \rangle$	$(p \Rightarrow q) \lor r$ $\Leftarrow \langle (3.76a) \text{ Strengthening } p \Rightarrow p \lor q \rangle$ $p \Rightarrow q$
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $(3.76a) \text{ Strengthening } p \Rightarrow p \lor q $ $p \Rightarrow q$ Logical Reasoning for Computer Science COMPSCI 2LC3
$p \qquad p \\ ("Proof for this:" is shorthand for the subproof to the right. It implements the frequent proof presentation pattern of transforming the goal, and then using a different kind of proof for the transformed goal.) (4.3) \text{ Left-Monotonicity of } \land: (p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r \\ p \land r \Rightarrow q \land r \qquad (\Rightarrow \text{ associates to the right}) \\ \equiv \langle (3.60) \text{ Definition of } \Rightarrow \rangle$	$(p \Rightarrow q) \lor r$ $(3.76a) \text{ Strengthening } p \Rightarrow p \lor q $ $p \Rightarrow q$ Logical Reasoning for Computer Science
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $(3.76a) \text{ Strengthening } p \Rightarrow p \lor q $ $p \Rightarrow q$ Logical Reasoning for Computer Science COMPSCI 2LC3
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $(3.76a) \text{ Strengthening } p \Rightarrow p \lor q $ $p \Rightarrow q$ Logical Reasoning for Computer Science COMPSCI 2LC3
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $((3.76a) Strengthening p \Rightarrow p \lor q) p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024$
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $((3.76a) Strengthening p \Rightarrow p \lor q) p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024$
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $(3.76a) \text{ Strengthening } p \Rightarrow p \lor q $ $p \Rightarrow q$ $Logical Reasoning for Computer Science COMPSCI 2LC3$ $McMaster University, Fall 2024$ $Wolfram Kahl$ $2024-09-19$
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $(3.76a) Strengthening p \Rightarrow p \lor q p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl$
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $(3.76a) \text{ Strengthening } p \Rightarrow p \lor q $ $p \Rightarrow q$ $Logical Reasoning for Computer Science COMPSCI 2LC3$ $McMaster University, Fall 2024$ $Wolfram Kahl$ $2024-09-19$
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $(3.76a) Strengthening p \Rightarrow p \lor q p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-19$
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $(3.76a) Strengthening p \Rightarrow p \lor q p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-19 Part 2: Assuming the Antecedent To prove an implication p \Rightarrow q$
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $(3.76a) Strengthening p \Rightarrow p \lor q) p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-19 Part 2: Assuming the Antecedent To prove an implication p \Rightarrow q we can prove its conclusion q using p as assumption:$
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $(3.76a) Strengthening p \Rightarrow p \lor q) p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-19 Part 2: Assuming the Antecedent To prove an implication p \Rightarrow q we can prove its conclusion q using p as assumption: Assuming `p`:$
p ("Proof for this:" is shorthand for the subproof to the right. It implements the frequent proof presentation pattern of transforming the goal, and then using a different kind of proof for the transformed goal.) $(4.3) \text{ Left-Monotonicity of } \land: (p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$ $p \land r \Rightarrow q \land r$ $(\Rightarrow \text{ associates to the right})$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $p \land r \land q \land r \equiv p \land r$ $\equiv ((3.38) \text{ Idempotency of } \land)$ $((p \land q) \land r \equiv p \land r)$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \Rightarrow q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \Rightarrow q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \Rightarrow q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $r \Rightarrow (p \Rightarrow q)$ How to prove the following? $\begin{array}{c} \text{Proving Implications} \\ b = c \Rightarrow a + b = a + c \\ = (\text{Substitution}) \end{array}$	$(p \Rightarrow q) \lor r$ $(3.76a) Strengthening p \Rightarrow p \lor q) p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-19 Part 2: Assuming the Antecedent To prove an implication p \Rightarrow q we can prove its conclusion q using p as assumption: Assuming `p`: Proof of q$
p ("Proof for this:" is shorthand for the subproof to the right. It implements the frequent proof presentation pattern of transforming the goal, and then using a different kind of proof for the transformed goal.) $(4.3) \text{ Left-Monotonicity of } \land: (p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$ $p \land r \Rightarrow q \land r$ $(\Rightarrow \text{ associates to the right})$ $\equiv \langle (3.60) \text{ Definition of } \Rightarrow \rangle$ $p \land r \land q \land r \equiv p \land r$ $\equiv \langle (3.38) \text{ Idempotency of } \land \rangle$ $(p \land q) \land r \equiv p \land r$ $\equiv \langle (3.60) \text{ Definition of } \Rightarrow \rangle$ $(p \Rightarrow q) \land r \equiv r$ $\equiv \langle (3.60) \text{ Definition of } \Rightarrow \rangle$ $(p \Rightarrow q) \land r \equiv r$ $\equiv \langle (3.60) \text{ Definition of } \Rightarrow \rangle$ $(p \Rightarrow q) \land r \equiv r$ $\equiv \langle (3.60) \text{ Definition of } \Rightarrow \rangle$ $r \Rightarrow (p \Rightarrow q)$ $\neq \langle (4.1) p \Rightarrow (q \Rightarrow p) \rangle$ $p \Rightarrow q$ How to prove the following? $proving Implications$ How to prove the following? $r = \text{Congruence of } + \text{'':} b = c \Rightarrow a + b = a + c$ $Proof.$ $b = c \Rightarrow a + b = a + c$	$(p \Rightarrow q) \lor r$ $(3.76a) Strengthening p \Rightarrow p \lor q) p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-19 Part 2: Assuming the Antecedent To prove an implication p \Rightarrow q we can prove its conclusion q using p as assumption: Assuming `p`:$
p ("Proof for this:" is shorthand for the subproof to the right. It implements the frequent proof presentation pattern of transforming the goal, and then using a different kind of proof for the transformed goal.) $(4.3) \text{ Left-Monotonicity of } \land: (p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$ $p \land r \Rightarrow q \land r$ $(\Rightarrow \text{ associates to the right})$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $p \land r \land q \land r \equiv p \land r$ $\equiv ((3.38) \text{ Idempotency of } \land)$ $((p \land q) \land r \equiv p \land r)$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \Rightarrow q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \Rightarrow q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \Rightarrow q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $r \Rightarrow (p \Rightarrow q)$ How to prove the following? $\begin{array}{c} \text{Proving Implications} \\ b = c \Rightarrow a + b = a + c \\ = (\text{Substitution}) \end{array}$	$(p \Rightarrow q) \lor r$ $((3.76a) Strengthening p \Rightarrow p \lor q) p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-19 Part 2: Assuming the Antecedent To prove an implication p \Rightarrow q we can prove its conclusion q using p as assumption: Msuming [p = Assumption] p Iustification: (4.4) (Extended) Deduction Theorem: Suppose adding P_1, \dots, P_n as axioms to proposi-$
p $("Proof for this:" is shorthand for the subproof to the right. It implements the frequent proof presentation pattern of transforming the goal, and then using a different kind of proof for the transformed goal.) (4.3) \text{ Left-Monotonicity of } \land: (p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r p \land r \Rightarrow q \land r (\Rightarrow \text{ associates to the right}) \equiv \langle (3.60) \text{ Definition of } \Rightarrow \rangle p \land r \land q \land r \equiv p \land r \equiv \langle (3.38) \text{ Idempotency of } \land \rangle (p \land q) \land r \equiv p \land r \equiv \langle (3.49) \text{ Semi-distributivity of } \land \rangle (p \land q) \Rightarrow p \land r \equiv r \equiv \langle (3.60) \text{ Definition of } \Rightarrow \rangle (p \Rightarrow q) \land r \equiv r \equiv \langle (3.60) \text{ Definition of } \Rightarrow \rangle (p \Rightarrow q) \land r \equiv r \equiv \langle (3.60) \text{ Definition of } \Rightarrow \rangle r \Rightarrow (p \Rightarrow q) r \Rightarrow (p \Rightarrow q) e \langle (4.1) p \Rightarrow (q \Rightarrow p) \rangle p \Rightarrow q How to prove the following? Proving Implications "-Congruence of +": b = c \Rightarrow a + b = a + c "Leibniz as Axiom" can help: It may be nicer to turn this into a situation where the inference rule Leibniz (1.5) can be used again$	$(p \Rightarrow q) \lor r$ $\Rightarrow ((3.76a) Strengthening p \Rightarrow p \lor q)$ $p \Rightarrow q$ $Logical Reasoning for Computer Science COMPSCI 2LC3$ $McMaster University, Fall 2024$ $Wolfram Kahl$ $2024-09-19$ $Part 2: Assuming the Antecedent$ $To prove an implication p \Rightarrow q$ we can prove its conclusion q using p as assumption: $Assuming `p`:$ $Proof of q$ $possibly using: Assumption `p`$
$p \qquad p \qquad$	$(p \Rightarrow q) \lor r$ $((3.76a) Strengthening p \Rightarrow p \lor q) p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-19 Part 2: Assuming the Antecedent To prove an implication p \Rightarrow q we can prove its conclusion q using p as assumption: Assuming `p`: Proof of q possibly using: Assumption `p` (4.4) (Extended) Deduction Theorem: Suppose adding P_1, \dots, P_n as axioms to propositional logic E, with the free variables of the P_i considered to be constants, allows$
p ("Proof for this." is shorthand for the subproof to the right. It implements the frequent proof presentation pattern of transforming the goal, and then using a different kind of proof for the transformed goal.) $(4.3) \text{ Left-Monotonicity of } \land: (p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$ $p \land r \Rightarrow q \land r$ $(\Rightarrow \text{ associates to the right})$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $p \land r \land q \land r \equiv p \land r$ $\equiv ((3.38) \text{ Idempotency of } \land)$ $(p \land q) \land r \equiv p \land r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \land q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \Rightarrow q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \Rightarrow q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $r \Rightarrow (p \Rightarrow q)$ $\Leftarrow ((4.1) p \Rightarrow (q \Rightarrow p))$ $p \Rightarrow q$ How to prove the following? $Proving Implications$ How to prove the following? $Proving Implications$ $Proving Implications$ It may be nicer to turn this into a situation where the inference rule Leibniz (1.5) can be used again) $Lemma "=-congruence of +": b = c \Rightarrow a + b = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $(b = c) \Rightarrow (b = c) \Rightarrow (b = c) \Rightarrow (b = a) + c$ $= (Congruence of + ": b) = c \Rightarrow (c = a) + b) = (c = a)$	$(p \Rightarrow q) \lor r$ $(3.76a) Strengthening p \Rightarrow p \lor q) p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-19 Part 2: Assuming the Antecedent To prove an implication p \Rightarrow q we can prove its conclusion q using p as assumption: Assuming `p`: Proof of \ q possibly using: Assumption `p` Iustification: (4.4) (Extended) Deduction Theorem: Suppose adding P_1, \dots, P_n as axioms to propositional logic E, with the free variables of the P_1 considered to be constants, allows Q to be proved. Then P_1 \land \dots \land P_n \Rightarrow Q is a theorem. That is:$
p ("Proof for this:" is shorthand for the subproof to the right. It implements the frequent proof presentation pattern of transforming the goal, and then using a different kind of proof for the transformed goal.) (4.3) Left-Monotonicity of \land : $(p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$ $p \land r \Rightarrow q \land r$ (\Rightarrow associates to the right) $\equiv ((3.60)$ Definition of \Rightarrow) $p \land r \land q \land r \equiv p \land r$ $\equiv ((3.38)$ Idempotency of \land) $(p \land q) \land r \equiv p \land r$ $\equiv ((3.60)$ Definition of \Rightarrow) $(p \land q) \land r \equiv p \land r$ $\equiv ((3.60)$ Definition of \Rightarrow) $(p \Rightarrow q) \land r \equiv r$ $\equiv ((3.60)$ Definition of \Rightarrow) $r \Rightarrow (p \Rightarrow q)$ $\Rightarrow ((4.1) p \Rightarrow (q \Rightarrow p))$ $p \Rightarrow q$ How to prove the following? "-Congruence of +": $b = c \Rightarrow a + b = a + c$ "Leibniz as Axiom" can help: It may be nicer to turn this into a situation where the inference rule Leibniz (1.5) can be used again Lemma "=-congruence of +": $b = c \Rightarrow a + b = a + c$ Proof: Assuming 'b = c': a + b a + b	$(p \Rightarrow q) \lor r$ $(q \Rightarrow q) \lor r$ $((3.76a) Strengthening p \Rightarrow p \lor q) p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-19 Part 2: Assuming the Antecedent To prove an implication p \Rightarrow q we can prove its conclusion q using p as assumption: Assuming `p`: Proof of q possibly using: Assumption `p' Iustification: (4.4) (Extended) Deduction Theorem: Suppose adding P_1, \dots, P_n as axioms to propositional logic E, with the free variables of the P_i considered to be constants, allows Q to be proved.Then P_1 \land \dots \land P_n \Rightarrow Q is a theorem.That is:Assumptions cannot be used with substitutions (with 'a, b := e, f')$
p ("Proof for this." is shorthand for the subproof to the right. It implements the frequent proof presentation pattern of transforming the goal, and then using a different kind of proof for the transformed goal.) $(4.3) \text{ Left-Monotonicity of } \land: (p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$ $p \land r \Rightarrow q \land r$ $(\Rightarrow \text{ associates to the right})$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $p \land r \land q \land r \equiv p \land r$ $\equiv ((3.38) \text{ Idempotency of } \land)$ $(p \land q) \land r \equiv p \land r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \land q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \Rightarrow q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $(p \Rightarrow q) \land r \equiv r$ $\equiv ((3.60) \text{ Definition of } \Rightarrow)$ $r \Rightarrow (p \Rightarrow q)$ $\Leftarrow ((4.1) p \Rightarrow (q \Rightarrow p))$ $p \Rightarrow q$ How to prove the following? $Proving Implications$ How to prove the following? $Proving Implications$ $Proving Implications$ It may be nicer to turn this into a situation where the inference rule Leibniz (1.5) can be used again) $Lemma "=-congruence of +": b = c \Rightarrow a + b = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $b = c \Rightarrow (a + b) = a + c$ $= (Substitution)$ $(b = c) \Rightarrow (b = c) \Rightarrow (b = c) \Rightarrow (b = a) + c$ $= (Congruence of + ": b) = c \Rightarrow (c = a) + b) = (c = a)$	$(p \Rightarrow q) \lor r$ $(3.76a) Strengthening p \Rightarrow p \lor q p \Rightarrow q Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-19 Part 2: Assuming the Antecedent To prove an implication p \Rightarrow q we can prove its conclusion q using p as assumption: Assuming `p`: Proof of \ q possibly using: Assumption `p` Iustification: (4.4) (Extended) Deduction Theorem: Suppose adding P_1,, P_n as axioms to propositional logic E, with the free variables of the P1 considered to be constants, allows Q to be proved. Then P_1 \land \land P_n \Rightarrow Q is a theorem. That is:$

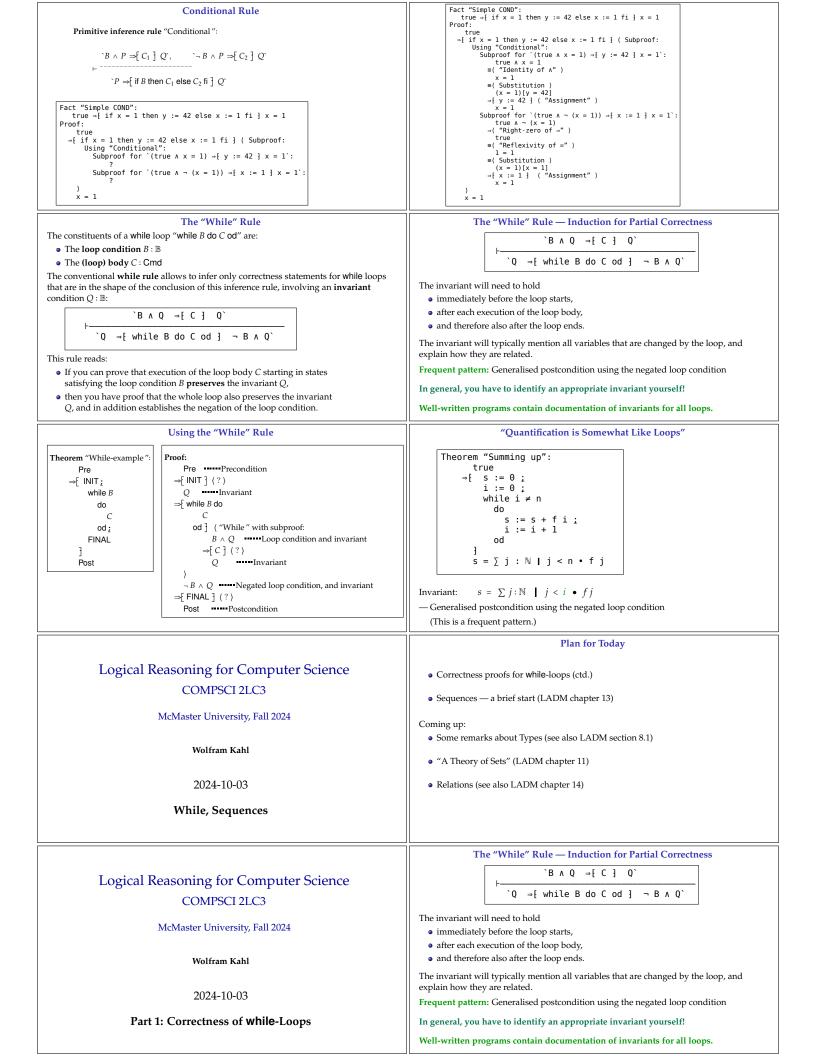
Inference Rule for Proving Implications: ⇒-Introduction	Proving and Using Implication Theorems: Assuming and with $_2$
Assuming `P`:	Using "Cancellation of ": $z \neq 0 \Rightarrow (z \cdot x = z \cdot y \equiv x = y)$ Theorem "Non-zero multiplication": $z \neq 0 \Rightarrow b \neq 0 \Rightarrow c = b \neq 0$
One way to prove $P \Rightarrow Q$: <i>Proof of</i> Q	Theorem "Non-zero multiplication": $a \neq 0 \Rightarrow b \neq 0 \Rightarrow a \cdot b \neq 0$ Proof:
possibly using: Assumption `P`	Assuming $a \neq 0^\circ$, $b \neq 0^\circ$: $a \cdot b \neq 0$
(And Assuming \tilde{P} :) can only prove theorems of shape $P \Rightarrow \cdots$.)	$\equiv \langle \text{"Definition of } \neq \text{"} \rangle$ $\neg (a \cdot b = 0)$
	$\equiv \langle \text{"Zero of } \cdot \text{"} \rangle$
This directly corresponds to an application of the inference rule " \Rightarrow -Introduction" (which is missing in the Rosen book used in COMPSCI 1DM3):	$\neg (a \cdot b = a \cdot 0)$ = ("Cancellation of ·" with assumption `a \ne 0`)
	$\neg (b = 0)$ = ("Definition of +", Assumption `b = 0`)
r p, $r x : A$, r	true
$\frac{\dot{Q}}{P \Rightarrow Q} \Rightarrow \text{-Intro} \qquad \qquad \frac{e \cdot B}{(\lambda x : A \bullet e) : A \to B} \ \lambda \text{-Abstraction}$	• Hintltem1 with Hintltem2 and Hintltem3, Hintltem4 parses as
$\mathbf{I} \rightarrow \mathbf{Q} \qquad (\lambda \mathbf{i} \cdot \mathbf{i} + \mathbf{c}) \cdot \mathbf{i} \rightarrow \mathbf{D}$	(Hintltem1 with (Hintltem2 and Hintltem3)), Hintltem4
(4.3) Left-Monotonicity of \land (shorter proof, LADM-style)	Transform Before Assuming — Proof for this:
$(4.3) (p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r))$	Theorem (4.3) "Left-monotonicity of \wedge " "Monotonicity of \wedge ": $(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r))$
Proof:	$(p \rightarrow q) \rightarrow ((p \land r)) \rightarrow (q \land r))$ Proof:
Assume $p \Rightarrow q$ (which is equivalent to $p \land q \equiv p$)	$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r))$
$p \wedge r$ $\equiv \langle \text{Assumption } p \wedge q \equiv p \rangle$	$ = \langle \text{ "Definition of } \Rightarrow \text{ from } \land \text{"} \rangle $ $ (p \land q \equiv p) \Rightarrow ((p \land r) \Rightarrow (q \land r)) $
$p \wedge q \wedge r$	Proof for this:
\Rightarrow ((3.76b) Weakening)	Assuming $p \land q \equiv p^{:}$ $p \land r$
$q \wedge r$	$\equiv \langle \text{Assumption } p \land q \equiv p \rangle \rangle$
How to do "which is equivalent to" in CALCCHECK?	$p \wedge q \wedge r$
Transform before assumingor transform the assumption when using it	\Rightarrow ("Weakening")
• or "Assuming and using with"	<i>q</i> ∧ <i>r</i>
Transform Assumption When Used — with ₃	Assuming and using with (4.3) $(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r))$ -LADM
$\begin{array}{l} (4.3) (p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r)) \\ PROOF: \\ \mathbf{Assume } p \Rightarrow q (\text{which is equivalent to } p \land q \equiv p) \end{array}$	$\begin{array}{l} (4.3) (p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r)) \\ PROOF: \\ \textbf{Assume } p \Rightarrow q (which is equivalent to p \land q \equiv p) \end{array}$
Assume $p \rightarrow q$ (which is equivalent to $p \wedge q \equiv p$) $p \wedge r$ $\equiv \langle Assumption p \wedge q \equiv p \rangle$	$p \land r$ $\equiv \langle \text{Assumption } p \land q \equiv p \rangle$
$ \begin{array}{c} \left(1.5 \operatorname{cm}(p) + \sqrt{q} - p \right) \\ p \wedge q \wedge r \\ \Rightarrow \left((3.76b) \operatorname{Weakening} \right) \end{array} $	$ p \land q \land r $ $ \Rightarrow ((3.76b) Weakening) $
$q \wedge r$	$q \wedge r$
Theorem (4.3) "Left-monotonicity of \wedge " "Monotonicity of \wedge ": —CALCCHECK	Theorem (4.3) "Left-monotonicity of \wedge " "Monotonicity of \wedge ": — CALCCHECK
$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r))$ Proof:	$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r))$ Proof:
Assuming $p \Rightarrow q$: $p \land r$	Assuming $p \Rightarrow q$ and using with "Implication via \wedge ": $p \land r$
$\equiv (\text{Assumption } p \Rightarrow q \text{`with "Implication via \land " }) $ $p \land q \land r$	$\equiv \langle \text{Assumption } \hat{p} \Rightarrow q^{*} \rangle$ $p \land q \land r$
\Rightarrow ("Weakening")	\Rightarrow ("Weakening")
q ^ r	
Logical Reasoning for Computer Science	Logical Reasoning for Computer Science
COMPSCI 2LC3	COMPSCI 2LC3
McMaster University, Fall 2024	McMaster University, Fall 2024
· · · · · · · · · · · · · · · · · · ·	
Wolfram Kahl	Wolfram Kahl
2024-09-20	2024-09-20
Proof Structures (LADM ch. 4)	
• Introduction to Quantification (LADM ch. 8)	Part 1: Case Analysis and Other Structured Proofs
LADM General Case Analysis	Case Analysis Example (4.2) $(p \Rightarrow q) \Rightarrow p \lor r \Rightarrow q \lor r$ — LADM vs. CalcCheck
$(4.6) (p \lor q \lor r) \land (p \Rightarrow s) \land (q \Rightarrow s) \land (r \Rightarrow s) \Rightarrow s$	Assume $p \Rightarrow q$ Theorem "Monotonicity of \lor ":Assume $p \lor r$ $(p \Rightarrow q) \Rightarrow (p \lor r) \Rightarrow (q \lor r)$
Proof pattern for general case analysis:	Prove: $q \lor r$ Proof:By Cases: p, r Assuming $`p \Rightarrow q`, `p \lor r`$:
Prove: S	$-p \lor r$ holds by assumption By cases: p^{*} , r^{*}
By cases: P, Q, R (proof of $P \lor Q \lor R$ — omitted if obvious)	Case p :Completeness: By assumption $p \lor r$ p Case p :
Case P: (proof of $P \Rightarrow S$)	$\Rightarrow \langle \text{Assumption } p \Rightarrow q \rangle \qquad \qquad p - \text{This is assumption } p^{*}$
Case Q: (proof of $Q \Rightarrow S$) Case R: (proof of $R \Rightarrow S$)	$\begin{array}{ccc} q & \Rightarrow (\text{Assumption } p \Rightarrow q^{\circ}) \\ \Rightarrow & (\text{Weakening } (3.76a)) & q \end{array}$
Case R : (proof of $R \Rightarrow S$)	$q \lor r \qquad \qquad \Rightarrow ("Weakening") \\ q \lor r$
	Case r: Case r:
	r - Inis is assumption r
	$\Rightarrow \langle \text{Weakening (3.76a)} \rangle \qquad \Rightarrow \langle \text{"Weakening "} \rangle \\ q \lor r \qquad q \lor r$

Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-09-20 Part 2: Introduction to Quantification (start LADM chapt. 8), Quantification expansion
Sum Quantification Examples
$(\sum k : \mathbb{N} \mid k < 5 \bullet k)$ • "The sum of all natural numbers less than five" $(\sum k : \mathbb{N} \mid k < 5 \bullet k \cdot k)$
• "For all natural numbers k that are less than 5, adding up the value of $k \cdot k''$
 "The sum of all squares of natural numbers less than five" (∑ x, y : N x ⋅ y = 120 • 2 ⋅ (x + y)) "For all natural numbers x and y with product 120, adding up the value of 2 ⋅ (x + y)" "The sum of the perimeters of all integral rectangles with area 120"
Sum and Product Quantification
$(\Sigma x \mid R \bullet E)$
• "For all <i>x</i> satisfying <i>R</i> , summing up the value of <i>E</i> "
• "The sum of all <i>E</i> for <i>x</i> with <i>R</i> "
 (∑ x: T • E) "For all x of type T, summing up the value of E" "The sum of all E for x of type T" (∏ x R • E) "The product of all E for x with R" (∏ x: T • E) "The product of all E for x of type T"
LADM/CALCCHECK Quantification Notation
Conventional sum quantification notation: $\sum_{i=1}^{n} e = e[i := 1] + \ldots + e[i := n]$
The textbook uses a different, but systematic linear notation:
$(\sum i \mid 1 \le i \le n : e) \text{or} (+i \mid 1 \le i \le n : e)$
We use a variant with a "spot" "•" instead of the colon ":" and only use "big" operators:
$(\sum i \mid 1 \le i \le n \cdot e) \qquad - ((sum i \mid i \mid 1 \mid eq i \mid <= n \mid spot e))$
Reasons for using this kind of <u>linear</u> quantification notation:
• Clearly delimited introduction of quantified variables (dummies)
• Arbitrary Boolean expressions can define the range $(\sum i \mid 1 \le i \le 7 \land even i \bullet i) = 2 + 4 + 6$
• The notation extends easily to multiple quantified variables:
$(\sum i, j: \mathbb{Z} \mid 1 \le i < j \le 4 \bullet i/j) = 1/2 + 1/3 + 1/4 + 2/3 + 2/4 + 3/4$
Expanding Sum and Product QuantificationSum quantification (Σ) is "addition (+) of arbitrarily many terms": $(\Sigma i \mid 5 \le i < 9 \bullet i \cdot (i + 1))$ = (Quantification expansion) $(i \cdot (i + 1))[i := 5] + (i \cdot (i + 1))[i := 6] + (i \cdot (i + 1))[i := 7] + (i \cdot (i + 1))[i := 8]$ = (Substitution) $5 \cdot (5 + 1) + 6 \cdot (6 + 1) + 7 \cdot (7 + 1) + 8 \cdot (8 + 1)$ Product quantification ([]) is "multiplication (.) of arbitrarily many factors": $(\prod i \mid 0 \le i < 3 \bullet 5 \cdot i + 1)$ = (Quantification expansion) $(5 \cdot i + 1)[i := 0] \cdot (5 \cdot i + 1)[i := 1] \cdot (5 \cdot i + 1)[i := 2]$

	Quantification Examples
	$\sum_{i=1}^{\infty} (\sum_{i=1}^{n} i \leq i \leq 4 \bullet i \geq 8)$
Logical Reasoning for Computer Science	= (Quantification expansion, substitution)
COMPSCI 2LC3	$- \underbrace{\begin{array}{c} 0\cdot 8+1\cdot 8+2\cdot 8+3\cdot 8 \\ - \end{array}}_{-}$
McMaster University, Fall 2024	$(\prod i \mid 0 \le i < 3 \bullet i + (i+1))$
	= $\langle \text{Quantification expansion, substitution} \rangle$ (0+1)·(1+2)·(2+3)
Wolfram Kahl	$\frac{(\forall i \mid 1 \le i < 3 \bullet i \cdot d \neq 6)}{(\forall i \mid 1 \le i < 3 \bullet i \cdot d \neq 6)}$
	= (Quantification expansion, substitution)
2024-09-24	$1 \cdot d \neq 6 \land 2 \cdot d \neq 6$
General Quantification — LADM Chapter 8	$(\exists i \mid 0 \le i < 6 \bullet b i = 0)$
	= $\langle \text{Quantification expansion, substitution} \rangle$ $b \ 0 = 0 \lor b \ 1 = 0 \lor b \ 2 = 0 \lor b \ 3 = 0 \lor b \ 4 = 0 \lor b \ 5 = 0$
General Quantification It works not only for $+, \wedge, \vee \dots$	General Quantification: Instances Let a type <i>T</i> and an operator $*: T \times T \rightarrow T$ be given.
Let a type <i>T</i> and an operator $\star : T \times T \to T$ be given.	If for an appropriate $u : T$ we have:
If for an appropriate $u : T$ we have:	• Symmetry: $b \star c = c \star b$ • Associativity: $(b \star c) \star d = b \star (c \star d)$
 Symmetry: b * c = c * b Associativity: (b * c) * d = b * (c * d) 	• Identity u : $u \star b = b = b \star u$
• Associativity: $(b * c) * u = b * (c * u)$ • Identity u : $u * b = b = b * u$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
we may use * as quantification operator:	and has <i>false</i> as identity (3.30) — the "big operator" for \lor is \exists ":
$(\star x:T_1,y:T_2 \mid R \bullet E)$	$(\exists k : \mathbb{N} \mid k > 0 \bullet k \cdot k < k + 1)$ • _^_ : $\mathbb{B} \times \mathbb{B} \to \mathbb{B}$ is symmetric (3.36), associative (3.27),
• $R : \mathbb{B}$ is the range of the quantification	and has <i>true</i> as identity (3.39) — the "big operator" for \land is \forall ":
 <i>E</i> : <i>T</i> is the body of the quantification <i>E</i> and <i>R</i> may refer to the quantified variables <i>x</i> and <i>y</i> 	$(\forall k : \mathbb{N} \mid k > 2 \bullet prime \ k \Rightarrow \neg prime \ (k + 1))$ $\bullet _+_: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \text{ is symmetric (15.2), associative (15.1),}$
• <i>E</i> and <i>x</i> may refer to the quantified variables <i>x</i> and <i>y</i> • The type of the whole quantification expression is <i>T</i> .	and has 0 as identity (15.3) — the "big operator" for + is Σ ":
	$(\sum n : \mathbb{Z} \mid 0 < n < 100 \land prime n \bullet n \cdot n)$
Meaning of General Quantification	Bound / Free Variable Occurrences
Let a type <i>T</i> , and a symmetric and associative operator $\star : T \times T \rightarrow T$ with identity $u : T$ be given. Further let <i>x</i> be a variable list , <i>R</i> a Boolean expression, and <i>E</i> an expression of type <i>T</i> .	
LADM: "Expression ($\star x : X \mid R \bullet E$) denotes the application of operator \star to the values	Is this true or false? In which states?
of <i>E</i> for all <i>x</i> in <i>X</i> for which range <i>R</i> is true."	We have: $(\sum i : \mathbb{N} \mid i < x \bullet i + 1) = 10 \equiv x = 4$ The value of this example expression in a state depends only on <i>x</i> , not on <i>i</i> !
The meaning of $(*x \mid R \bullet E)$ in state <i>s</i> is:	Renaming quantified variables does not change the meaning:
 the nested application of ★ to the meanings of <i>E</i> in all those states that satisfy <i>R</i> 	$(\sum i: \mathbb{N} \mid i < x \bullet i + 1) = (\sum j: \mathbb{N} \mid j < x \bullet j + 1)$
• and are different from <i>s</i> at most in variables in <i>x</i> , or <i>u</i> , if there are no such states.	Occurrences of quantified variables inside the quantified expression are bound
Examples:	• Non-bound variable occurences are called free
• $(\exists i,j \mid i=j=i+1 \bullet i < j) = false$	• Variables of the same name may occur both free and bound in the same expression, e.g.: $3 \cdot i + (\sum i : \mathbb{N} \mid i < x \cdot 2 \cdot i)$
• $(\forall i, j \mid i = j = i + 1 • i < j) = true$ • $(\prod i, j \mid 5 = j = i + 1 • i \cdot j) = 4 \cdot 5$	The variable declarations after the quantification operator
• $(\exists i, j \mid 0 < i \le j < 3 \bullet i \ge j) = 1 \ge 1 \lor 1 \ge 2 \lor 2 \ge 2$	may be called binding occurrences .
Variable Binding is Everywhere! Including in Substitution!	Trivial Range Axioms
Another example expression: $(x + 3 = 5 \cdot i)[i := 9]$ $(x + 3 = 5 \cdot i)[i := 9]$	(8.13) Axiom, Empty Range (where u is the identity of \star):
Is this true or false? In which states? \equiv (Substitution,) x = 42	$(\star x \mid false \bullet P) = u$
The value of $(x + 3 = 5 \cdot i)[i := 9]$ in a state depends only on <i>x</i> , not on <i>i</i> !	$(\forall x \mid false \bullet P) = true$
Renaming substituted variables does not change the meaning:	$(\forall x \mid false \bullet P) = false$
$(x+3=5\cdot i)[i=9] \equiv (x+3=5\cdot j)[j=9]$	$(\exists x \mid false \bullet P) = false$ $(\sum x \mid false \bullet P) = 0$
Occurrences of substituted variables inside the target expression are bound	$(\sum x \mid false \bullet P) = 0$ $(\prod x \mid false \bullet P) = 1$
 The variable occurrences to the left of := in substitutions may be called binding occurrences. 	$(11 \land 1)^{uise} \bullet 1 j = 1$
• Non-bound variable occurences are called free.	(8.14) Aviem One point Pulse Presided accurated (Pl)
<i>i</i> > 0 ∧ (<i>x</i> + 3 = 5 • <i>i</i>)[<i>i</i> := 7 + <i>i</i>] • Substitution does not bind to the right of := !	(8.14) Axiom, One-point Rule: Provided $\neg occurs('x', 'E')$,
	$(\star x \mid x = E \bullet P) = P[x := E]$
The occurs Meta-Predicate	The -occurs Proviso for the One-point Rule
Definition: $occurs('v', 'e')$ means that at least one variable in the list v of variables occurs free in at least one expression in expression list e .	(8.14) Axiom, One-point Rule for Σ : Provided $\neg occurs('x', 'E')$, $(\Sigma x \mid x = E \bullet P) = P[x := E]$
$occurs('i,n', '(\sum i,n \mid 1 \le i \cdot n \le k \bullet n^i), (\sum n \mid 0 \le n < k \bullet n^i)') \checkmark$	(8.14) Axiom, One-point Rule for \square : Provided $\neg occurs('x', 'E')$, $(\square x \mid x = E \bullet P) = P[x := E]$
$occurs('i', '(i \cdot (5+i))[i := k+2]') \times$ Substitution is a variable binder, too!	Examples: $a = (\sum_{i=1}^{n} x_i ^2) = (\sum_{i=1}^{n} x_i ^2)$
$occurs('i', '(i \cdot (5+i))[i := i+2]')$	$\bullet (\sum x \mid x = 1 \bullet x \cdot y) = 1 \cdot y$ $\bullet (\prod x \mid x = y + 1 \bullet x \cdot x) = (y + 1) \cdot (y + 1)$
	• $(\prod x \mid x = y + 1 \bullet x \cdot x) = (y + 1) \cdot (y + 1)$ • $(\sum x \mid x = (\sum x \mid 1 \le x < 4 \bullet x) \bullet x \cdot y) = (\sum x \mid 1 \le x < 4 \bullet x) \cdot y = 6 \cdot y$
	Counterexamples:
	• $(\sum x \mid x = x + 1 \cdot x)$? $x + 1$ — "=" not valid!
	• $(\prod x \mid x = 2 \cdot x \bullet y + x)$? $y + 2 \cdot x$ — "=" not valid!

The ¬occurs Proviso for the One-point Rule	One-point Rule with Example Calculation
(8.14) Axiom, One-point Rule: Provided ¬occurs('x', 'E'),	(8.14) Axiom, One-point Rule: Provided $\neg occurs('x', 'E')$,
(8.14) Axiom, One-point Kule: Provided $\neg occurs(x, E),$ $(*x \mid x = E \bullet P) = P[x := E]$	$(\star x \mid x = E \bullet P) = P[x := E]$
$ (\forall x \mid x = E \bullet P) = P[x := E] $	Example:
$(\forall x \mid x - L \circ I) = I[x - L]$ $(\exists x \mid x = E \circ P) = P[x = E]$	$(\Sigma i: \mathbb{N} \bullet 5 + 2 \cdot i < 7 \mid 5 + 7 \cdot i)$
$(\exists x \mid x = L \bullet F) = F[x = L]$ Examples:	$= (\dots)$
• $(\forall x \mid x = 1 \bullet x \cdot y = y) \equiv 1 \cdot y = y$	$(\sum i: \mathbb{N} \bullet i = 0 \mid 5 + 7 \cdot i)$
• $(\exists x \mid x = y + 1 • x \cdot x > 42) \equiv (y + 1) \cdot (y + 1) > 42$	$= (One-point rule) (5+7 \cdot i)[i:=0]$
Counterexamples:	= (Substitution)
• $(\forall x \mid x = x + 1 • x = 42)$? $x + 1 = 42$ — "=" not valid! • $(\exists x \mid x = 2 \cdot x • y + x = 42)$? $y + 2 \cdot x = 42$ — "=" not valid!	$5+7\cdot 0$
Automatic extraction of ¬occurs Provisos	Textual Substitution Revisited
(8.14) Axiom, One-point Rule: Provided $\neg occurs('x', 'E')$,	Let <i>E</i> and <i>R</i> be expressions and let <i>x</i> be a variable. Original definition:
$(\forall x \mid x = E \bullet P) \equiv P[x \coloneqq E]$	We write: $E[x := R]$ or E_R^x to denote an expression that is the same as <i>E</i> but with all occurrences of
$(\exists x \mid x = E \bullet P) \equiv P[x \coloneqq E]$	x replaced by (R).
 Investigate the binders in scope at the metavariables <i>P</i> and <i>E</i>: <i>P</i> on the LHS occurs in scope of the binder ∀ <i>x</i> 	This was for expressions <i>E</i> built from constants , variables , operator applications only! In presence of variable binders , such as Σ , \prod , \forall , \exists and substitution,
• <i>P</i> on the RHS occurs in scope of the binder _[<i>x</i> :=]	 only free occurrences of <i>x</i> can be replaced
<i>Therefore:</i> Whether x occurs in P or not does not raise any problems.	• and we need to avoid "capture of free variables":
 <i>E</i> on the LHS occurs in scope of the binder ∀ <i>x</i> <i>E</i> on the RHS occurs in scope no binders 	$(8.11) \text{ Provided } -occurs('y', 'x, F'), \\ (* y \mid R \bullet P)[x := F] = (* y \mid R[x := F] \bullet P[x := F])$
<i>Therefore:</i> An <i>x</i> that is free in <i>E</i> would be bound on the LHS,	LADM Chapter 8:
but escape into freedom on the RHS!	"* is a metavariable for operators $_+_, __, _\land_, _\lor_$ " (resp. $\Sigma, \Box, \forall, \exists$)
CALCCHECK derives and checks ¬occurs provisos automatically.	(8.11) is part of the Substitution keyword in CALCCHECK. Read LADM Chapter 8!
Substitution Examples	Substitution Examples (ctd.)
(8.11) Provided $\neg occurs('y', 'x, F')$,	(8.11) Provided $\neg occurs('y', 'x, F')$,
$(\star y \mid R \bullet P)[x \coloneqq F] = (\star y \mid R[x \coloneqq F] \bullet P[x \coloneqq F])$	$(\star y \mid R \bullet P)[x \coloneqq F] = (\star y \mid R[x \coloneqq F] \bullet P[x \coloneqq F])$
	• $(\sum x \mid 1 \le x \le 2 \bullet y)[x := y + x]$
• $(\sum x \mid 1 \le x \le 2 \cdot y)[y := y + z]$	$= \langle (8.21) \text{ Variable renaming } \rangle$ $(\sum z \ \ 1 \le z \le 2 \cdot y)[x := y + x]$
= (substitution)	$= \langle (8.11) \rangle (\sum z \ \ (1 \le z \le 2) [x := y + x] \bullet (y) [x := y + x])$
$(\sum x \mid 1 \le x \le 2 \bullet y + z)$	= (Substitution)
• $(\sum x \mid 1 \le x \le 2 \bullet y)[y := y + x]$	$ (\sum z \mid 1 \le z \le 2 \cdot y) $ = ((8.21) Variable renaming)
= ((8.21) Variable renaming) ($\sum z \mid 1 \le z \le 2 \cdot y)[y := y + x]$	$(\Sigma x \mid 1 \le x \le 2 \cdot y)$
$= (\text{substitution}) (\sum z \mid 1 \le z \le 2 \bullet y + x)$	(8.11f) Provided ¬occurs('x', 'E'),
$(2 \times 1)^{1/2} \times 2 \times 9^{+\chi}$	E[x := F] = E
Renaming of Bound Variables	Leibniz Rules for Quantification
(8.21) Axiom, Dummy renaming (α -conversion): ($\star x \mid R \bullet P$) = ($\star y \mid R[x := y] \bullet P[x := y]$) provided $\neg occurs('y', 'R, P')$.	Try to use $x + x = 2 \cdot x$ and Leibniz (1.5) $\frac{X = Y}{E[z := X]}$ to obtain:
$(\sum i \mid 0 \le i < k \bullet n^i)$	E[2 := X] = E[2 := 1] ($\sum x \mid 0 \le x < 9 \bullet x + x$) = ($\sum x \mid 0 \le x < 9 \bullet 2 \cdot x$)
= $\langle \text{Dummy renaming (8.21), } \neg occurs('j', '0 \le i < k, n^{i'}) \rangle$	
$(\sum j \mid 0 \le j < k \bullet n^j)$	• Choose <i>E</i> as: $(\sum x \mid 0 \le x < 9 \bullet z)$ • Perform substitution: $(\sum x \mid 0 \le x < 9 \bullet z)[z := x + x]$
$(\sum i \mid 0 \le i < k \bullet n^i)$	$(\sum y \mid 0 \le y < 9 \bullet x + x)$
? (Dummy renaming (8.21)) \times	 Not possible with (1.5)! — <i>E</i>[<i>z</i> := <i>X</i>] = <i>E</i>[<i>z</i> := <i>Y</i>] renames <i>x</i>!
$(\sum k \mid 0 \le k < k \bullet n^k) \qquad \qquad k \text{ captured!}$ Generally, use <u>fresh</u> variables for renaming to avoid <u>variable capture</u> !	
	Special Leibniz rule for quantification: $P_{a} = 0$
In CALCCHECK, renaming of bound variables is part of "Reflexivity of =", but can also be mentioned explicitly.	$\frac{P = Q}{(\star x \mid R \bullet E[z \coloneqq P])} = (\star x \mid R \bullet E[z \coloneqq Q])$
LADM Leibniz Rules for Quantification	
Rewrite equalities in the range context of quantifications:	
P = Q	Logical Reasoning for Computer Science
(8.12) Leibniz (* $x \mid E[z := P] \bullet S$) = (* $x \mid E[z := Q] \bullet S$) Rewrite equalities in the body context of quantifications:	COMPSCI 2LC3
	McMaster University, Fall 2024
(8.12) Leibniz $\frac{R \implies (P = Q)}{(* x \mid R \bullet E[z \coloneqq P]) = (* x \mid R \bullet E[z \coloneqq Q])}$	
(These inference rules will also be used implicitly .)	Wolfram Kahl
Important: $P = Q$, repectively $R \Rightarrow (P = Q)$, needs to be a theorem!	
These rules are not available for local Assumptions ! (Because <i>x</i> may occur in <i>R</i> , <i>P</i> , <i>Q</i> .)	2024-09-24
The CALCCHECK versions use universally-quantified antecedents.	General Quantification (ctd.) — LADM Chapter 8 Predicate Logic — LADM Chapter 9
Axiom "Leibniz for \sum range": $(\forall x \bullet R_1 \equiv R_2) \Rightarrow (\sum x \mid R_1 \bullet E) = (\sum x \mid R_2 \bullet E)$ Axiom "Leibniz for \sum body": $(\forall x \bullet R \Rightarrow E_1 = E_2) \Rightarrow (\sum x \mid R \bullet E_1) = (\sum x \mid R \bullet E_2)$	Treatent Logic Landar Chapter 2
$ = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum$	

Bound / Free Variable Occurrences — The occurs Meta-Predicate	Leibniz Rules for Quantification: LADM and CALCCHECK
Renaming quantified variables does not change the meaning:	Rewrite equalities in the range context of quantifications: $P_{n-1} = O_{n-1}$
$(\forall i \bullet x \cdot i = 0) \equiv (\forall j \bullet x \cdot j = 0)$	(8.12) Leibniz $\frac{P = Q}{(\star x \mid E[z := P] \bullet S) = (\star x \mid E[z := Q] \bullet S)}$
Occurrences of quantified variables inside the quantified expression are bound	Rewrite equalities in the body context of quantifications:
Variable occurrences in an expression where they are not bound are free	$(8.12) \text{ Leibniz} \qquad \frac{R \implies (P = Q)}{(\star x \mid R \bullet E[z := P]) = (\star x \mid R \bullet E[z := Q])}$
$i > 0 \lor (\forall i \mid 0 \le i \bullet x \cdot i = 0)$	(0.12) ECHILE $(x + 1) = (x + 1) = (x + 1)$ (These inference rules will also be used implicitly.)
 The variable declarations after the quantification operator may be called binding occurrences. 	Important: $P = Q$, repectively $R \Rightarrow (P = Q)$, needs to be a theorem!
Definition : $occurs('v', 'e')$ means that at least one variable in the list v of variables occurs	These rules are not available for local Assumptions !
free in at least one expression in expression list <i>e</i> .	(Because x may occur in R, P, Q.)
CALCCHECK derives and checks ¬occurs provisos automatically.	The CALCCHECK versions use universally-quantified antecedents. Axiom "Leibniz for \sum range": $(\forall x \bullet R_1 \equiv R_2) \Rightarrow (\sum x \mid R_1 \bullet E) = (\sum x \mid R_2 \bullet E)$
	Axiom "Leibniz for \sum body ": $(\forall x \bullet R \Rightarrow E_1 = E_2) \Rightarrow (\sum x \mid R \bullet E_1) = (\sum x \mid R \bullet E_2)$
Distributivity	Distributivity
(8.15) Axiom, (Quantification) Distributivity:	(8.15) Axiom, (Quantification) Distributivity:
$(* x \mid R \bullet P) \star (* x \mid R \bullet Q) = (* x \mid R \bullet P \star Q),$ provided each quantification is defined.	$(\star x \mid R \bullet P) \star (\star x \mid R \bullet Q) = (\star x \mid R \bullet P \star Q),$ provided each quantification is defined.
CALCCHECK currently has no way to express or check this proviso —	1 1
— it remains in your responsibility!	Calculation: $(1 + 1 \cdot 1) + (2 + 2 \cdot 2) + (3 + 3 \cdot 3)$
$(\sum i: \mathbb{N} \mid i < n \bullet f i) + (\sum i: \mathbb{N} \mid i < n \bullet g i)$ = (Quantification Distributivity (8.15))	= (Quantification expansion, substitution)
$(\sum i:\mathbb{N} \mid i < n \bullet f i + g i)$	$\sum i: \mathbb{N} \mid 1 \le i < 4 \bullet (i + i \cdot i)$
Note: Some quantifications are not defined, e.g.: $(\sum n : \mathbb{N} \bullet n)$	= ("Distributivity of \sum over + ")
Note that quantifications over \land or \lor are always defined:	$(\sum i: \mathbb{N} \mid 1 \le i < 4 \bullet i) + (\sum i: \mathbb{N} \mid 1 \le i < 4 \bullet i \cdot i)$
$(\forall x \mid R \bullet P \land Q) = (\forall x \mid R \bullet P) \land (\forall x \mid R \bullet Q)$	= (Quantification expansion, substitution)
$(\exists x \mid R \bullet P \lor Q) = (\exists x \mid R \bullet P) \lor (\exists x \mid R \bullet Q)$	$(1 + 2 + 3) + (1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3)$
Disjoint Range Split — LADM	Disjoint Range Split for ∑ (LADM and CALCCHECK)
(8.16) Axiom, Range split:	(8.16) Axiom, Range Split: $(\Sigma x \mid R \lor S \bullet P) = (\Sigma x \mid R \bullet P) + (\Sigma x \mid S \bullet P)$ provided $R \land S = false$ and each sum is defined.
$(* x R \lor S \bullet P) = (* x R \bullet P) * (* x S \bullet P)$ provided $R \land S = false$ and each quantification is defined.	CALCCHECK currently cannot deal with "provided each sum is defined". But once \forall is available, $Q \land R = false$ does not need to be a proviso:
$(\Sigma x \mid R \lor S \bullet P) = (\Sigma x \mid R \bullet P) + (\Sigma x \mid S \bullet P)$	Theorem "Disjoint range split for Σ ":
provided $R \wedge S = false$ and each sum is defined.	$(\forall x \bullet R \land S \equiv false) \Rightarrow$ $((\sum x \mid R \lor S \bullet E) = (\sum x \mid R \bullet E) + (\sum x \mid S \bullet E))$
$ (\forall x \mid R \lor S \bullet P) = (\forall x \mid R \bullet P) \land (\forall x \mid S \bullet P) $ provided $R \land S = false. $	That is: Summing up over a large range can be done by adding the results
$(\exists x \mid R \lor S \bullet P) = (\exists x \mid R \bullet P) \lor (\exists x \mid S \bullet P)$	of summing up two disjoint and complementary subranges. → "Divide and conquer" algorithm design pattern
provided $R \wedge S = false$.	
	DIVIDE ET IMPERA — Gaius Julius Caesar
Range Split "Axioms"	Variable Binding Rearrangements
(8.16) Axiom, Range split:	(8.19) Axiom, Interchange of dummies:
$(* x \mid R \lor S \bullet P) = (* x \mid R \bullet P) * (* x \mid S \bullet P)$ provided $R \land S = false$ and each quantification is defined.	$(\star x \mid R \bullet (\star y \mid S \bullet P)) = (\star y \mid S \bullet (\star x \mid R \bullet P))$
(8.17) Axiom, Range Split:	provided $\neg occurs('y', 'R')$ and $\neg occurs('x', 'S')$, and each quantification is defined.
$(* x R \lor S \bullet P) * (* x R \land S \bullet P) = (* x R \bullet P) * (* x S \bullet P)$	Apparently not provable for general quantification from the quantification axioms in LADM:
provided each quantification is defined.	$(8.19.1) Dummy list permutation: (* x, y \mid R \bullet P) = (* y, x \mid R \bullet P)(without side conditions restricting variable occurrences!)$
(8.18) Axiom, Range Split for idempotent *: $(* x \mid R \lor S \bullet P) = (* x \mid R \bullet P) * (* x \mid S \bullet P)$	$(\text{whited side conditions restricting variable occurrences})$ $(8.20) \text{ Axiom, Nesting:} \qquad (\star x, y \mid R \land S \bullet P) = (\star x \mid R \bullet (\star y \mid S \bullet P))$
provided each quantification is defined.	$(220) \text{ Axion, results.} \qquad (x,y + K(0,0,1)) = (x + K(0,y + 0,0,1)) \text{ provided } -occurs('y', 'R').$
$(\forall x \mid R \lor S \bullet P) = (\forall x \mid R \bullet P) \land (\forall x \mid S \bullet P)$	(8.21) Axiom, Dummy renaming (α -conversion): (* x R • P) = (* y R[x := y] • P[x := y]) provided $\neg occurs('y', 'R, P')$.
$(\exists x \mid R \lor S \bullet P) = (\exists x \mid R \bullet P) \lor (\exists x \mid S \bullet P)$	$(*x R \circ r) = (*y R[x - y])$ provided "occurs(y, R, r). Substitution (8.11) prevents capture of y by binders in R or P
Formalise, and prove:	The sum of the first <i>n</i> odd natural numbers is equal to n^2
• The sum of the first <i>n</i> odd natural numbers is equal to n^2 .	Theorem "Odd-number sum": (Σ i : N i < n • suc i + i) = n • n Proof:
	By induction on `n : N`: Base case:
Formalise it in a way that makes it easy to prove!	(∑ i : N i < 0 • suc i + i) =(?)
One ontion:	
One option:	=(?)
Theorem "Odd-number sum": (∑ i : ℕ i < n • suc i + i) = n · n	Induction step: (∑ i : N i < suc n • suc i + i) =(?)
How do you prove this?	
	=(?)
	suc n · suc n


The sum of the first <i>n</i> odd natural numbers is equal to n^2	Manimulating Panges (Consul Quantization Varian)
Theorem "Odd-number sum":	Manipulating Ranges (General Quantfication Version) (8.23) Theorem Split off term: For $n : \mathbb{N}$ and dummies $i : \mathbb{N}$,
(∑ i : N i < n • suc i + i) = n • n Proof:	(s.2) Incorem Spin on term for n if and dumines n if n of n or n of n
By induction on `n : N`: Base case:	$(*i 0 \le i < n + 1 \bullet P) = P[i := 0] * (*i 0 < i < n + 1 \bullet P)$
<pre>(∑ i : N i < 0 • suc i + i) =("Nothing is less than zero")</pre>	$(*t \mid 0 \leq t \leq n+1 \leq 1) = T[t = 0] \times (*t \mid 0 \leq t \leq n+1 \leq 1)$
$(\Sigma i : N false \cdot suc i + i)$ =("Empty range for Σ ")	Typical uses: Induction proofs, verification of loops
$ = ("Definition of \cdot for 0") $	• Generalisation: $\mathbb{N} \longrightarrow \mathbb{Z}$, $0 \longrightarrow m : \mathbb{Z}$ (with $m \le n$)
0 · 0 Induction step:	The following work both with $m, n, i : \mathbb{N}$ and with $m, n, i : \mathbb{Z}$:
<pre>(∑ i : N i < suc n • suc i + i) =("Split off term at top", Substitution)</pre>	Theorem: Split off term from top:
$(\sum i : N i < n \cdot suc i + i) + (suc n + n)$ =(Induction hypothesis)	$ \begin{array}{c c} m \leq n \implies \\ (\star i \mid m \leq i < n + 1 \bullet P) = (\star i \mid m \leq i < n \bullet P) \star P[i \coloneqq n] \end{array} $
$suc n + n + n \cdot n$ =("Definition of \cdot for `suc`")	Theorem: Split off term from bottom:
<pre>suc n + n · suc n =("Definition of · for `suc`")</pre>	$m \le n \Rightarrow$
suc n · suc n	$(\star i \mid m \le i < n+1 \bullet P) = P[i \coloneqq m] \star (\star i \mid m+1 \le i < n+1 \bullet P)$
Manipulating Ranges (Sum Version)	Proving Split-off Term We have:
(8.23) Theorem Split off term : For $n : \mathbb{N}$ and dummies $i : \mathbb{N}$,	(8.16) Axiom, Range Split:
$\left(\sum i \mid 0 \le i < n+1 \bullet P\right) = \left(\sum i \mid 0 \le i < n \bullet P\right) + P[i := n]$	$(\Sigma x \mid R \lor S \bullet P) = (\Sigma x \mid R \bullet P) + (\Sigma x \mid S \bullet P)$
$\left(\sum i \mid 0 \le i < n+1 \bullet P\right) = P[i := 0] + \left(\sum i \mid 0 < i < n+1 \bullet P\right)$	provided $R \wedge S = false$ and each sum is defined.
• Typical uses: Induction proofs, verification of loops	How can you prove theorems like the following?
• Generalisation: $\mathbb{N} \to \mathbb{Z}$, $0 \to m : \mathbb{Z}$ (with $m \le n$)	Theorem "Split off ∑-term from top of _<-suc range ":
The following work both with $m, n, i : \mathbb{N}$ and with $m, n, i : \mathbb{Z}$:	$(\sum i:\mathbb{N} \mid i < \operatorname{suc} n \bullet E) = (\sum i:\mathbb{N} \mid i < n \bullet E) + E[i:=n]$
Theorem: Split off term from top:	 Use range split first —
$m \le n \Rightarrow$	\implies need to transform the LHS range expression <i>i</i> < suc <i>n</i> into an appropriate disjunction
$(\sum i \mid m \le i < n + 1 \bullet P) = (\sum i \mid m \le i < n \bullet P) + P[i := n]$ Theorem: Solit off term from bottom:	\implies the first disjunct should be the range expression <i>i</i> < <i>n</i> from the RHS
Theorem: Split off term from bottom: $m \le n \implies$	 The second range will have one element The second sum from the (8.16) RHS has range i = n
$ \begin{array}{ccc} m \leq n & \Rightarrow \\ (\sum i \mid m \leq i < n+1 \bullet P) = P[i \coloneqq m] + (\sum i \mid m+1 \leq i < n+1 \bullet P) \end{array} $	⇒ That second sum disappears via the one-point rule
	Generalising De Morgan to Quantification
	$\neg(\exists i \mid 0 \le i < 4 \bullet P)$
Logical Reasoning for Computer Science	= (Expand quantification)
COMPSCI 2LC3	$\neg (P[i:=0] \lor P[i:=1] \lor P[i:=2] \lor P[i:=3])$
	= ((3.47) De Morgan)
McMaster University, Fall 2024	$\neg P[i \coloneqq 0] \land \neg P[i \coloneqq 1] \land \neg P[i \coloneqq 2] \land \neg P[i \coloneqq 3]$
	$= \langle \text{Contract quantification} \rangle$
Wolfram Kahl	$(\forall i \mid 0 \le i < 4 \bullet \neg P)$
	$(9.18b,c,a) \text{ Generalised De Morgan:} \\ \neg (\exists x \mid R \bullet P) \equiv (\forall x \mid R \bullet \neg P)$
2024-09-26	$(\exists x \mid R \bullet \neg P) \equiv \neg(\forall x \mid R \bullet P)$
Part 2: Predicate Logic 1	$\neg(\exists x \mid R \bullet \neg P) \equiv (\forall x \mid R \bullet P)$ (9.17) Axiom, Generalised De Morgan:
	$(\exists x \mid R \bullet P) \equiv \neg(\forall x \mid R \bullet \neg P)$
"Trading" Range Predicates with Body Predicates in ∀ and ∃	$P[x := E]$ Instantiation for \forall
(9.2) Axiom, Trading: $(\forall x \mid R \bullet P) \equiv (\forall x \bullet R \Rightarrow P)$	$\equiv \langle (8.14) \text{ One-point rule} \rangle$ (\forall x = E \circ P)
Trading Theorems for \forall : (9.3a) $(\forall x \mid R \bullet P) \equiv (\forall x \bullet \neg R \lor P)$	
$(9.3b) \qquad (\forall x \mid R \bullet P) \equiv (\forall x \bullet R \land P \equiv R)$	$(\forall x \mid true \lor x = E \bullet P) \qquad \qquad P[x \coloneqq E] \forall -EIIIII$
$(9.3c) \qquad (\forall x \mid R \bullet P) \equiv (\forall x \bullet R \lor P \equiv P) (9.4a) \qquad (\forall x \mid Q \land R \bullet P) \equiv (\forall x \mid Q \bullet R \Rightarrow P)$	$\equiv \langle (3.29) \operatorname{Zero} \operatorname{of} \vee \rangle$
$(9.4b) \qquad (\forall x \mid Q \land R \bullet P) \equiv (\forall x \mid Q \bullet \neg R \lor P)$	$ (\forall x \mid true \bullet P) $ = (true range in quantification)
$(9.4c) \qquad (\forall x \mid Q \land R \bullet P) \equiv (\forall x \mid Q \bullet R \land P \equiv R) (9.4d) \qquad (\forall x \mid Q \land R \bullet P) \equiv (\forall x \mid Q \bullet R \lor P \equiv P)$	$= (interacting entities and interaction) (\forall x \bullet P)$
	<i>This proves:</i> (9.13) Instantiation: $(\forall x \bullet P) \Rightarrow P[x \coloneqq E]$
(9.17) Axiom, Generalised De Morgan: $(\exists x \mid R \bullet P) \equiv \neg(\forall x \mid R \bullet \neg P)$	The one-point rule is "sharper " than Instantiation.
(9.19) Trading for \exists : $(\exists x \mid R \bullet P) \equiv (\exists x \bullet R \land P)$	Using sharper rules often means fewer dead ends
(9.20) Trading for \exists : $(\exists x \mid Q \land R \bullet P) \equiv (\exists x \mid Q \bullet R \land P)$	A sharp version obtained via (3.60) :
	$(\forall x \bullet P) \equiv (\forall x \bullet P) \land P[x \coloneqq E]$
Using Instantiation for \forall	Recall: with ₂
(9.13) Instantiation: $(\forall x \bullet P) \Rightarrow P[x := E]$	$\neg (a \cdot b = a \cdot 0)$
A sharp version of Instantiation obtained via (3.60): $(\forall x \bullet P) \equiv (\forall x \bullet P) \land P[x \coloneqq E]$	$\equiv \langle \text{ "Cancellation of } \cdot \text{" with assumption `} a \neq 0` \rangle$
Proving $(\forall x \bullet x + 1 > x) \Rightarrow y + 2 > y$:	$\neg (b = 0)$
$(\forall x \circ x + 1 > x)$	In a hint of shape "Hintltem1 with Hintltem2 and Hintltem3":
$= (\text{Instantiation (9.13) with (3.60) })$ $(\forall x \bullet x + 1 > x) \land y + 1 > y$	• If <i>HintItem1</i> refers to a theorem of shape $p \Rightarrow q$,
$(\forall x \bullet x + 1 > x) \land y + 1 > y$ $\Rightarrow \langle \text{Left-monotonicity of } \land (4.3) \text{ with Instantiation (9.13)} \rangle$	• then <i>HintItem</i> 2 and <i>HintItem</i> 3 are used to prove <i>p</i>
$(y+1)+1 > y+1 \land y+1 > y$	• and <i>q</i> is used in the surrounding proof.
$\Rightarrow (\text{Transitivity of } > (15.41))$	Here:
y + 1 + 1 > y	• <i>Hintltem1</i> is "Cancellation of .": $z \neq 0 \Rightarrow (z \cdot x = z \cdot y \equiv x = y)$
= (1+1=2)	• <i>Hintltem2</i> is "Assumption $a \neq 0$ "
y+2>y	• The surrounding proof uses: $a \cdot b = a \cdot 0 \equiv b = 0$

Monotonicity with	with3: Rewriting Theorems before Rewriting
$(\forall x \bullet x + 1 > x) \land y + 1 > y$	ThmA with ThmB
$\Rightarrow (Left-monotonicity of \land (4.3) with Instantiation (9.13))$	• If <i>ThmB</i> gives rise to an equality/equivalence $L = R$: Rewrite <i>ThmA</i> with $L \mapsto R$
$(y+1)+1 > y+1 \land y+1 > y$	• E.g.: Assumption $p \Rightarrow q$ with (3.60) $p \Rightarrow q \equiv p \land q \equiv q$
In a hint of shape "Hintltem1 with Hintltem2 and Hintltem3":	The local theorem $p \Rightarrow q$ (resulting from the Assumption)
 If <i>HintItem1</i> refers to a theorem of shape p ⇒ q, then <i>HintItem2</i> and <i>HintItem3</i> are used to prove p 	rewrites via: $p \Rightarrow q \mapsto p \equiv p \land q$ (from (3.60))
• and <i>q</i> is used in the surrounding proof.	to: $p \equiv p \land q$ which can be used for the rewrite: $p \mapsto p \land q$
Here: $U_{int}(t_{int}) = (t_{int}) + (t$	$\frac{1}{\text{Theorem (4.3) "Left-monotonicity of $\wedge'': (p \Rightarrow q$)} \Rightarrow ((p \land r) \Rightarrow (q \land r))}$
• <i>Hintltem1</i> is "Left-monotonicity of \wedge ": $(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r))$ • <i>Hintltem2</i> is "Instantiation": $(\forall x \bullet x + 1 > x)$	Proof:
$\Rightarrow (y+1)+1 > y+1$	Assuming $p \Rightarrow q^{2}$: $p \land r$
• The surrounding proof uses: $(\forall x \bullet x + 1 > x) \land y + 1 > y$	$\equiv \langle \text{Assumption } p \Rightarrow q \text{`with "Definition of } \Rightarrow \text{from } \land " \rangle$ $p \land q \land r$
$\Rightarrow (y+1)+1 > y+1 \land y+1 > y$	$\Rightarrow ("Weakening") q \land r$
Using Instantiation for ∀	
(9.13) Instantiation: $(\forall x \bullet P) \Rightarrow P[x \coloneqq E]$	
A sharp version of Instantiation obtained via (3.60): $(\forall x \bullet P) \equiv (\forall x \bullet P) \land P[x \coloneqq E]$	Logical Reasoning for Computer Science
Theorem: $(\forall x : \mathbb{Z} \bullet x < x + 1) \Rightarrow y < y + 2$	COMPSCI 2LC3
Proof: $(\forall x : \mathbb{Z} \bullet x < x + 1)$	McMaster Hairperity Fall 2024
$\equiv \langle \text{"Instantiation" (9.13) with "Definition of} \Rightarrow \text{via } \wedge \text{" (3.60)} - \text{explicit substitution needed!} \rangle$	McMaster University, Fall 2024
$(\forall x : \mathbb{Z} \bullet x < x + 1) \land (x < x + 1)[x := y + 1]$ = (Substitution, Fact`1 + 1 = 2`)	Wolfram Kahl
$(\forall x : \mathbb{Z} \bullet x < x + 1) \land y + 1 < y + 2$	woirram Kani
$\Rightarrow ("Monotonicity of \land " with "Instantiation") (x < x + 1)[x := y] \land y + 1 < y + 2$	20.24 00 27
≡ (Substitution)	2024-09-27
$y < y + 1 \land y + 1 < y + 2$ $\Rightarrow ("Transitivity of <")$	Predicate Logic — LADM Chapter 9 (ctd.)
y < y + 2	
Warm-Up	Using Instantiation for ∀
*	(9.13) Instantiation: $(\forall x \bullet P) \Rightarrow P[x \coloneqq E]$
What does "assuming the antecedent" mean? Circuits a sub-factorial for superbilitation practice.	A sharp version of Instantiation obtained via (3.60): $(\forall x \bullet P) \equiv (\forall x \bullet P) \land P[x \coloneqq E]$
Give the rule for quantification nesting.State the one-point rule and the empty range axiom.	Proving $(\forall x \bullet x + 1 > x) \Rightarrow y + 2 > y$:
 State the quantification distributivity axiom. 	$(\forall x \bullet x + 1 > x)$
• Give the rule for disjoint range split.	≡ ("Instantiation" (9.13) with "Implication via ∧" (3.60=))
• Give the rule for substitution into quantification.	$(\forall x \bullet x + 1 > x) \land y + 1 > y$ $\Rightarrow \langle \text{"Left-monotonicity of } \land \text{" (4.3) with "Instantiation" (9.13)} \rangle$
• State the basic trading laws for \forall and \exists .	$(y+1)+1>y+1 \land y+1>y$
 State the theorem of instantiation for ∀. 	$\Rightarrow \langle \text{"Transitivity of >" (15.41)} \rangle$
	y + 1 + 1 > y
	$\equiv (1+1=2)$
	y+2>y
Recall: with2	Recall: with ₂ in: Monotonicity with
$\neg (a \cdot b = a \cdot 0)$	$(\forall x \bullet x + 1 > x) \land y + 1 > y$
$\equiv \langle \text{"Cancellation of } \cdot \text{" with assumption } a \neq 0 \rangle \rangle$	\Rightarrow ("Left-monotonicity of \wedge " (4.3) with "Instantiation" (9.13))
$\neg (b = 0)$	$(y+1)+1 > y+1 \land y+1 > y$
In a hint of shape "HintItem1 with HintItem2 and HintItem3":	In a hint of shape "HintItem1 with HintItem2 and HintItem3":
• If <i>HintItem1</i> refers to a theorem of shape $p \Rightarrow q$,	 If <i>HintItem1</i> refers to a theorem of shape p ⇒ q, then <i>HintItem2</i> and <i>HintItem3</i> are used to prove p
• then <i>HintItem</i> 2 and <i>HintItem</i> 3 are used to prove <i>p</i>	• and <i>q</i> is used in the surrounding proof.
• and <i>q</i> is used in the surrounding proof.	Here:
Here:	• <i>Hintltem1</i> is "Left-monotonicity of \wedge ": $(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r))$ • <i>Hintltem2</i> is "Instantiation": $(\forall x \bullet x + 1 > x)$
• <i>HintItem1</i> is "Cancellation of \cdot ": $z \neq 0 \Rightarrow (z \cdot x = z \cdot y \equiv x = y)$ • <i>HintItem2</i> is "Assumption $a \neq 0$ "	• <i>Hintltem2</i> is "Instantiation": $(\forall x \bullet x + 1 > x)$ $\Rightarrow (y+1)+1>y+1$
• The surrounding proof uses: • The surrounding proof uses: $a \cdot b = a \cdot 0 \equiv b = 0$	• The surrounding proof uses: $(\forall x \bullet x+1>x) \land y+1>y$
	$\Rightarrow (y+1)+1>y+1 \land y+1>y$
Modus Pones via with ₂	with ₃ : Rewriting Theorems before Rewriting
Modus ponens: theorem: (3.77) Modus ponens: $p \land (p \Rightarrow q) \Rightarrow q$	ThmA with ThmB
Modus ponens inference rule: ("Implication elimination" rule) $\xrightarrow{P \Rightarrow Q} \xrightarrow{P} \Rightarrow$ -Elim $\frac{f: A \rightarrow B}{(f:x): B} \xrightarrow{x: A}$ Fct. app.	• If <i>ThmB</i> gives rise to an equality/equivalence $L = R$: Rewrite <i>ThmA</i> with $L \mapsto R$
("Implication elimination" rule) $Q \Rightarrow$ -Elim $(f x) : B$ Pet. app.	• E.g.: "Instantiation" (9.13) with "Implication via \wedge " ` $(p \Rightarrow q) = (p \land q \equiv q)$ `
Applying implication theorems: A proof for $P \Rightarrow Q$ can be used as a recipe for turning a proof for P into a proof for Q	The theorem $(\forall x \bullet P) \Rightarrow P[x \coloneqq E]$ "Instantiation" (9.13) rewrites via the rule $p \Rightarrow q \Rightarrow p \equiv p \land q$ (from "Implication via \land " (3.60=))
$\begin{array}{c} \text{for turning a proof for } P \text{ into a proof for } Q. \end{array}$	to $(\forall x \bullet P) \equiv (\forall x \bullet P) \land P[x := E],$
$\subseteq \langle \text{ "Theorem 1" } P \Rightarrow (Q_1 \subseteq Q_2) \rangle \text{ with "Theorem 2" } P \rangle$	which instantiated with $x + 1 > x$ for P and y for E to:
Q2	$(\forall x \bullet x+1 > x) \equiv (\forall x \bullet x+1 > x) \land (x+1 > x)[x \coloneqq y]$
Theorem "Left-monotonicity of \wedge ": $(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r))$	In LADM, this substitution can be implicitly applied:
$(\forall x \bullet x + 1 > x) \land y + 1 > y$	$(\forall x \bullet x + 1 > x)$ = ("Instantiation" (9.13) with "Implication via \" (3.60=))
$\Rightarrow \langle \text{"Left-monotonicity of } \land \text{" (4.3) with "Instantiation" (9.13)} \rangle$ $(y+1)+1 > y+1 \land y+1 > y$	$(\forall x \bullet x + 1 > x) \land y + 1 > y$
	(CALCCHECK need it explicit — see the next slide.)

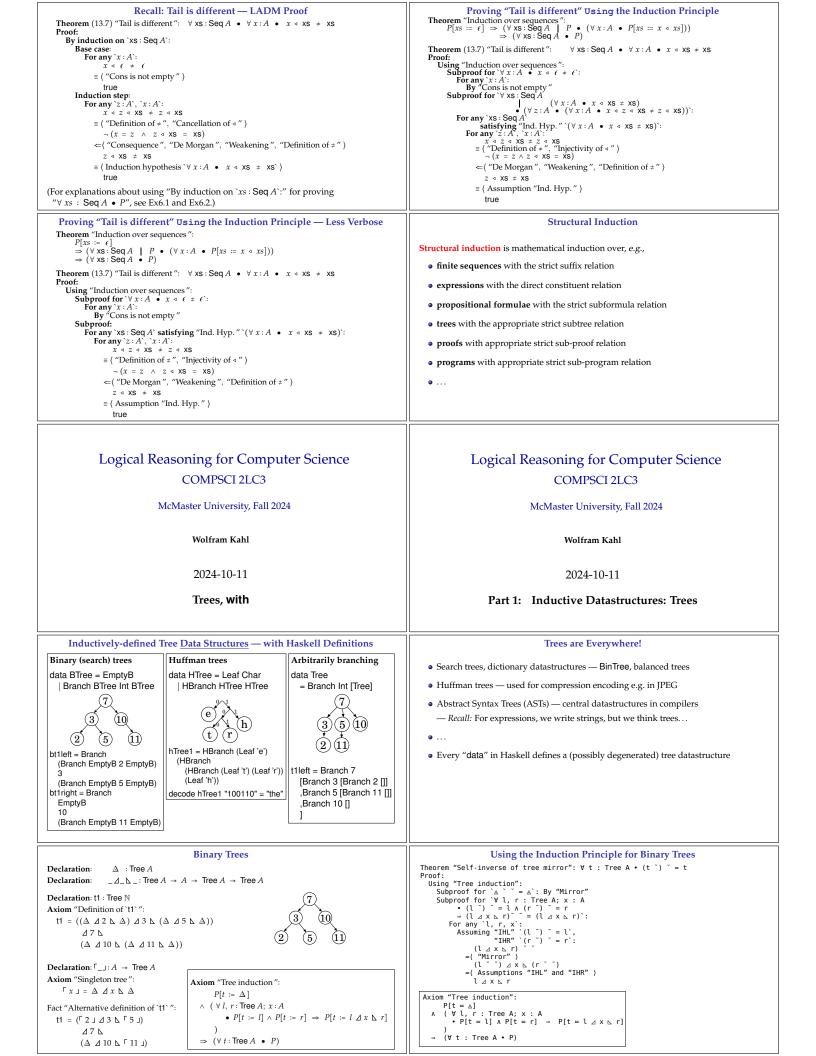
with₃: Rewriting Theorems before Rewriting **Using Instantiation for** ∀ ThmA with ThmB (9.13) Instantiation: $(\forall x \bullet P) \Rightarrow P[x \coloneqq E]$ • If *ThmB* gives rise to an equality/equivalence L = R: Rewrite *ThmA* with $L \mapsto R$ A sharp version of Instantiation obtained via (3.60): $(\forall x \bullet P) \equiv (\forall x \bullet P) \land P[x \coloneqq E]$ "Instantiation" (9.13) with "Implication via \wedge " $(p \Rightarrow q) = (p \land q \equiv q)$ • E.g.: **Theorem**: $(\forall x : \mathbb{Z} \bullet x < x + 1) \Rightarrow y < y + 2$ Proof: **The theorem** $(\forall x \bullet P) \Rightarrow P[x \coloneqq E]$ "Instantiation" (9.13) $(\forall x : \mathbb{Z} \bullet x < x + 1)$ rewrites via the rule $p \Rightarrow q \mapsto p \equiv p \land q$ (from "Implication via ∧" (3.60=)) \equiv ("Instantiation" (9.13) with "Definition of \Rightarrow via \land " (3.60) — explicit substitution needed!) to $(\forall x \bullet P) \equiv (\forall x \bullet P) \land P[x \coloneqq E],$ $(\forall x : \mathbb{Z} \bullet x < x + 1) \land (x < x + 1)[x := y + 1]$ which can be used right-to-left⁺ as rewrite rule $(\forall x \bullet P) \land P[x \coloneqq E] \mapsto (\forall x \bullet P)$ \equiv (Substitution, Fact 1 + 1 = 2) and instantiated with x + 1 > x for P and y for E to: $(\forall x : \mathbb{Z} \bullet x < x + 1) \land y + 1 < y + 2$ $(\forall x \bullet x + 1 > x) \land (x + 1 > x)[x \coloneqq y] \quad \mapsto \quad (\forall x \bullet x + 1 > x)$ \Rightarrow ("Monotonicity of \land " with "Instantiation ") $(x < x + 1)[x := y] \land y + 1 < y + 2$ $(\forall x : \mathbb{Z} \bullet x < x + 1)$ ≡ (Substitution) \equiv ("Instantiation" (9.13) with "Implication via \wedge " (3.60 =) — explicit substitution needed!) $y < y + 1 \land y + 1 < y + 2$ $(\forall x : \mathbb{Z} \bullet x < x + 1) \land (x < x + 1)[x := y + 1]$ \Rightarrow ("Transitivity of <") ⁺ Trying this left-to-right would not gain an instantiation for E from the matching of $(\forall x \bullet P)$ against y < y + 2 $(\forall x \bullet x + 1 > x).$ **Theorems and Universal Quantification Implicit Universal Quantification in Theorems 1** (9.16) **Metatheorem**: *P* is a theorem iff $(\forall x \bullet P)$ is a theorem. (9.16) **Metatheorem**: *P* is a theorem iff $(\forall x \bullet P)$ is a theorem. This is another justification for implicit use of "Instantiation" (9.13) (If proving "x + 1 > x" is considered to *really mean* proving " $\forall x \bullet x + 1 > x$ ", then the x in $(\forall x \bullet P) \Rightarrow P[x \coloneqq E]:$ "x + 1 > x" is called *implicitly universally quantified*.) **Theorem:** $(\forall x : \mathbb{Z} \bullet x < x + 1) \Rightarrow y < y + 2$ **Proof method:** To prove $(\forall x \bullet P)$, Proof: we prove P for arbitrary x. Assuming (1) $\forall x : \mathbb{Z} \bullet x < x + 1$: That is really a prose version of the following inference rule: < (Assumption (1) — implicit instantiation with y for E) $\frac{P}{\forall x \bullet P} \quad \forall \text{-Intro} \quad (\text{prov. } x \text{ not free in assumptions})$ y + 1< (Assumption (1) — implicit instantiation with y + 1 for E) In CALCCHECK: y + 1 + 1• Proving $(\forall v : \mathbb{N} \bullet P)$: For any ' $v : \mathbb{N}'$: (Non-local assumptions $= \langle Fact 1 + 1 = 2 \rangle$ Proof for P with free v are not usable.) y + 2Using "For any" for "Proof by Generalisation" **Implicit Universal Quantification in Theorems 2** In CALCCHECK: (9.16) Metatheorem: *P* is a theorem iff $(\forall x \bullet P)$ is a theorem. For any ' $v : \mathbb{N}'$: • Proving $(\forall v : \mathbb{N} \bullet P)$: Proof for P **LADM Proof method:** To prove $(\forall x \mid R \bullet P)$, we prove *P* for arbitrary *x* in range *R*. **Proving** $\forall x : \mathbb{N} \bullet x < x + 1$: That is: • Assume *R* to prove *P* (and assume nothing else that mentions *x*) For any $x : \mathbb{N}$: • This proves $R \Rightarrow P$ x < x + 1 \equiv (Identity of +) • Then, by (9.16), $(\forall x \bullet R \Rightarrow P)$ is a theorem. x+0 < x+1• With (9.2) Trading for \forall , this is transformed into ($\forall x \mid R \bullet P$). \equiv (Cancellation of +) In CALCCHECK: 0 < 1 • Proving $(\forall v : \mathbb{N} \bullet P)$: For any ' $v : \mathbb{N}'$: = (Fact `1 = suc 0`) Proof for P $0< {\rm suc} \; 0$ **For any** ' $v : \mathbb{N}$ ' satisfying '*R*': \equiv (Zero is less than successor) • Proving $(\forall v : \mathbb{N} \mid R \bullet P)$: Proof for P using Assumption 'R' true Using "For any ... satisfying" for "Proof by Generalisation" **Combined Quantification Examples** In CALCCHECK: • "There is a least integer." • Proving $(\forall v : \mathbb{N} \mid R \bullet P)$: For any ' $v : \mathbb{N}$ ' satisfying '*R*': • "There exists an integer *b* such that every integer *n* is at least *b*". Proof for P using Assumption 'R' • "There exists an integer *b* such that for every integer *n*, we have $b \le n$ ". **Proving** $\forall x : \mathbb{N} \mid x < 2 \bullet x < 3$: $(\exists b : \mathbb{Z} \bullet (\forall n : \mathbb{Z} \bullet b \le n))$ For any $x : \mathbb{N}$ satisfying x < 2: x • " π can be enclosed within rational bounds that are less than any ε apart" < $\langle Assumption x < 2 \rangle$ • "For every positive real number ε, there are rational numbers r and s with 2 $r < s < r + \varepsilon$, such that $r < \pi < s'$ < (Fact `2 < 3`) $(\forall \varepsilon : \mathbb{R} \mid 0 < \varepsilon$ 3 • $(\exists r, s : \mathbb{Q} \mid r < s < r + \varepsilon \bullet r < \pi < s))$ • " $f : \mathbb{R} \to \mathbb{R}$ is continuous" _ Exercise! **∃-Introduction** Using 3-Introduction for "Proof by Example" (9.28) \exists -Introduction: $P[x := E] \Rightarrow (\exists x \bullet P)$ $(\forall x \bullet P) \Rightarrow P[x \coloneqq E]$ Recall: (9.13) Instantiation: An expression *E* with $P[x \coloneqq E]$ is called a "**witness**" of $(\exists x \bullet P)$. $P[x \coloneqq E] \quad \Rightarrow \quad (\exists x \bullet P)$ **Dual:** (9.28) ∃-Introduction: Proving an existential quantification via 3-Introduction requires "exhibiting a witness". An expression *E* with P[x := E] is called a "**witness**" of $(\exists x \bullet P)$. Proving an existential quantification via 3-Introduction requires "exhibiting a witness". $(\exists x : \mathbb{N} \bullet x \cdot x < x + x)$ \Leftarrow (\exists -Introduction) Inference rule: $(x \cdot x < x + x)[x \coloneqq 1]$ $\frac{P[x \coloneqq E]}{\exists x \bullet P} \exists \text{-Intro}$ $\forall \; x \; \bullet \; P$ = (Substitution) $P[x := E] \quad \forall \text{-Elim}$ $1 \cdot 1 < 1 + 1$ true

$ \begin{aligned} \ g_{i} \ _{i} \ = (g_{i} + g_{i} + g_{i}) \\ (g_{i} + g_{i}) \\ (g_{i} + g_{i}) \\ (g_{i} + g_$	Using 3-Introduction for "Proof by Counter-Example"	
$\frac{(12 + 1 + 1 + 2 + 2 + 3)}{(12 + 1 + 1 + 2 + 1)}$ $\frac{(12 + 1 + 1 + 2 + 2 + 3)}{(12 + 1 + 2 + 2 + 2)}$ $\frac{(12 + 1 + 2 + 2 + 2)}{(12 + 1 + 2 + 2 + 2)}$ $\frac{(12 + 1 + 2 + 2 + 2)}{(12 + 1 + 2 + 2 + 2)}$ $\frac{(12 + 1 + 2 + 2 + 2)}{(12 + 1 + 2 + 2)}$ $\frac{(12 + 1 + 2 + 2 + 2)}{(12 + 1 + 2 + 2)}$ $\frac{(12 + 1 + 2 + 2 + 2)}{(12 + 1 + 2 + 2)}$ $\frac{(12 + 1 + 2 + 2 + 2)}{(12 + 1 + 2 + 2)}$ $\frac{(12 + 1 + 2 + 2 + 2)}{(12 + 1 + 2 + 2)}$ $\frac{(12 + 1 + 2 + 2 + 2)}{(12 + 1 + 2 + 2)}$ $\frac{(12 + 1 + 2 + 2 + 2)}{(12 + 1 + 2 + 2)}$ $\frac{(12 + 1 + 2 + 2)}{(12 + 1 + 2 + 2)}$ $(12 + 1 + 2 + $	$(9.28) \exists \text{-Introduction:} \ P[x \coloneqq E] \Rightarrow (\exists x \bullet P)$	Logical Reasoning for Computer Science
$ \frac{(2x)(1 + (x + x + x))}{(2x)(1 + (x + x))} $ $ \frac{(2x)(1 + (x + x + x))}{(2x)(1 + (x + x))} $ $ \frac{(2x)(1 + (x + x))}{(2x)(1 + (x + x))} $ $ (2x)(1 + $	$\neg(\forall x:\mathbb{N} \bullet x + x < x \cdot x)$	
$ \frac{1}{(2 + 1 + 2 + 2)} = \frac{1}{(2 + 1 + 2)} =$		
$ \frac{(c + c + c + c)(b^{-1})}{(c + c + c + c)(b^{-1})} + \frac{(c + c + c + c)(c^{-1})}{(c + c + c + c)} + \frac{(c + c + c + c)(c^{-1})}{(c + c + c + c)} + \frac{(c + c + c + c)(c^{-1})}{(c + c + c + c)(c^{-1})} + \frac{(c + c + c)(c^{-1})}{(c + c + c + c)(c^{-1})} + \frac{(c + c + c)(c^{-1})}{(c + c + c + c)(c^{-1})} + \frac{(c + c + c)(c^{-1})}{(c + c + c + c)(c^{-1})} + \frac{(c + c + c)(c^{-1})}{(c + c + c + c)(c^{-1})} + \frac{(c + c + c)(c^{-1})}{(c + c + c + c)(c^{-1})} + \frac{(c + c + c)(c^{-1})}{(c + c + c + c)(c^{-1})} + \frac{(c + c + c)(c^{-1})}{(c + c + c + c)(c^{-1})} + \frac{(c + c + c)(c^{-1})}{(c + c + c + c)(c^{-1})} + \frac{(c + c + c)(c^{-1})}{(c + c + c + c)(c^{-1})} + \frac{(c + c + c)(c^{-1})}{(c + c + c + c)(c^{-$		McMaster University, Fall 2024
$\frac{1}{(2+2)} = \frac{1}{(2+2)} = $		Walfrom Kahl
$ \frac{1}{2} \left[\frac{1}{2} \right] $ $ = \left[\frac{1}{2} \left[\frac{1}{$	\equiv (Substitution)	woirram Kani
$ \begin{array}{c} \frac{des}{ds} \\ \frac{ds}{ds} \\ \frac{ds}{ds}$		2024 10 01
rel (space different Winner I = (space different Winner		2024-10-01
Vincese(2.50) Matcheorem Winese: $(z + 1 x + 2m)(x', \mathbb{C})$ hot: $(z + 1 x + 7) = 0$ $(z $		Part 1: Assuming witness, Monotonicity of \forall and \exists
$ \frac{929}{(1 + 1)^{1 + 2} - 2} = 4 \text{ arrow} (1 + 2)^{1 + 2} + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $	true	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Witnesses	LADM Theory of Integers — Axioms and Some Theorems
There are Wheney'' ($\exists 1 k + l \rangle = Q + (\forall x + k, k = Q)$ proc. $\forall z \in Q(x')$ ($\exists 1 k + l \rangle = Q$ ($\exists 2 k + l \rangle = Q$ ($\exists 1 k + l \rangle = Q$ ($\exists 3 k = l \rangle = d$ ($\exists 4 k = l \rangle = d$ ($\exists 4 $	(9.30v) Metatheorem Witness : If $\neg occurs('x', 'Q')$, then:	(15.1) Axiom, Associativity: $(a + b) + c = a + (b + c)$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
$ \frac{(q, (q))}{(q, (q))} \frac{(q, (q))}{(q, (q)$		
$ \frac{(z + k \cdot k)^{2} - (z + k \cdot k)^{2} - (z + k \cdot k)^{2} + (z + k)^{2} + (z + k \cdot k)^{2} + (z + k)^{2} + (z + k)^{2} + ($		(15.3) Axiom, Additive identity: $0 + a = a$
= (359) Maternal implication $y = y = -y = (y) (y) (y = 1, (x - y)) (y) = (y = 1, (y = 1, (y - y)) (y) = (y = 1, (y = 1, (y - y)) (y) = (y = 1, (y = 1, (y - y)) (y) = (y = 1, (y = 1, (y - y)) (y) = (y = 1, (y = 1, (y - y)) (y) = (y = 1, (y = 1, (y - y)) (y) = (y = 1, (y = 1, (y - y)) (y) = (y = 1, (y = 1, (y - y)) (y) = (y = 1, (y = 1, (y - y)) (y) = (y = 1, (y = 1, (y - y)) (y) = (y = 1, (y = 1, (y = 1, (y = 1, (y - y))) (y) = (y = 1, (y $		
$ \begin{array}{c} (4x) - (4x, p) \cdot (2 \\ (4x - q, k, p) \cdot (2 \\ (4x - q, k, p) - (2) \\ (4x - q, k, p) - (2) \\ (4x - q, k, p - q) \\ (4x - q, k, q - $		(15.5) Axiom, Distributivity: $a \cdot (b + c) = a \cdot b + a \cdot c$
$ \frac{(123)}{(124 - (24.4)^{1/2}(1))} = \frac{(124)}{(124 - (24.4)^{1/2$		
$ (150) \text{ Unique malti dentity:} \\ (151) \text{ Unique malti dentity:} \\ (152) \text{ Unique malti dentity:} \\ (154) \text{ Unique malti dentity:} \\ (154) \text{ Unique malti dentity:} \\ (154) \text{ Unique malti dentity:} \\ (156) \text{ Additive forces:} \\ (156) \text{ Unique malti dentity:} \\ (156) $		
$\frac{1}{(1 + x + k + 0)} = (1 + 2) + (1 + 1) + $		
The last line is, by Meadheven (916), a theorem II ($\mathbb{R} \wedge \mathbb{P} = \mathbb{Q}$ is where (136) "Concellation of +1 = b = a + c = b = c "Witness", (3 + 1 R + 0 = 0) (3		
$\frac{p_{1}}{p_{1}} = \frac{p_{2}}{p_{1}} = \frac{p_{2}}{p_{2}} = \frac{p_{2}}{p$		
$\begin{aligned} & \lim_{n \to \infty} \frac{1}{n} \lim_{n$		
$\begin{aligned} & \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	Using "Mutual implication":	Using "Mutual implication":
$\frac{1}{16} \frac{1}{16} \frac$	Assuming `b = c`: a + b	(15.6) Additive Inverse Assuming $b = c^{2}$:
Solution $(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	a + c	$(\exists x \bullet x + a = 0) = (\text{Assumption `b} = c`)$
Witness?: $ \begin{aligned} (x = 1, x = 1, x = 0, y = 1, z = 1$	$a + b = a + c \rightarrow b = c$	Subproof for `a + b = a + c \Rightarrow b = c`: a + b = a + c \Rightarrow b = c
$\frac{(2x - P) - k}{(2x + a + 0)} + \frac{(2x - P) - k}{(2x + a + 0)$	$(\exists x : \mathbb{Z} \cdot x + a = 0) \Rightarrow a + b = a + c \Rightarrow b = c$	$= \{ \text{``Left-identity of } \Rightarrow \text{``, ``Additive inverse'' } \}$ $= \{ \text{``Left-identity of } \Rightarrow \text{``, ``Additive inverse'' } \}$ $= \{ \text{``Left-identity of } \Rightarrow \text{``, ``Additive inverse'' } \}$
$ \begin{array}{rcl} prov. \neg cctrd(x', y', Q) & box h_m = x + y = c + c + c + c + c + c + c + c + c + c$	Proof for this:	
$ (15.6) Additive Inverse: (3x \times x + a = 0) + \frac{1}{(4 \times supplice)} (x + a = a^{-}) + \frac{1}{(4$		R (prov r not ^D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(15.6) Additive Inverse: 0 + b	free in K , $0 + b$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$(\exists x \bullet x + u = 0) \qquad \qquad x + a + b$	x + a + b
$\frac{d + p = d + C}{d} = \frac{p = C}{d} = \frac{p + C}{d} = p + $	(15.8) Cancellation of +: $x + a + c = (Assumption \ x + a = 0)$	=(Assumption $x + a = 0$)
Assuming witness $\chi^{(:)}_{1}$ tipe/ ¹ satisfying $P^{:}$ • introduces the bound variable 'x' • makes Pavailable as assumption to the contained proof. • This proof for $P = c + a + b = a + C^{:}$ • introduces the bound variable 'x' • introduces to prove (1x : type • P) • This can be understood as providing 'belinination: It uses hind to discharge the anteccdent (2x : type • P) • This can be understood as providing 'belinination: It uses hind to discharge the anteccdent (2x : type • P) • This can be understood as providing 'belinination: It uses hind to discharge the anteccdent (2x : type • P) • antitonic iff $x \le y \Rightarrow f x \le f y$, • antitonic iff $x \le y \Rightarrow f x \le f y$, (42) Left-Monotonicity of 'x: $(p \Rightarrow q) \Rightarrow (p \Rightarrow r) = q \land r$ Autionicity of -: $(p \Rightarrow q) \Rightarrow (r \Rightarrow q) \Rightarrow (r \Rightarrow q)$ Left-Antitonicity of x : $(p \Rightarrow q) \Rightarrow (r \Rightarrow q) \Rightarrow (r \Rightarrow q)$ Left-Antitonicity of x : $(p \Rightarrow q) \Rightarrow (r \Rightarrow q) \Rightarrow (r \Rightarrow q)$ Left-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow q) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow q) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow q) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow q) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow q) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of $(\le r)$; $Z \Rightarrow B$: • Left-Antitonicity of $(\le r)$; $Z \Rightarrow B$: • Left-Antitonicity of $(\le r)$; $Z \Rightarrow B$: • Left-Antitonicity of $(\le r)$; $(p \Rightarrow q) \Rightarrow (p \le r)$		=("Identity of +")
Assuming winess $x(: type)^{1}$ satisfying 'P : • introduces the bound variable 'x' • makes P available as assumption the contained proof. • This proves $(3x: type \cdot P) \Rightarrow R$ if the contained proof proves R . • introduces the bound variable 'x' • introduces the prove $(3x: type \cdot P)$ • This then proves R if the contained proof goal R . • This then proves R if the contained proof goal R . • This then proves R if the contained proof goal R . • This called • monotonici iff $x \le y = fx \le fy$, (4.2) Left-Monotonicity With Respect To \Rightarrow Left \ge be an order on T , and left : $T \to T$ be a function on T . Then f is called • monotonici iff $x \le y = fx \le fy$, (4.2) Left-Monotonicity of x : $(p \Rightarrow q) \Rightarrow (p \times r) \Rightarrow q \wedge r$ Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (p \times r) \Rightarrow q \wedge r$ Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (p \times r) \Rightarrow q \wedge r$ (4.3) Left-Monotonicity of \wedge : $(p \Rightarrow q) \Rightarrow (p \times r) \Rightarrow q \wedge r$ Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Guarded Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Guarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow$	New Proof Strutures: Assuming witness	
• introduces the bound variable 'x' • makes <i>P</i> available as assumption to the contained proof. This proves $[\exists x: iype^{+}P] \Rightarrow R$ if the contained proof proves <i>R</i> , • introduces the bound variable 'x' • introduces the proves <i>R</i> (with the additional assumption to the contained proof. • introduces to prove ($\exists x: iype^{+}P$) • This the proves $\{x: iype^{+}P\}$ • This on the understood as providing 3-elimination: If the contained proof proves <i>R</i> (with the additional assumption P) • This can be understood as providing 3-elimination: If the scale understood as providing 4-elimination: If the scale unde	Assuming witness `x{ : type} [?] ` satisfying `P` :	Using "Mutual implication":
a index <i>p</i> : Available as assumption to the contained proof. b index <i>p</i> : Available as assumption to the contained proof. a summary introduces the bound variable 'x' b introduces the proves (3 x: ippe 'P) = (4 x: ippe 'P) = (7 x; P) = (4 x: ippe 'P) = (7 x; P) = (7 x; P	• introduces the bound variable 'x'	
$\frac{1}{1} \text{ the contained proof proves } R, \qquad $		=/ Accumption $h = c$
Assuming witness $x(: type)^{1}$ satisfying P by hint: ($\exists x \cdot P$) R introduces the bound variable 'x' makes P available as assumption to the contained proof. makes P available as assumption to the contained proof. This there the additional assumption P) This the proves R ($\forall the the additional assumption P)This can be understood as providing 3-elimination:It uses hint to discharge the antecedent (\exists x : type \cdot P)and then has inferred proof goal R.Recall: Monotonicity With Respect To \RightarrowLet _s_b be an order on T, and let f: T \to T be a function on T. Then f is calledmonotonic iff x \le y \Rightarrow fx \le fy,antitonic iff x \le y \Rightarrow fx \le fy,antitonic iff x \le y \Rightarrow fx \le fy,antitonic iff x \le y \Rightarrow fy \le fx.(42) Left-Monotonicity of \land: (p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)Antitonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotonicity of \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)Right-Monotoni$		× / a+c
• introduces the bound variable 'x' K (prov. x not free in R, assumptions) • introduces the bound variable 'x' (prov. x not free in R, assumptions) • introduces the prove (3 x: type • P) • This then proves R (if the contained proof proves R (if the additional assumption P) • This can be understood as providing 3-elimination: It uses hint to discharge the antecedent (3 x: type • P) and then has infered proof goal R. Recall: Monotonicity With Respect To = Let \leq_{-} be an order on T, and let $f: T \rightarrow T$ be a function on T. Then f is called • monotonic iff $x \leq y \Rightarrow fx \leq fy$, • antitonic iff $x \leq y \Rightarrow fx \leq fy$, (4.2) Left-Monotonicity of \sim : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$ (4.3) Left-Monotonicity of \sim : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) = (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity o	Assuming witness ` x {: $type$ }?` satisfying `P` by hint : $(\exists x \bullet P) \dot{R} = Flim$	here WA delta the second and the
$\begin{array}{cccc} \text{makes } P \text{ available as assumption to the contained proof.} & \text{maker } P \text{ assumptions} \\ \textbf{intrinecds to prove } (3 : : typ \bullet P) & \textbf{k} \\ \textbf{intrinecds to prove } (3 : : typ \bullet P) \\ \textbf{This then proves } R \\ \textbf{if the contained proof proves } R \\ \textbf{(with the additional assumption } P \\ \textbf{This can be understood as providing 3-elimination:} \\ \textbf{t uses hint to discharge the antecedent (3 : : typ \bullet P) \\ \textbf{and then has inferred proof goal R.} \\ \textbf{Recall: Monotonicity With Respect To \Rightarrow \\ \textbf{Let } \{o} \text{ be an order on } T, \text{ and } \text{let } : T \to T \text{ be a function on } T. \text{ Then } f \text{ is called} \\ \textbf{monotonic iff } x \le y \Rightarrow f x \le f y , \\ \textbf{antitonic iff } x \le y \Rightarrow f y \le f x . \\ \textbf{(4.2) Left-Monotonicity of \checkmark: (p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r) \\ \textbf{(4.3) Left-Monotonicity of \land: (p \Rightarrow q) \Rightarrow (p \Rightarrow q) \Rightarrow (p \lor q \Rightarrow q) \\ \textbf{Let } \{o} \text{ be an order on } T, \text{ and } \text{let } f \Rightarrow (p \Rightarrow q) \Rightarrow (p \Rightarrow q) \Rightarrow (p \lor q \Rightarrow q) \\ \textbf{Recall: Monotonicity of \land: (p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r \\ \textbf{Antitionicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow q) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow q) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \leftarrow q) \Rightarrow (p \lor r) \Rightarrow (p \Rightarrow r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \lor r) \Rightarrow (p \Rightarrow r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \lor q \Rightarrow q \land r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \lor q \Rightarrow r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \lor q \Rightarrow r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \lor q \Rightarrow r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \lor q \Rightarrow r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \lor q \Rightarrow r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \lor q \Rightarrow r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \lor q \Rightarrow r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \lor q \Rightarrow r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \Rightarrow q) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \land q \Rightarrow r) \\ \textbf{Recall } \text{Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (p \land q) \\ \textbf$	K (prov. x not	Assuming a + b = a + C : b
$\begin{array}{c} \text{ In fitte here proves } R \\ \text{ if the contained proof proves } R \\ \text{ if the contained proof proves } R \\ \text{ (with the additional assumption } P \\ \text{ This can be understood as providing 3-elimination:} \\ \text{ It uses limit to discharge the antecedent } (3 x : type \cdot P) \\ \text{ and then has inferred proof goal } R. \\ \hline \text{ Recall: Monotonicity With Respect To } \Rightarrow \\ \text{ Let } \leq_{-} \text{ be an order on } T, \text{ and let } f: T \rightarrow T \text{ be a function on } T. \text{ Then } f \text{ is called} \\ \text{ • monotonic iff } x \leq y \Rightarrow f x \leq f y , \\ \text{ • antitonic } \text{ iff } x \leq y \Rightarrow f x \leq f y , \\ \text{ • antitonic } \text{ iff } x \leq y \Rightarrow f x \leq f y , \\ \text{ • antitonicity of } \forall \cdot (p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r) \\ \hline \text{ (4.3) Left-Monotonicity of } \land (p \Rightarrow q) \Rightarrow (p \Rightarrow q) \Rightarrow (p \Rightarrow r) \Rightarrow q \land r \\ \text{ Antitonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r) \\ \text{ Right-Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (r \Rightarrow q) \\ \text{ Right-Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (r \Rightarrow q) \\ \text{ Guarded Right-Monotonicity of } \Rightarrow: (p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q) \\ \text{ Guarded Right-Monotonicity of } \Rightarrow: (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q) \\ \text{ Free in } R, \\ \text{ assumptions } \Rightarrow (p \Rightarrow x \land x = a + b^{-}) \\ \text{ assumption } x + a = b^{-} \\ \text{ (Iso that the additional assumption } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = ("Identity of } x + a = b^{-}) \\ \text{ = (Identity of } x + a + b^{-}) \\ \text{ = (Identity of } x + a + b^{-}) \\ \text{ = (Identity of } x + a + b^{-}) \\ \text{ = (Identity of } x + a + b^{-}) \\ \text{ = (Identity of } x + a + b^{-}) \\ = (Identity o$	• makes <i>P</i> available as assumption to the contained proof. assumptions)	$\frac{(-1)}{p} = -E \lim_{n \to \infty} 0 + b$
Init matrix if the contained proof proves R (with the additional assumption P)assumption P (with the additional assumption P)Image: The contained proof proves R (with the additional assumption P)assumption (a + b = a + c') (x + a + c) = (Assumption (a + b = a + c')) (x + a + c) = (Assumption (a + b + a + c) (b + c) = ("Identity of (a + c)) (b + c) = ("Identity of +") = ("Identity of +") = ("Identity of = (Base (a + b + a + c)) (b + c) (c)Recall: Monotonicity of v: (f + a + b = a + c + formation (b + c) + formation (c) (f + c) + formation (c) + formation (c) (f + c) + forma		(prov. x not) = (Assumption x + a = 0)
(Assumption 'x + a = 0') $0 + c$ = ("Identity of x' + a = 0') $0 + c$ = ("Identity of +") c(Assumption 'x + a = 0') $0 + c$ = ("Identity of +") c(Assumption 'x + a = 0') $0 + c$ = ("Identity of +") cRecall: Monotonicity With Respect To \Rightarrow It uses hint to discharge the antecedent ($\exists x : typ \cdot P$) and then has inferred proof goal R.Transitivity Laws are Monotonicity LawsNotice: The following two "are" transitivity of \Rightarrow : ($p \Rightarrow q) \Rightarrow fx \le fy$, • antitonic iff $x \le y \Rightarrow fx \le fy$, • antitonic iff $x \le y \Rightarrow fy \le fx$.(4.2)Left-Monotonicity of \vee : ($p \Rightarrow q$) $\Rightarrow (p \lor r) \Rightarrow q \lor r$ (4.3)The fixed and the colspan="2">This works also for other orders — with general monotonicity: Let • $_s_1_$ be an order on T_1 , and $_s_2_$ be an order on T_2 , • $f: T_1 \to T_2$ be a function from T_1 to T_2 .Then fi is called(4.2)Left-Antitonicity of \land : ($p \Rightarrow q$) $\Rightarrow (p \Rightarrow r) \Rightarrow q \land r$ ($f: T_1 \to T_2$ be a function from T_1 to T_2 .(4.3)Left-Monotonicity of \land : ($p \Rightarrow q$) $\Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : ($p \Rightarrow q$) $\Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : ($p \Rightarrow q$) $\Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Right-Monotonicity of \Rightarrow : ($p \Rightarrow q$) $\Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Guarded Right-Monotonicity of \Rightarrow : ($p \Rightarrow q$)) $\Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Transitivity of \le is antitonicity of \le : ($p \Rightarrow q$) $\Rightarrow (p \le r)$ The fit called • monotonicity of \Rightarrow : ($p \Rightarrow q$) $\Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ The fit called • monotonicity of \Rightarrow : ($p \Rightarrow q$) $\Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Left-Antitonicity	if the contained proof proves R	
It uses hint to discharge the antecedent $(\exists x : type \cdot P)$ and then has inferred proof goal R. $=($ "Identity of +") cRecall: Monotonicity With Respect To \Rightarrow Transitivity Laws are Monotonicity LawsLet \leq_{\sim} be an order on T, and let $f: T \to T$ be a function on T. Then f is calledNotice: The following two "are" transitivity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (f x \leq fy)$, \bullet antitonic iff $x \leq y \Rightarrow f x \leq f y$, \bullet antitonic iff $x \leq y \Rightarrow f y \leq f x$.Transitivity Laws are Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (p \lor r) \Rightarrow (p \Rightarrow r)$ \bullet Right-Monotonicity of \diamond : $(p \Rightarrow q) \Rightarrow (p \lor r) \Rightarrow q \lor r)$ \bullet This works also for other orders — with general monotonicity: Let $\bullet \leq_{1_{-}}$ be an order on T_1 , and $\leq_{2_{-}}$ be an order on T_2 , $\bullet f: T_1 \to T_2$ be a function from T_1 to T_2 . Then f is called \bullet monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Then f is called $\bullet = \leq_{1_{-}}$ be an order on T_1 , and $\leq_{2_{-}}$ be an order on T_2 , $\bullet f: T_1 \to T_2$ be a function from T_1 to T_2 . Then f is called \bullet monotonic iff $x \le_1 y \Rightarrow f x \le_2 f y$, \bullet antitonic iff $x \le_1 y \Rightarrow f x \le_2 f y$.Guarded Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Transitivity of \leq is antitonicity of $(\leq : r) : \mathbb{Z} \to \mathbb{B}$: \bullet Left-Antitonicity of \leq : $(p \le q) \Rightarrow (q \le r) \Rightarrow (p \le r)$	· · · · ·	=(Assumption $x + a = 0$)
Let \leq be an order on <i>T</i> , and let $f: T \rightarrow T$ be a function on <i>T</i> . Then <i>f</i> is called • monotonic iff $x \leq y \Rightarrow fx \leq fy$, • antitonic iff $x \leq y \Rightarrow fx \leq fy$, • antitonic iff $x \leq y \Rightarrow fy \leq fx$. (4.2) Left-Monotonicity of \vee : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$ (4.3) Left-Monotonicity of \wedge : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \land r)$ Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \land r)$ Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (r \Rightarrow q)$ Guarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ $f: T_1 \rightarrow T_2$ be a function from T_1 to T_2 . Then <i>f</i> is called • monotonic iff $x \leq_1 y \Rightarrow fx \leq_2 fy$, • antitonic iff $x \leq_1 y \Rightarrow fy \leq_2 fx$. Transitivity of \leq is antitonicity of $(\subseteq r): \mathbb{Z} \rightarrow \mathbb{B}$: • Left-Antitonicity of \leq : $(p \leq q) \Rightarrow (q \leq r) \Rightarrow (p \leq r)$	It uses <i>hint</i> to discharge the antecedent $(\exists x : type \bullet P)$	=("Identity of +")
Let \leq_{-} be an order on T , and let $f: f \rightarrow T$ be a function on T . Then f is called • monotonic iff $x \leq y \Rightarrow f x \leq f y$, • antitonic iff $x \leq y \Rightarrow f y \leq f x$. (4.2) Left-Monotonicity of \vee : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$ (4.3) Left-Monotonicity of \wedge : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$ (4.3) Left-Monotonicity of \wedge : $(p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$ Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Left-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Guarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Left-Antitonicity of \leq : $(p \leq q) \Rightarrow (q \leq r) \Rightarrow (p \leq r)$	Recall: Monotonicity With Respect To ⇒	Transitivity Laws are Monotonicity Laws
• monotonic iff $x \le y \Rightarrow f x \le f y$, • antitonic iff $x \le y \Rightarrow f y \le f x$. (4.2) Left-Monotonicity of \lor : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$ (4.3) Left-Monotonicity of \land : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$ (4.3) Left-Monotonicity of \land : $(p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$ Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Left-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Guarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ $f = T_1 \rightarrow T_2$ be a function from T_1 to T_2 . Then f is called • monotonic iff $x \le_1 y \Rightarrow f x \le_2 f y$, • antitonic iff $x \le_1 y \Rightarrow f y \le_2 f x$. Transitivity of \le is antitonicity of $(_ r) : \mathbb{Z} \rightarrow \mathbb{B}$: • Left-Antitonicity of \le : $(p \le q) \Rightarrow (q \le r) \Rightarrow (p \le r)$	Let \leq be an order on <i>T</i> , and let $f : T \rightarrow T$ be a function on <i>T</i> . Then <i>f</i> is called	
• antitonic iff $x \le y \Rightarrow fy \le fx$. (4.2) Left-Monotonicity of \lor : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$ (4.3) Left-Monotonicity of \land : $(p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$ Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow q \land r$ Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Guarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Left-Antitonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Antitonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Cuarded Right-Monotonici		
(4.2)Left-Monotonicity of \vee : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$ (4.3)Left-Monotonicity of \wedge : $(p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$ Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow (p \Rightarrow r) \Rightarrow q \land r$ Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Left-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Guarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Left-Antitonicity of \Rightarrow : $(r \Rightarrow (p) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Left-Antitonicity of \Rightarrow : $(r \Rightarrow (p) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Left-Antitonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Left-Antitonicity of \leq : $(p \le q) \Rightarrow (q \le r) \Rightarrow (p \le r)$	5 5 5 5	• Night-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$
(4.3) Left-Monotonicity of \wedge : $(p \Rightarrow q) \Rightarrow p \wedge r \Rightarrow q \wedge r$ • $f:T_1 \rightarrow T_2$ be a function from T_1 to T_2 .Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ • $f:T_1 \rightarrow T_2$ be a function from T_1 to T_2 .Left-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ • monotonic iff $x \le 1y \Rightarrow fx \le 2fy$,Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ • Transitivity of \le is antitonic iff $x \le 1y \Rightarrow fy \le 2fx$.Guarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of \le : $(p \le q) \Rightarrow (q \le r) \Rightarrow (p \le r)$	(4.2) Left-Monotonicity of \lor : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$	
Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow \neg q \Rightarrow \neg p$ Then f is calledLeft-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ monotonic iff $x \le_1 y \Rightarrow f x \le_2 f y$,Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Then f is calledGuarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Then f is called• Interview• Interview• Interview• Interview• Left-Antitonicity of \leq : $(p \Rightarrow q) \Rightarrow (q \le r) \Rightarrow (p \le r)$	(4.3) Left-Monotonicity of \wedge : $(p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$	
Left-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ • monotonic iff $x \le_1 y \Rightarrow f x \le_2 f y$,Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ • monotonic iff $x \le_1 y \Rightarrow f y \le_2 f x$.Guarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ • Introduction iff $x \le_1 y \Rightarrow f y \le_2 f x$.Construction of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ • Left-Antitonicity of \le : $(p \le q) \Rightarrow (q \le r) \Rightarrow (p \le r)$	Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow \neg q \Rightarrow \neg p$	
Kight-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Transitivity of \leq is antitonicity of $(_\leq r) : \mathbb{Z} \to \mathbb{B}$:Guarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$ Left-Antitonicity of \leq : $(p \leq q) \Rightarrow (q \leq r) \Rightarrow (p \leq r)$	Left-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$	• monotonic iff $x \leq_1 y \Rightarrow f x \leq_2 f y$,
• Left-Antitonicity of \leq : $(p \leq q) \Rightarrow (q \leq r) \Rightarrow (p \leq r)$	Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$	• antitonic iff $x \leq_1 y \Rightarrow f y \leq_2 f x$.
	Guarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$	Transitivity of \leq is antitonitcity of $(_\leq r) : \mathbb{Z} \to \mathbb{B}$:
• Right-Monotonicity of \leq : $(p \leq q) \Rightarrow (r \leq p) \Rightarrow (r \leq q)$		
		• Right-Monotonicity of \leq : $(p \leq q) \Rightarrow (r \leq p) \Rightarrow (r \leq q)$

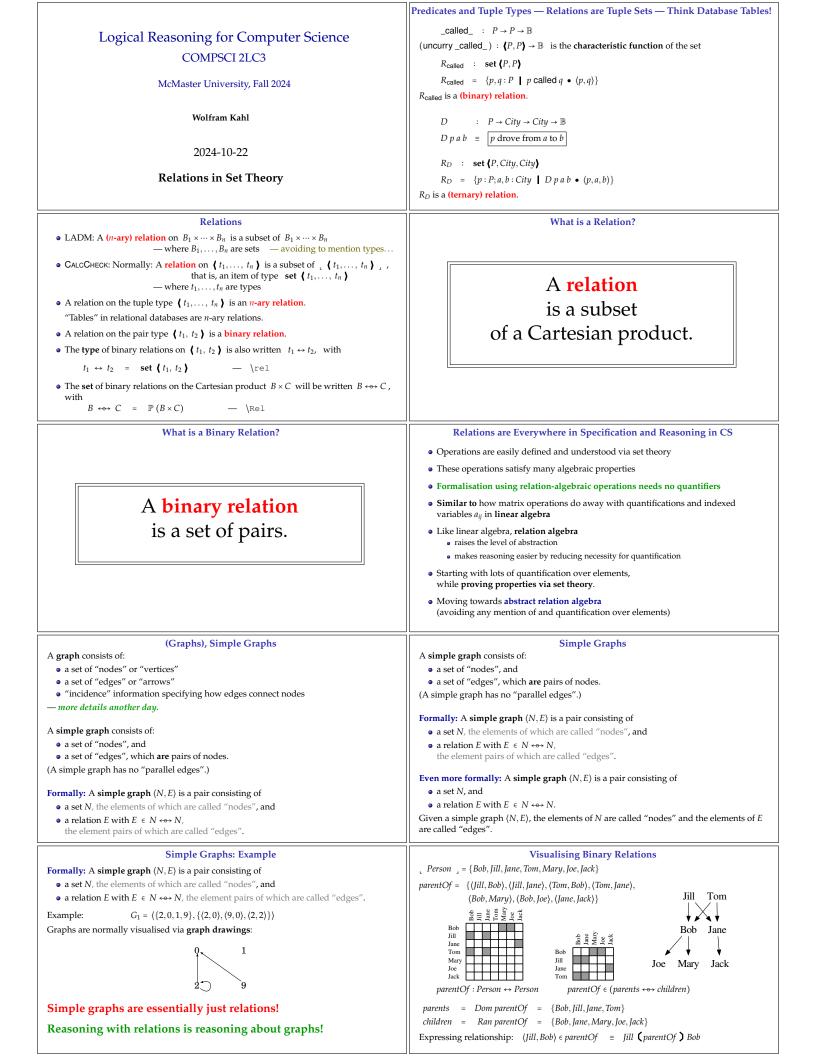
Weakening/Strengthening for \forall and \exists — "Cheap Antitonicity/Monotonicity"	Monotonicity for V
(9.10) Range weakening/strengthening for \forall : $(\forall x \mid Q \lor R \bullet P) \Rightarrow (\forall x \mid Q \bullet P)$	(9.12) Monotonicity of ∀:
(9.11) Body weakening/strengthening for \forall : $(\forall x \mid R \bullet P \land Q) \Rightarrow (\forall x \mid R \bullet P)$	$(\forall x \mid R \bullet P_1 \Rightarrow P_2) \Rightarrow ((\forall x \mid R \bullet P_1) \Rightarrow (\forall x \mid R \bullet P_2))$
(9.25) Range weakening/strengthening for $\exists : (\exists x \mid R \bullet P) \Rightarrow (\exists x \mid Q \lor R \bullet P)$	Range-Antitonicity of \forall : $(\forall x \bullet R_2 \Rightarrow R_1) \Rightarrow ((\forall x \mid R_1 \bullet P) \Rightarrow (\forall x \mid R_2 \bullet P))$
(9.26) Body weakening/strengthening for $\exists : (\exists x \mid R \bullet P) \Rightarrow (\exists x \mid R \bullet P \lor Q)$	$(\forall x \bullet R_2 \Rightarrow R_1)$ $\Rightarrow ((9.12) \text{ with shunted } (3.82a) \text{ Transitivity of } \Rightarrow)$
Recall:(9.2) Trading for \forall : $(\forall x \mid R \bullet P) \equiv (\forall x \bullet R \Rightarrow P)$ (9.19) Trading for \exists : $(\exists x \mid R \bullet P) \equiv (\exists x \bullet R \land P)$	$\Rightarrow ((9.12) \text{ while statistic (9.024) Haristivity of } \neq \gamma$ $(\forall x \bullet (R_1 \Rightarrow P) \Rightarrow (R_2 \Rightarrow P))$ $\Rightarrow ((9.12) \text{ Monotonicity of } \forall)$ $(\forall x \bullet R_1 \Rightarrow P) \Rightarrow (\forall x \bullet R_2 \Rightarrow P)$ $= ((9.2) \text{ Trading for } \forall)$ $(\forall x \mid R_1 \bullet P) \Rightarrow (\forall x \mid R_2 \bullet P)$
Monotonicity for 3	Predicate Logic Laws You Really Need To Know Already Now (8.13) Empty Range: $(\forall x \mid false \bullet P) = true$
(9.27) (Body) Monotonicity of \exists : $(\forall x \mid R \bullet P_1 \Rightarrow P_2) \Rightarrow ((\exists x \mid R \bullet P_1) \Rightarrow (\exists x \mid R \bullet P_2))$	(8.14) One-point Rule: Provided $\neg occurs('x', 'E')$, $(\forall x \mid x = E \bullet P) \equiv P[x := E]$ $(\exists x \mid x = E \bullet P) \equiv P[x := E]$
Range-Monotonicity of \exists : $(\forall x \bullet R_1 \Rightarrow R_2) \Rightarrow ((\exists x \mid R_1 \bullet P) \Rightarrow (\exists x \mid R_2 \bullet P))$	(9.17) Generalised De Morgan: $(\exists x \mid R \bullet P) \equiv \neg(\forall x \mid R \bullet \neg P)$ (9.2) Trading for \forall : $(\forall x \mid R \bullet P) \equiv (\forall x \bullet R \Rightarrow P)$ (9.4a) Trading for \forall : $(\forall x \mid Q \land R \bullet P) \equiv (\forall x \mid Q \bullet R \Rightarrow P)$ (9.19) Trading for \exists : $(\exists x \mid Q \land R \bullet P) \equiv (\exists x \bullet R \land P)$ (9.20) Trading for \exists : $(\exists x \mid Q \land R \bullet P) \equiv (\exists x \mid Q \bullet R \land P)$ (9.21) Instantiation: $(\forall x \bullet P) \Rightarrow P[x := E]$ (9.23) \exists -Introduction: $P[x := E] \Rightarrow (\exists x \bullet P)$ and correctly handle substitution, Leibniz, renaming of bound variables, monotonicity/antitonicity, For any
Sentences: Predicate Logic Formulae without Free Variables	Closed Boolean Expressions — 2018 Midterm 2
 Definition: A sentence is a Boolean expression without free variables. Expressions without free variables are also called "closed": A sentence is a closed Boolean expression. Recall: The value of an expression (in a state) only depends on its free variables. Therefore: The value of a closed expression does not depend on the state. That is, a closed Boolean expression, or sentence, either always evaluates to <i>true</i> or always evaluates to <i>false</i> In other words: A closed Boolean expression, or sentence, is either valid or a contradiction Also: For a closed Boolean expression, or sentence, φ either φ is valid or ¬φ is valid 	 Prove one of the following two theorem statements — only one is valid. (Should be easy in less than ten steps.) Theorem "M2-3A-1-yes": (∃ x : ℤ • ∀ y : ℤ • (x - 2) • y + 1 = x - 1) Theorem "M2-3A-1-no": ¬ (∃ x : ℤ • ∀ y : ℤ • (x - 2) • y + 1 = x - 1) For a closed Boolean expression, or sentence, φ, only one of φ and ¬φ can have a proof!
 This means: For a closed Boolean expression, or sentence, φ, only one of φ and ¬φ can have a proof! 	
Logical Reasoning for Computer Science COMPSCI 2LC3	Recall: Partial Correctness for Pre-Postcond. Specs in Dynamic Logic Notation • Program correctness statement in LADM (and much current use): {P} C {Q} This is called a "Hoare triple". • Postiel Correctness Magning
McMaster University, Fall 2024	 <u>Partial Correctness</u> Meaning: If command C is started in a state in which the precondition P holds then it will terminate only in states in which the postcondition Q holds.
Wolfram Kahl	• Dynamic logic notation (used in CALCCHECK): $P \Rightarrow \begin{bmatrix} C \end{bmatrix} Q$
2024-10-01 Part 2: More Command Correctness	• Assignment Axiom: - Hoare triple: $\{Q[x := E]\} x := E \{Q\}$ - Dynamic logic notation (used in CALCCHECK): $Q[x := E] \Rightarrow [x := E] Q$
Transitivity Rules for Calculational Command Correctness Reasoning	Conditional <u>Commands</u> If condition then statement
Primitive inference rule "Sequence":• Activated as transitivity rules $P \rightarrow [C_1] Q$, $Q \rightarrow [C_2] R$ • Therefore used implicitly in calculations, e.g., proving $P \rightarrow [C_1; C_2] R$ below	Pascal: Statement; else statement2 if condition then statement; else else
$P \Rightarrow [C_1; C_2] R'$ • No need to refer to these rules explicitly	statement2 end if;
Strengthening the precondition: $P_{1} \Rightarrow P_{2}, P_{2} \Rightarrow [C] Q \Rightarrow [C_{1}] \langle \rangle$ $\vdash \qquad P_{1} \Rightarrow [C] Q \qquad Q$	• C/Java:
$\Rightarrow \langle \dots \rangle$ Weakening the postcondition: O'	• Python: if condition: statement, else: statement2
$ \begin{array}{c} \stackrel{\mathbf{`P} \rightarrow [\ C \] \ Q_1 \ \mathbf{`Q}_1 \rightarrow Q_2 \ \mathbf{`P} \ \rightarrow [\ C \] \ Q_2 \ \mathbf{`P} \ \rightarrow [\ C \] \ Q_2 \ \mathbf{`P} \ \rightarrow [\ C \] \ Q_2 \ \mathbf{`P} \ \rightarrow [\ C \] \ Q_2 \ \mathbf{`P} \ \rightarrow [\ C \] \ Q_2 \ \mathbf{`P} \ \rightarrow [\ C \] \ Q_2 \ \mathbf{`P} \ \rightarrow [\ C \] \ Q_2 \ \mathbf{`P} \ \rightarrow [\ C \] \ \mathbf{`P} \ \rightarrow $	• sh: sh: then statement1 else statement2 fi

Using the "While" Rule	"Quantification is Somewhat Like Loops"
Theorem "While-example ": Pre Pre Pre Precondition	Theorem "Summing up": true
$\Rightarrow [INIT_{i}] (?)$	\Rightarrow [S := 0 ;
while B Q Invariant	i := 0 ; while i ≠ n
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	do
od ¿ od] ("While" with subproof:	s := s + f i ; i := i + 1
FINAL $B \land Q$ •••••• Loop condition and invariant	od
$ \begin{array}{c c} \hline \\ \hline \\ Post \end{array} \qquad \Rightarrow \begin{bmatrix} C \end{bmatrix} (?) $	¹ s = ∑ j : ℕ j < n • f j
$\neg B \land Q$ ••••••Negated loop condition, and invariant \Rightarrow FINAL] (?)	Invariant: $s = \sum j : \mathbb{N} \mid j < i \bullet fj$
PostPostcondition	- Generalised postcondition using the negated loop condition
	(This is a frequent pattern.)
Using the "While" Rule — An Example	Using the "While" Rule — Another Example
Theorem "Adding ₁ ": Proof: $n = n_0$ Precondition	Theorem "Answering":
$n = n_0 \qquad \qquad \equiv \langle \text{"Identity of +"} \rangle \\ n = 0 + n_0$	true
$\Rightarrow \begin{bmatrix} i := 0 \\ i := 0 \end{bmatrix} ("Assignment" with substitution)$ while $i \neq m$ $n = i + n_0$	$\Rightarrow [i:=0; \\ \text{while } i=0$
do \Rightarrow [while $i \neq m$ do	do
$i := i + 1; \qquad \qquad i := i + 1; \\ n := n + 1$	n := n + 1
n := $n + 1$ od] ("While" with subproof: $i \neq m \land n = i + n_0$ ******Loop condition and invariant	od J
$ = i + n_0 $	n = 42
$n = m + n_0$ $\equiv \langle \text{"Cancellation of +"} \rangle$ $n + 1 = i + 1 + n_0$	
$\Rightarrow [i := i + 1] \langle "Assignment" with substitution \rangle$	This process will transition to a latin state of the former 40
$n + 1 = i + n_0$ $\Rightarrow [n := n + 1] ("Assignment" with substitution)$	This program will terminate only in states satisfying <i>n</i> = 42.
$n = i + n_0$ ••••••Invariant	
\neg ($i \neq m$) \land $n = i + n_0$ Negated loop condition, and inv.	
Using the "While" Rule — Another Example	
Theorem "Answering": Proof: true Precondition	Logical Reasoning for Computer Science
true $\equiv \langle \text{"Reflexivity of = "} \rangle$ $\Rightarrow \downarrow i := 0;$ $0 = 0$	
while $i = 0$ $\Rightarrow [i := 0] \langle "Assignment" with substitution \rangle$	COMPSCI 2LC3
do $i = 0$ Invariant \Rightarrow F while $i = 0$ do	McMaster University, Fall 2024
n := n + 1 od $n := n + 1$	
od $d \leq ("While" with subproof: i = 0 \land i = 0 ••••••Loop condition and invariant$	Wolfram Kahl
$n = 42$ $\equiv ("Idempotency of \land ")$ $i = 0$	
$\Rightarrow [n := n + 1] ("Assignment" with substitution)$ i = 0 ••••••Invariant	2024-10-03
\neg (<i>i</i> = 0) \land <i>i</i> = 0 ••••••••••••••••••••••••••••••••••	Part 2: Sequences
n = 42 Postcondition	
Sequences	Sequences — "cons" and "snoc"
• We may write [33, 22, 11] (Haskell notation) for the sequence that has	• We consider the type Seq <i>A</i> of sequences with elements of type <i>A</i>
 "33" as its first element, "22" as its second element, 	as generated inductively by the following two constructors:
 "11" as its third element, and no further elements. 	$\epsilon : \operatorname{Seq} A \qquad \langle \operatorname{eps} \operatorname{empty sequence} \\ _ \triangleleft_{-} : A \to \operatorname{Seq} A \to \operatorname{Seq} A \qquad \langle \operatorname{cons} \operatorname{"cons"} ($
 no further elements. (Notation "[]" for sequences is not supported by CALCCHECK. LADM writes "()".) 	 ⊲ associates to the right.
• Sequence matters: [33,22,11] and [11,22,33] are different!	• Therefore: [33,22,11] = 33 ⊲ [22,11]
 Multiplicity matters: [33,22,11] and [33,22,22,11] are different! We consider the type Seq <i>A</i> of sequences with elements of type <i>A</i> 	$= 33 < 22 < [11] = 33 < 22 < 11 < \epsilon$
as generated inductively by the following two constructors:	 Appending single elements "at the end":
e : Seq A \eps empty sequence	$___$: Seq $A \to A \to Seq A$ \snoc "snoc"
$_ _ _ : A \rightarrow Seq A \rightarrow Seq A \setminus cons$ "cons" \triangleleft associates to the right.	 associates to the left. (Con-)catenation:
• Therefore: [33,22,11] = 33 < [22,11]	$_\sim_$: Seq $A \rightarrow$ Seq $A \rightarrow$ Seq A \catenate
= 33 < 22 < [11]	~ associates to the right.
= 33 < 22 < 11 < <i>ϵ</i>	
Sequences — Induction Principle	Sequences — Induction Proofs
• The set of all sequences over type <i>A</i> is written Seq <i>A</i> .	Induction principle for sequences:
• The <u>empty sequence</u> " ϵ " is a sequence over type <i>A</i> .	• if $P(\epsilon)$ If P holds for ϵ
 If x is an element of A and xs is a sequence over type A, then "x < xs" (pronounced: "x cons xs") is a sequence over type A, too. 	• and if $P(xs)$ implies $P(x \triangleleft xs)$ for all $x : A$, and whenever P holds for xs , it also holds for any $x \triangleleft xs$,
 Two sequences are equal <u>iff</u> they are constructed the same way from <i>ϵ</i> and <i>⊲</i>. 	
	• then for all xs : Seq A we have $P(xs)$. then P holds for all sequences over A .
Induction principle for sequences:	An induction proof using this looks as follows:
• if $P(\epsilon)$ is a dift $P(u_1)$ is a disc $P(u_1, u_2)$ for all $u_1 \neq 0$	Theorem: P Proof:
• and if $P(xs)$ implies $P(x \triangleleft xs)$ for all $x : A$, and whenever P holds for xs , it also holds for any $x \triangleleft xs$,	By induction on xs : Seq A:
• then for all xs : Seq A we have P(xs).	Base case: $Proof for P[xs := \epsilon]$
then <i>P</i> holds for all sequences over <i>A</i> .	Induction step: $Proof for (\forall x \cdot A + P[x_{x} - x_{x}, x_{x}])$
	$Proof for (\forall x : A \bullet P[xs := x \triangleleft xs])$ $using Induction hypothesis P$

Concatenation	
Axiom (13.17) "Left-identity of ~"	Logical Reasoning for Computer Science COMPSCI 2LC3
	McMaster University, Fall 2024
\implies H9, Ex6	Wolfram Kahl
	2024-10-04
	Types, Sets
	Туреѕ
Logical Reasoning for Computer Science	A type denotes a set of values that • can be associated with a variable
COMPSCI 2LC3	 an expression might evaluate to
McMaster University, Fall 2024	Some basic types: $\mathbb{B}, \mathbb{Z}, \mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
	Some constructed types: Seq \mathbb{N} , $\mathbb{N} \to \mathbb{B}$, Seq (Seq \mathbb{N}) \to Seq \mathbb{B} , set \mathbb{Z}
Wolfram Kahl	"E : t" means: "Expression <i>E</i> is declared to have type <i>t</i> ".
2024-10-04	Examples: • constants: $true : \mathbb{B}, \pi : \mathbb{R}, 2 : \mathbb{Z}, 2 : \mathbb{N}$
Part 1: Types	 variable declarations: p : ℝ, k : ℕ, d : ℝ type annotations in expressions:
	• $(x+y) \cdot x \longrightarrow (x:\mathbb{N}+y) \cdot x$ • $(x+y) \cdot x \longrightarrow ((((x:\mathbb{N})+(y:\mathbb{N})):\mathbb{N}) \cdot (x:\mathbb{N})):\mathbb{N}$
Function Types — <u>LADM Version</u> Mechanised Mathematics Version	Function Application — <u>LADM Version</u>
• If the parameters of function <i>f</i> have types t_1, \ldots, t_n • If the parameters of function <i>f</i> have types t_1, \ldots, t_n	Consider function g defined by: (1.6) $g(z) = 3 \cdot z + 6$
• and the result has type <i>r</i> , • and the result has type <i>r</i> ,	• Special function application syntax for argument that is <u>identifier or constant</u> :
• then f has type $t_1 \times \dots \times t_n \to r$ • then f has type $t_1 \to \dots \to t_n \to r$ We write: $f: t_1 \times \dots \times t_n \to r$ We write: $f: t_1 \to \dots \to t_n \to r$	$g.z = 3 \cdot z + 6$
Examples: $\neg_{-}: \mathbb{B} \to \mathbb{B}$ _+_: $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ (The function type constructor " \rightarrow " associates to the right!)	
$ \begin{array}{c} -<_{-}:\mathbb{Z}\times\mathbb{Z}\to\mathbb{B} \\ \hline \text{Forming expressions using } _{<_{-}}:\mathbb{Z}\times\mathbb{Z}\to\mathbb{B} \\ \end{array} \\ \begin{array}{c} \text{Example:} & -<_{-}:\mathbb{Z}\to\mathbb{Z}\to\mathbb{B} \\ \hline \text{Forming expressions using } _{<_{-}}:\mathbb{Z}\to\mathbb{Z}\to\mathbb{B} \\ \end{array} \\ \end{array} $	
• if expression a_1 has type \mathbb{Z} , and a_2 has type \mathbb{Z} \mathbb{Z} • then $a_1 \in a_2$ is a (well typed) supression $\frac{a_1 : \mathbb{Z} a_2 : \mathbb{Z}}{(a_1 < a_2) : \mathbb{B}}$	
• then $a_1 < a_2$ is a (well-typed) expression • and has type \mathbb{B} . $f: A \rightarrow B$ $x: A$	
In general: $fx : B$ Non-well-typed expressions make no sense!	
LADM Table of Precedences	Function Application — Mechanised Mathematics Version
• [<i>x</i> := <i>e</i>] (textual substitution) (highest precedence)	Consider function <i>g</i> defined by: (1.6) $g z = 3 \cdot z + 6$
 (function application) unary prefix operators +, −, ¬, #, ~, P 	• Function application is denoted by juxtaposition ("putting side by side")
• ** • · / ÷ mod gcd	• Lexical separation for argument that is identifier or constant: space required: h z = g (g z)
$ \begin{array}{c} \bullet + - \cup \cap \times \circ \bullet \\ \bullet \downarrow \uparrow \end{array} $	Superfluous parentheses (e.g., " $h(z) = g(g(z))$ ") are allowed, ugly , and bad style.
• $\#$ • \triangleleft \triangleright $$	 Function application still has higher precedence than other binary operators. As non-associative binary infix operator, function application associates to the left:
$ \begin{array}{c} \bullet = \ \neq \ < \ > \ \in \ \subseteq \ \supset \ \supseteq \ \\ \bullet \lor \land \land \\ \bullet \Rightarrow \ \Rightarrow \ \Leftarrow \ \notin \end{array} $ (conjunctional)	If $f : \mathbb{Z} \to (\mathbb{Z} \to \mathbb{Z})$, then $f \ge 3 = (f \ge 3)$, and $f \ge \mathbb{Z} \to \mathbb{Z}$
• ≡ ≢ (lowest precedence)	• Typing rule for function application: $f: A \rightarrow B$ $x: A$
All non-associative binary infix operators associate to the left , except $**, \lhd, \Rightarrow, \rightarrow$, which associate to the right .	$\frac{f:A \to B x:A}{f x:B}$
COMPSCI 2LC3 Fall 2024 CALCCHECK Default Table of Precedences	
(∞): _[_:=_] (textual substitution) (highest precedence) 140: unary postfix operators: _! _` _* _* _(]_)	Logical Reasoning for Computer Science
130: unary prefix operators: + ¬_ #_ ~_ ℙ_ suc_ 120: (function application), @ 115: **	COMPSCI 2LC3
• 110: · / ÷ mod gcd • 105: ÿ ∕ ∖	
• 100: $+ - \cup \cap \times \circ \oplus \Leftrightarrow \triangleleft \triangleleft \triangleright \triangleright$ • 97: \leftrightarrow (relation type) • 95: \rightarrow (relation type)	McMaster University, Fall 2024
 95: → (function type) 90: ↓ ↑ 70: # 	Wolfram Kahl
• 60: ⊲ ⊳ ∽ • 50: = ≠ < > ∈ ⊂ ⊆ ⊃ ⊇ _(_)_ (conjunctional)	2024-10-04
• 40: $\lor \land$ • 20: $\Rightarrow \neq \leftarrow \neq$ • 10: $= \neq$	
 10: = # 9: := (assignment command, two characters) 5: ; (command sequencing) 	Part 2: Sets
• (- ∞): \circledast _[- \bullet _ (quantification notation, for $\circledast \in \{\forall, \exists, \bigcup, \bigcap, \sum, \prod, \dots\}$) west precedence)	


LADM Chapter 11: A Theory of Sets	The Axioms of Set Theory — Overview
"A set is simply a collection of distinct (different) elements."	(11.2) Provided $\neg occurs('x', 'e_0, \dots, e_{n-1}'),$ $\{e_0, \dots, e_{n-1}\} = \{x \mid x = e_0 \lor \dots \lor x = e_{n-1} \bullet x\}$
	(11.3) Axiom, Set membership: Provided – <i>occurs</i> (' <i>x</i> ', ' <i>F</i> '),
• 11.1 Set comprehension and membership	$F \in \{x \mid R \bullet E\} \equiv (\exists x \mid R \bullet E = F)$ (11.2f) Empty Set: $v \in \{\} \equiv false$
• 11.2 Operations on sets	(11.2) Empty Set: $v \in \{j = juse$ (11.4) Axiom, Extensionality: Provided $\neg occurs('x', 'S, T'),$
 11.3 Theorems concerning set operations (many! — mostly easy) 11.4 Union and intersection of families of sets (quantification over ∪ and ∩) 	$S = T \equiv (\forall x \bullet x \in S \equiv x \in T)$
(quantification over 6 and 1)	(11.13T) Axiom, Subset: Provided $\neg occurs('x', 'S, T'),$ $S \subseteq T \equiv (\forall x \bullet x \in S \Rightarrow x \in T)$
	(11.14) Axiom, Proper subset: $S \subseteq T \equiv S \subseteq T \land S \neq T$
	(11.20) Axiom, Union: $v \in S \cup T \equiv v \in S \lor v \in T$ (11.21) Axiom, Intersection: $v \in S \cap T \equiv v \in S \land v \in T$
	(11.22) Axiom, Set difference: $v \in S - T \equiv v \in S \land v \notin T$ (11.23) Axiom, Power set: $v \in \mathbb{P} S \equiv v \subseteq S$
Set Membership versus Type Annotation	Cardinality of Finite Sets
Like in Haskell: • Sets are datastructures (Data.Set.Set) • Types aid program correctness	(11.12) Axiom, Size: Provided $\neg occurs('x', 'S')$,
Therefore: Types are not sets!	$\#S = (\Sigma x \mid x \in S \bullet 1)$
Let <i>T</i> be a type ; let <i>S</i> be a set , that is, an expression of type set <i>T</i> ,	This uses: $\#_{-}:$ set $t \to \mathbb{N}$
and let e be an expression of type T , then • $e \in S$ is an expression	
● of type B	Note: • $(\Sigma \times x \in S \bullet 1)$ is defined if and only if <i>S</i> is finite.
• and denotes "e is in S" or "e is an element of S"	• $\# \{n : \mathbb{N} \mid true \bullet n\}$ is undefined!
Because: $_{\epsilon}: T \rightarrow set T \rightarrow \mathbb{B}$	 "#N" is a type error! — because N: Type Types are not sets — like in Haskell:
Note: • $e:T$ is nothing but the expression e , with type annotation T .	Integer :: *
• If <i>e</i> has type <i>T</i> , then <i>e</i> : <i>T</i> has the same value as <i>e</i> .	Data.Set.Set Integer :: *
Set Comprehension	Set Membership
Set comprehension examples: $\{i : \mathbb{N} \mid i < 4 \cdot 2 \cdot i + 1\} = \{1, 3, 5, 7\}$ $\{x : \mathbb{Z} \mid 1 \le x < 5 \cdot x \cdot x\} = \{1, 4, 9, 16\}$	(11.3) Axiom, Set membership: Provided $-occurs('x', 'F')$, $F \in \{x \mid R \bullet E\} \equiv (\exists x \mid R \bullet E = F)$
$\{i: \mathbb{Z} \mid 5 \le i < 8 \bullet i \triangleleft i \triangleleft \epsilon\} = \{(5 \triangleleft 5 \triangleleft \epsilon), (6 \triangleleft 6 \triangleleft \epsilon), (7 \triangleleft 7 \triangleleft \epsilon)\}$	$F \in \{x \mid R\}$
(11.1) Set comprehension general shape: $\{x : t \mid R \bullet E\}$	= (Expanding abbreviation)
— This set comprehension binds variable <i>x</i> in <i>R</i> and <i>E</i> ! Evaluated in state <i>s</i> , this denotes the set containing the values of <i>E</i> evaluated in those	$F \in \{x \mid R \bullet x\}$ = ((11.3) Axiom, Set membership — provided ¬occurs('x', 'F'))
states resulting from s by changing the binding of x to those values from type t that satisfy R .	$(\exists x \mid R \bullet x = F)$ = ((9.19) Trading for \exists)
Note: The braces "{}" are only used for set notation!	$(\exists x \mid x = F \bullet R)$
Abbreviation for special case: $\{x \mid R\} = \{x \mid R \bullet x\}$	= (8.14) One-point rule — provided $\neg occurs('x', 'F'))$ R[x := F]
(11.2) Provided $-occurs('x', 'e_0, \dots, e_{n-1}'),$ $\{e_0, \dots, e_{n-1}\} = \{x \mid x = e_0 \lor \dots \lor x = e_{n-1} \bullet x\}$	This proves: Simple set compr. membership: Prov. $\neg occurs('x', 'F')$,
Note: This is covered by "Reflexivity of =" in CALCCHECK.	$F \in \{x \mid R\} \equiv R[x \coloneqq F]$
Set Equality and Inclusion	LADM Set Equality via Equivalence
(11.4) Axiom, Extensionality: Provided $\neg occurs('x', 'S, T')$, $S = T \equiv (\forall x \bullet x \in S \equiv x \in T)$	(11.4) Axiom, Extensionality: Provided $\neg occurs('x', 'S, T')$, $S = T \equiv (\forall x \bullet x \in S \equiv x \in T)$
(11.13T) Axiom, Subset: Provided $\neg occurs('x', 'S, T')$,	(11.9) "Simple set comprehension equality": $\{x \mid Q\} = \{x \mid R\} \equiv (\forall x \bullet Q \equiv R)$
$S \subseteq T \equiv (\forall x \bullet x \in S \Rightarrow x \in T)$ (11.11b) Metatheorem Extensionality:	(11.10) Metatheorem set comprehension equality:
Let S and T be set expressions and v be a variable.	$\{x \mid Q\} = \{x \mid R\}$ is valid iff $Q \equiv R$ is valid.
Then $S = T$ is a theorem iff $v \in S \equiv v \in T$ is a theorem. — Using "Set extensionality" (11.13m) Metatheorem Subset:	(11.11) Methods for proving set equality S = T:(a) Use Leibniz directly
Let <i>S</i> and <i>T</i> be set expressions and <i>v</i> be a variable. — Using "Set inclusion" Then $S \subseteq T$ is a theorem iff $v \in S \implies v \in T$ is a theorem.	(b) Use axiom Extensionality (11.4) and prove $v \in S \equiv v \in T$ (c) Prove $Q \equiv R$ and conclude $\{x \mid Q\} = \{x \mid R\}$ via (11.9)/(11.10)
Extensionality (11.11b) and Subset (11.13m) will, by LADM ,	Note:
mostly be used as the following inference rules: $v \in S \equiv v \in T$ $v \in S \Rightarrow v \in T$	 In the informal setting, confusion about variable binding is easy! Using "Set extensionality" or Using (11.9)
$\frac{v \in S \equiv v \in T}{S \equiv T} \qquad \qquad \frac{v \in S \implies v \in T}{S \subseteq T}$	followed by For any make variable binding clear.
Using Set Extensionality — LADM-Style	Using Set Extensionality — CALCCHECK Example
Extensionality (11.11b) inference rule: $\frac{v \in S \equiv v \in T}{S = T}$	Axiom (11.4) "Set extensionality": $S = T \equiv (\forall x \bullet x \in S \equiv x \in T)$ — provided $\neg occurs('x', 'S, T')$
Ex. 8.2(a) Prove: $\{E, E\} = \{E\}$ for each expression <i>E</i> .	Theorem (11.26) "Symmetry of \cup ": $S \cup T = T \cup S$
By extensionality (11.11b): Proving $p_{\mathcal{L}}(F, E) = p_{\mathcal{L}}(F)$	Proof:
Proving $v \in \{E, E\} \equiv v \in \{E\}$:	Using "Set extensionality ": Subproof for $\forall e \bullet e \in S \cup T \equiv e \in T \cup S$:
$v \in \{E, E\}$ = \langle Set enumerations (11.2) \rangle	For any e^{\cdot} : $e \in S \cup T$
$v \in \{x \mid x = E \lor x = E\}$	≡ ("Union ")
$\equiv \langle \text{ Idempotency of } \lor (3.26) \rangle$ $\upsilon \in \{x \mid x = E\}$	$e \in S \lor e \in T$ $\equiv \langle \text{"Symmetry of } \lor \text{"} \rangle$
$= \langle \text{Set enumerations (11.2)} \rangle$	$e \in T \lor e \in S$ = ("Union")
$v \in \{E\}$	$e \in T \cup S$

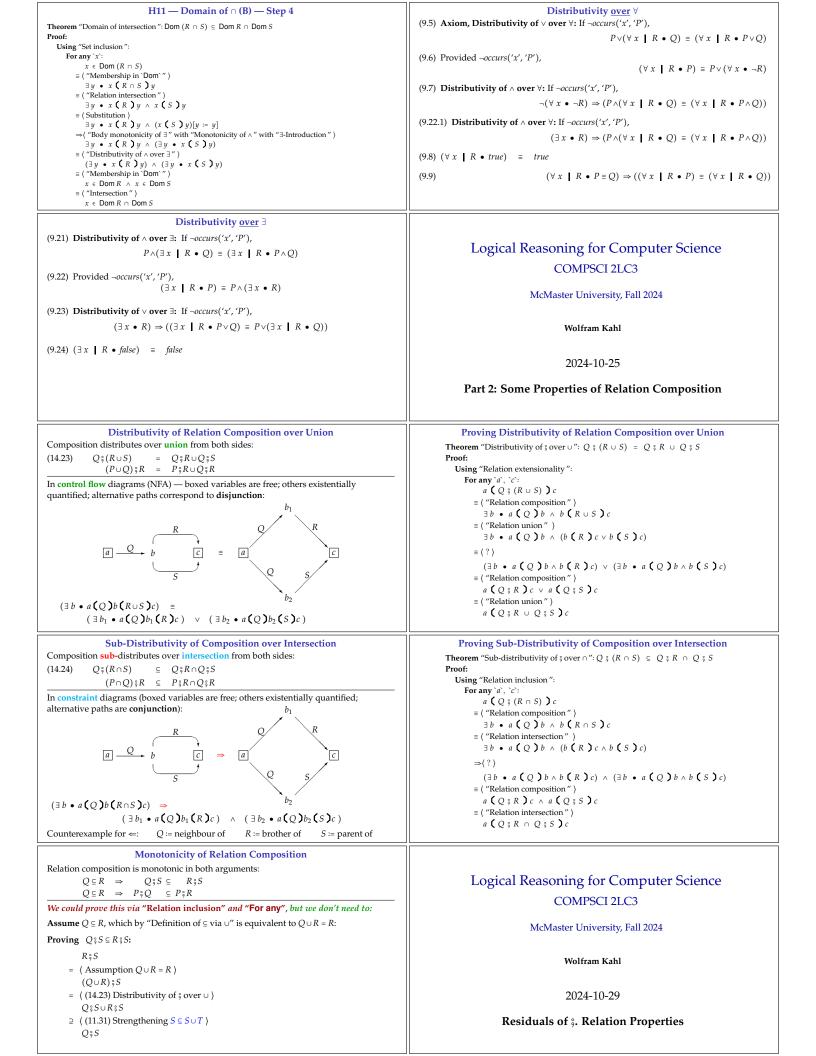
Anything Wrong?	"The Universe" in LADM
Let the set <i>Q</i> be defined by the following: $_{\epsilon_{-}, -\epsilon_{-}} : A \rightarrow \text{set } A \rightarrow \mathbb{B}$	The universe
(R) $Q = \{S \mid S \notin S\}$ "The mother of all type errors"	A theory of sets concerns sets constructed from some collection of elements. There is a theory of sets of integers, a theory of sets of characters, a theory
Then:	of sets of sets of integers, and so forth. This collection of elements is called the <i>domain of discourse</i> or the <i>universe of values</i> ; it is denoted by U . The
$Q \in Q \implies \text{ birth of type theory}$ $\equiv ((R))$	universe can be thought of as the type of every set variable in the theory.
$Q \in \{S \mid S \notin S\}$	For example, if the universe is $set(\mathbb{Z})$, then $v:set(\mathbb{Z})$. When several set theories are being used at the same time, there is a
$\equiv ((11.3) \text{ Membership in set comprehension}) \\ (\exists S \mid S \notin S \bullet Q = S)$	different universe for each. The name ${f U}$ is then overloaded, and we have
\equiv ((9.19) Trading for \exists , (8.14) One-point rule)	to distinguish which universe is intended in each case. This overloading is similar to using the constant 1 as a denotation of an integer, a real, the
$Q \notin Q$ $\equiv \langle (11.0) \text{ Def. } \notin \rangle$	identity matrix, and even (in some texts, alas) the boolean <i>true</i> .
$= (11.0) \text{ Det. } \notin \gamma$ $\neg (Q \in Q)$	Overloading via type polymorphism: {}, U: set t
With (3.15) $p \equiv \neg p \equiv false$, this proves:	$(\{\}: set \mathbb{B}) = \{\}$ $(\mathbf{U}: set \mathbb{B}) = \{false, true\}$
(R') false — "Russell's paradox"	$(\{\}: \mathbf{set} \mathbb{N}) = \{\} (\mathbf{U}: \mathbf{set} \mathbb{N}) = \{k: \mathbb{N} \mid true\}$
"The Universe" and Complement in LADM	"The" Universe
the domain of discourse or the universe of values; it is denoted by \mathbf{U} . The universe can be thought of as the type of every set variable in the theory.	Frequently, a "domain of discourse" is assumed, that is, a set of "all objects under
For example, if the universe is $set(\mathbb{Z})$, then $v:set(\mathbb{Z})$.	consideration".
Complement	This is often called a "universe". Special notation: U — \universe
The complement of S, written $\sim S$, ⁴ is the set of elements that	Declaration: \mathbf{U} : set t
are not in S (but are in the universe). In the Venn diagram in this paragraph, we have shown set S and universe U. The	Axiom "Universal set": $x \in U$ — remember: $_\epsilon_: t \rightarrow set t \rightarrow \mathbb{B}$
non-filled area represents $\sim S$.	Theorem: $(\mathbf{U} : \mathbf{set} t) = \{x : t \bullet x\}$
(11.17) Axiom, Complement: $v \in \sim S \equiv v \in U \land v \notin S$	Types are not sets! — $(\mathbf{U} : \mathbf{set} t)$ is the set containing all values of type <i>t</i> .
For example, for $\mathbf{U} = \{0, 1, 2, 3, 4, 5\}$, we have	We define a nicer notation: $t = (\mathbf{U} : \mathbf{set} t)$
$ \sim \{3,5\} = \{0,1,2,4\} \ , \ \sim \mathbf{U} = \emptyset \ , \ \sim \emptyset = \mathbf{U} \ . $	"Definition of $_$,": $\forall x:t \bullet x \in t$,
We can easily prove	
(11.18) $v \in \langle S \rangle \equiv v \notin S$ (for v in U).	Example: $\mathbb{B}_{j} = \{false, true\}$
Set Complement	
(11.17) Axiom, Complement: $v \in \sim S \equiv v \in U \land v \notin S$	Logical Passoning for Computer Science
Complement can be expressed via difference: $\sim S = \mathbf{U} - S$	Logical Reasoning for Computer Science
Complement ~ always implicitly depends on the universe U!	COMPSCI 2LC3
Example: $\sim \{true\} = \{B_{\downarrow} - \{true\} = \{false, true\} - \{true\} = \{false\}$	McMaster University, Fall 2024
LADM: "We can easily prove	
(11.18) $v \in \sim S \equiv v \notin S$ (for v in U)."	Wolfram Kahl
Consider \mathbb{Z}_+ : set \mathbb{Z} defined as $\mathbb{Z}_+ = \{x : \mathbb{Z} \mid \text{pos } x\}$:	2024-10-08
 Let <i>S</i> be a subset of ℤ₊. For example: <i>S</i> = {2,3,7} Consider the complement ~<i>S</i> 	2024-10-08
• Is $-5 \in S$ true or false?	Sets (ctd.)
Recall: The Axioms of Set Theory — Overview	Set Comprehension and Quantification Semantics
(11.2) Provided $-occurs('x', 'e_0, \dots, e_{n-1}')$, $\{e_0, \dots, e_{n-1}\} = \{x \mid x = e_0 \lor \dots \lor x = e_{n-1} \bullet x\}$ (11.3) Axiom, Set membership: Provided $-occurs('x', 'F')$,	• Evaluated in state <i>s</i> , the expression { $x : t \mid R \bullet E$ } denotes the set containing the
(11.5) Axion, set membersing. From the obtains (x, T) , $F \in \{x \mid R \bullet E\} \equiv (\exists x \mid R \bullet E = F)$	values of E evaluated in those states resulting from s by changing the binding of x to those values from type t that satisfy R .
Empty Set: $v \in \{\} \equiv false$ (11.12) Aview Size Presided assumption (11.12)	
(11.12) Axiom, Size: Provided $\neg occurs('x', 'S')$, $\#S = (\Sigma x \mid x \in S \bullet 1)$ (11.4) Axiom, Extensionality: Provided $\neg occurs('x', 'S, T')$,	• Evaluated in state <i>s</i> , the expression $(\sum x : t \mid R \bullet E)$ denotes the sum of the values of <i>E</i> evaluated in those states resulting from <i>s</i> by changing the binding of <i>x</i> to those
$S = T \equiv (\forall x \bullet x \in S \equiv x \in T)$	values from type <i>t</i> that satisfy <i>R</i> .
Axiom, Subset: Provided $\neg occurs('x', 'S, T'),$ $S \subseteq T \equiv (\forall x \bullet x \in S \Rightarrow x \in T)$	• Evaluated in state <i>s</i> , the expression ($\forall x:t \mid R \bullet P$) evaluates to true iff <i>P</i>
(11.14) Axiom, Proper subset: $S \subset T \equiv S \subseteq T \land S \neq T$	evaluates to true in all those states resulting from <i>s</i> by changing the binding of <i>x</i> to those values from type <i>t</i> that satisfy <i>R</i> .
Axiom, Complement: $v \in \sim S \equiv v \notin S$ (11.20)Axiom, Union: $v \in S \cup T \equiv v \in S \lor v \in T$	
(11.21) Axiom, Intersection: $v \in S \cap T \equiv v \in S \land v \in T$	 Evaluated in state s, the expression (∃ x : t R • P) evaluates to true iff P evaluates to true in at least one state resulting from s by changing the binding of x to a value
(11.22) Axiom, Set difference: $v \in S - T \equiv v \in S \land v \notin T$ (11.23) Axiom, Power set: $v \in \mathbb{P} S \equiv v \subseteq S$	from type <i>t</i> that satisfies <i>R</i> .
(14.3) Axiom, Cross product: $S \times T = \{b, c \mid b \in S \land c \in T \bullet \langle b, c \rangle\}$	
Cardinality Example	"The" Universe
$\frac{(11.12) \text{ Axiom, Size: Provided } \neg occurs('x', 'S'), \qquad \#S = (\Sigma x \mid x \in S \bullet 1)}{\#\{1,1,2\}}$	Frequently, a "domain of discourse" is assumed, that is, a set of "all objects under
= ((11.12) Axiom, Size)	consideration". This is often called a " universe ". Special notation: U — \universe
$(\Sigma x \mid x \in \{1, 1, 2\} \bullet 1)$ = ((11.2) Set enumeration)	
$(\Sigma x \mid x \in \{y \mid y = 1 \lor y = 1 \lor y = 2 \bullet y\} \bullet 1)$ = $\langle (11.3)$ Set membership, (9.19) Trading for $\exists \rangle$	Declaration: U : set t
$(\Sigma x \mid (\exists y \mid y = x \bullet y = 1 \lor y = 1 \lor y = 2) \bullet 1)$	Axiom "Universal set": $x \in U$ — remember: $_\epsilon_: t \rightarrow set t \rightarrow \mathbb{B}$
$= \langle (8.14) \text{ One-point rule: } (*x \mid x = E \bullet P) = P[x := E] \text{ provoccurs}('x', 'E') \rangle$ $(\Sigma x \mid x = 1 \lor x = 1 \lor x = 2 \bullet 1)$	Theorem: $(\mathbf{U} : \mathbf{set} t) = \{x : t \bullet x\}$
= $((3.26)$ Idempotency of \vee) $(\Sigma x \mid x = 1 \lor x = 2 \bullet 1)$	Types are not sets! — $(\mathbf{U} : \mathbf{set} t)$ is the set containing all values of type <i>t</i> .
= $((8.16) \text{ Disjoint range split: } (x = 1 \land x = 2) \equiv false)$	We define a nicer notation: t _ = (U: set t) — \llcorner \lrcorner
$ (\Sigma x \mid x = 1 \bullet 1) + (\Sigma x \mid x = 2 \bullet 1) = \langle (8.14) \text{ One-point rule} \rangle $	• t_{j} is the set of all values of type t_{j}
1+1	• "Definition of
= (Arithmetic) 2	• Example: B , = {false, true}
	J L J


$\begin{aligned} & \text{Set Complement} \\ & \text{Set Complement} \\ & \text{Complement can be expressed via difference} -S = U - S \\ & \text{Complement - a local pullicity denotes on the universe U. \\ & \text{Formple} -(mn) = (1, p, (mn)) = (4k, mn) - (mn) = (4k) \\ & \text{Romple} -(mn) = (1, p, (mn)) = (4k, mn) - (mn) = (4k) \\ & \text{Romple} -(mn) = (1, p, (mn)) = (4k, mn) - (mn) = (4k) \\ & \text{Romple} -(mn) = (1, p, (mn)) = (4k, mn) - (mn) = (4k) \\ & \text{Romple} -(mn) = (1, p, (mn)) = (4k, mn) - (mn) = (4k) \\ & \text{Romple} -(k + 2k) \\ $		
Complement can be expressed via difference: $-S = U - S$ Complement $-\frac{1}{4} \exp(m) = (a_1 - (m)) = (bac)$ Example: $-(m) = (a_1 - (m)) = (bac) \exp(-(m)) = (bac)$ LADM: "We can easily prove (118) 0 = -S = 0 + S $(118) 0 = -S = 0 + S0 = -5(-S) 10 + O = S = 0 + S0 = -5(-S) 10 + O = S = 0 + S0 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S1 = -5(-S) 10 + O = S = 0 + S = 0 + S1 = -5(-S) 10 + O = S = 0 + S$		
Complement - above implicitly depends on the universe U! Example: $-(trat) = \frac{1}{2} = ((trat) = ((bac, trat) - (trat) = ((bbc))$ (1.38) $v \in A \subseteq v \in S$ ((for vin U)." Consider Z, i setZ, defined as Z, $-(x \in Z \mid po s)$; • Let S be a subset of Z,. For example: $S = (2,3,7)$ • Consider the complement - $S = v \in S$ (consider the complement - $S = v \in S$ We will just edy on the type system to provide the relevant universe, and use: Axion "Set complement"; $v \in S = v \in S$ Let be defined by: $x \leq c = x \leq S$ What dog not how about of Why? (frew vit) Note: is implicitly universally quantified! Proving $S \leq \alpha$ $= (The given equivalence, with x \equiv S)s \leq c= (Given equivalence, with x \equiv S)c \leq S = -This is Reflexivity of SWith universally quantified!Proving z \leq Sc \leq S= (Given equivalence, with x \equiv S)c \leq S = -This is Reflexivity of SWith universally quantified!Proving z \leq Sc \leq S = (Given equivalence, with x \equiv S)(1547) Indirect equality: x \equiv b = (V \ge v \le Z a = z \le b)Characterisation of relative pseudocomplement of sets: X \subseteq A \Rightarrow B = x \land A \in B= ((1527) Indirect equality: x \equiv b = (V \ge v \le Z a = z \le b)Characterisation of relative pseudocomplement of sets: X \subseteq A \Rightarrow B = x \land A \in B= ((1520) Indirect equality: x \equiv b = (V \ge v \le Z a = z \le b)Characterisation of relative pseudocomplement of sets: X \subseteq A \Rightarrow B = x \land A \in B= ((120) Union, (117) Set complement?x \le A \Rightarrow B = ((120) Union, (117) Set complement?x \le A \Rightarrow B = x \le A \Rightarrow Z \otimes BConclust Momenship in pseudocomplement wr. () is complement?x \le A \Rightarrow B = x \le A \Rightarrow Z \otimes BEvent by v \ge (D \land A \Rightarrow B = x \le A \Rightarrow Z \otimes B= ((120) Union, (117) Set complement?x \le A \Rightarrow B = x \le A \Rightarrow Z \otimes BEvent by v \ge (D \land A \Rightarrow B = x \le A \Rightarrow Z \otimes BEvent by v \ge Charter is the pseudocomplement wr. () is complement: A \Rightarrow (B = x \le A \Rightarrow Z \otimes BEvent by v \ge Charter is the seudocomplement wr. () is complement: A \Rightarrow (B = x \le A \Rightarrow Z \otimes BEvent by v \ge Charter is the seudocomplement wr. () is complement: A \Rightarrow (B = x $		
$\begin{aligned} \begin{array}{llllllllllllllllllllllllllllllllllll$		
LADI: "We can easily prove (11.8) $v \in S = v \notin S$ (for $v \in u(U)^{+}$ Consider \mathbb{Z}_{+} (viz \mathbb{Z}_{+} for example: $S = (2.3.7)$ • Consider \mathbb{Z}_{+} (viz \mathbb{Z}_{+} for example: $S = (2.3.7)$ • Consider \mathbb{Z}_{+} (the complement S • $\mathbb{R}^{-} - S = \mathbb{S}^{-}$ thus or false? We will just rely on the type system to provide the relevant universe, and use: Alian "Set complement": $v \in S = v \in S$ Let be defined by: $x \leq c = x \leq 5$ What do you know about 2^{+} Why? (Prove it) Note: x is implicitly univerally quantified! Proving $\leq 5 = C$ = (The given equivalence, with $x = 5$) $\leq 5 = -This is Reflexivity of SProving \leq 5 = C= (Cher equivalence, with x = 5)\leq 5 = -This is Reflexivity of SProving \leq 5 = C= (Cher equivalence, with x = 5)\leq 5 = -This is Reflexivity of SProving \leq 5 = -This is Reflexivity of SWith antisymmetry of (that is a \leq b, h \leq a \Rightarrow a = b), we obtain c = 5 — An instance of:((5.57) Indirect equality: a = b = (\sqrt{2} + 2 \leq a = z \leq b))Characterisation of relative pseudocomplement of sets: X \in (A \Rightarrow B) = X \cap A \in Bz \in (S^{+}) = (Cit + S) = -A \cup B= z \in S^{+} (2b + S) = -A \cup B= z \in S^{+} (2b + S) = -A \cup BCharacterisation of relative pseudocomplement of sets: X \in (A \Rightarrow B) = X \cap A \in B= z \in S^{+} (2b + S) = -A \cup B= ((12.3) Using of v, Ubc 4)(v \neq 1 v \leq (1) + 2(A + v \notin B))= (v \in (12.3) Using of v, Ubc 4)(v \neq 1 v \leq (1) + 2(A + v \notin B))= (v \in (12.3) Using of v, Ubc 4)(v \neq 1 v \leq (1) + 2(A + v \notin B))= ((12.3) Using (12.5) Chernel = 1= ((12$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
• Let S be aubst of Z, for example: $S = \{2,3,7\}$ • Consider the complement -S • Is $-5 \in S$ true or take? We will just rely on the type system to provide the relevant universe, and use: Axion "Set complement": $v \in -S = v \notin S$ Let c be defined by: $x \leq c \equiv x \leq 5$ What do you know about 2 Why? (Prove it!) Note: x is implicitly university quantified! Proving $5 \leq c$ $\leq c$ $= (The given equivalence, with x \approx 5)\leq c \leq c\leq f \leq c= (The given equivalence, with x \approx 5)\leq c \leq c= (The given equivalence, with x \approx 6)\leq c \leq c= (The given equivalence, with x \approx 6)\leq c \leq c= (The given equivalence, with x \approx 6)\leq c \leq c= (The given equivalence, with x \approx 6)\leq c \leq c= (The given equivalence, with x \approx 6)\leq c \leq c= (The given equivalence, with x \approx 6)\leq c \leq c= (Given equivalence, with x \approx 6)\leq c \leq c= (The given equivalence, with x \approx 6)\leq c \leq c= (The given equivalence, with x \approx 6)\leq c \leq c= (The given equivalence, with x \approx 6)\leq c \leq c= (Given equivalence, with x \approx 6)\leq c \leq c= (The given equivalence, with x \approx 6)\leq c \leq c \leq c= (The given equivalence, with x \approx 6)\leq c \leq c \leq c \leq c= (The given equivalence, with x \approx c)c \leq c \leq c= (The given equivalence, with x \approx c)c \leq c \leq c= (Given equivalence, with x \approx c)c \leq c \leq c= (Given equivalence, with x \approx c)= (C \leq c)= (Vz + z \leq a \approx a \approx b), we obtain c \approx 5 — An instance of(1547) Indirect equality: a \Rightarrow b \equiv (Vz + z \leq a \approx z \approx b)Characterisation of relative pseudocomplement of sets: X \leq A \Rightarrow B \approx x \land A \otimes B= (1012) Insterior (The given equivalence)= ((c \leq c) c \leq c = c = bercisel)(r \leq f c \geq c = c = bercisel)(r \leq f c \geq c = c = bercisel)(r \leq f c \geq c = c = bercisel)(r \leq f c \geq c = c = bercisel)(r \leq f c \geq c = c = bercisel)(r \leq f c \geq c = c = bercisel)(r \leq f c \geq c = c = bercisel)(r \leq f c \geq c = c = bercisel)(r \leq f c \geq c = c = bercisel)(r \leq f c \geq c = c = bercisel)(r \leq$		
• Consider the complement -5 • Is $-5 \in -5$ true or false?• We will just rely on the type system to provide the relevant universe, and use: Axiom "Set complement": $v \in -5 \equiv v \notin S$ Let c be defined by: $x \leq c \equiv x \leq 5$ What $do you know about c^2Why?(Prove it!)Note: x is implicitly miverally quantified?Proving 5 \leq c\leq c< c< c$		
• Is $-5t - 5$ true or false?We will just rely on the type system to provide the relevant universe, and use: Axiom "Set complement": $v \in -S$ $x \in -S$ Let $v be defined by:x \leq c = x \leq 5Relative Fseudocomplement A \Rightarrow BWhat d \circ y k now about CWhy?(frow it)Relative fseudocomplement A \Rightarrow BRelative fseudocomplement A \Rightarrow BNote: z \equiv i m plicitly univerally quantified!Proving 5 \leq c\leq 5 =It is is fellowity of \leqRelative fseudocomplement A \Rightarrow BA \Rightarrow B = A \Rightarrow BCalculate the relative pseudocomplement of sets: X \leq (A \Rightarrow B) = x \cap A \leq BCalculate x \in A \Rightarrow B = x \in ?Calculate x \in A \Rightarrow B = x \in ?With antisymmetry of \leq (that is, a \leq b \land b \leq a \Rightarrow a = b), we obtain c = 5— An instance of:Calculate x \in A \Rightarrow B = x \in ?Characterisation of relative pseudocomplement of sets: X \leq (A \Rightarrow B) = x \cap A \in BCalculate x \in A \Rightarrow B = x \cap A \oplus BTheorem "Reudocomplement a \cup C:(112) Infinited equality:a = b = (\forall z + z \leq a = z \leq b)Theorem: A \Rightarrow B = -A \cup B(112) Units x \in A \Rightarrow B = -A \cup B(y \in (1) = y + x = -b)Theorem: A \Rightarrow B = -A \cup B(112) Units (12) Un$		
We will just rely on the type system to provide the relevant universe, and use: Axiom "Set complement": $v \in -S \equiv v \notin S$ $x \in -S$ Let cbe defined by: $x \leq c \equiv x \leq 5$ $x \in -S$ What $do you know about c^2Why?(Prove it)Note: x is implicitly univerally quantified!Forving 5 \leq cS \leq Cf (The given equivalence, with x \equiv 5)S \leq CS \leq Cf \in Complement, with x \equiv 5S \leq CS \leq Cf \in Complement, with x \equiv 5S \leq C \otimes S \equiv S = C \otimes Sf \in Complement, with x \equiv 5S \otimes S \otimes S \equiv S = C \otimes Sf = Complement, with x \equiv 5S \otimes S \otimes$		
Axion "Set complement": $\psi \in S = \psi \notin S$ $x \notin S$ Let cbe defined by: $x \leq c = x \leq 5$ What do you know about C Why?Note: $x is inplicitly univerally quantified!Proving 5 \leq ci.5 \leq ca \in T = Ca \in T = C = C = C = C = C = C = C = C = C =$		
Relative PseudocomplementLet c be defined by: $x \le c = x \le 5$ What do you know about c Why?(Prove it)(Prove it)Note: s is implicitly intreally quantified! $rack = x \le 5$ Proving $5 \le c$ $5 \le c$ $c \le c$ $c \le 5$ $c \le c = -This is Reflexivity of \le -c \le c = -This is Reflexivity of \le -c \le c = -This is Reflexivity of \le -c \le c = -This is Reflexivity of \le -c \le c = -This is Reflexivity of \le -c \le c = -This is Reflexivity of \le -c \le c \le c$		
Let be defined by:YestYestYestWhat do you know about 2Why?(Prove it!)Note: x is implicitly univerally quantified!Proving $5 \le a$ $5 \le c$ a (The given equivalence, with $x = 5$) $5 \le 5 = -T$ has is Reflexivity of \le Proving $c \le 5$ $c \le 5$ $c \le c = -T$ has is Reflexivity of \le What do you know about 2With antisymetry of $\le (tat is, a \le b \land b \le a \Rightarrow a = b)$, we obtain $c = 5$ $c \le c = -T$ has is Reflexivity of \le With antisymetry of $\le (tat is, a \le b \land b \le a \Rightarrow a = b)$, we obtain $c = 5$ Characterisation of relative pseudocomplement of sets: $X \subseteq (A \Rightarrow B) = X \cap A \subseteq B$ $x \le A \Rightarrow B$ $(t \le 4) > B$ $x \le A \Rightarrow B$ $(t \le 4) > B$ $(t \ge 4) > C > C$ $(t \ge 4) > C > C > C > C > C > C > C > C > C > $		
Note: x is implicitly univerally quantified! Proving $5 \le c$ $5 \le c$ $(The given equivalence, with x = 5)5 \le 5 = - This is Reflexivity of \leLet A, B set b two sets of the same type.The relative pseudocomplement A \Rightarrow B of A with respect to B is defined by:X \le (A \Rightarrow B) = X \cap A \le BCalculate A \Rightarrow B = x as set expression not using \Rightarrow! The relative pseudocomplement A \Rightarrow B as a set expression not using \Rightarrow! The relative pseudocomplement A \Rightarrow B as a set expression not using \Rightarrow! That is:Calculate A \Rightarrow B = ?Using set extensionality, that is:Calculate x \in A \Rightarrow B = x \in ?With antisymmetry of \le (that is, a \le b \land b \le a \Rightarrow a = b), we obtain c = 5 — An instance of:(1547) Indirect equality:a = b = (V \ge 2 \le a = z \le b)Characterisation of relative pseudocomplement of sets: X \le A \Rightarrow B = x \cap A \Rightarrow Bx \le A \Rightarrow B = x \land A \Rightarrow BCharacterisation of relative pseudocomplement of sets: X \le (A \Rightarrow B) = X \cap A \le B(x \le A \Rightarrow B) = (A \oplus B)(x \ge A \Rightarrow B) = -A \cup BCharacterisation of relative pseudocomplement of sets: X \le A \Rightarrow B = x \land A \Rightarrow B(x \le A \Rightarrow B)(x \ge A \Rightarrow B) = -A \cup BCharacterisation of relative pseudocomplement of sets: X \le A \Rightarrow B = -A \cup B(x \ge A \Rightarrow B)(x \ge A \Rightarrow B)Characterisation of relative pseudocomplement is u \cup x \le A \Rightarrow B = -A \cup B(x \ge A \Rightarrow B)(x \ge A \Rightarrow B)(x \ge A \Rightarrow A \oplus A)Characterisation of relative pseudocomplement is u \cup x \le A \Rightarrow B = -A \cup B(x \le A \Rightarrow B)(x \ge A \Rightarrow B = A \oplus A)(x \ge A \Rightarrow B \oplus A)(x \ge A \Rightarrow A \oplus A)Characterisation of relative pseudocomplement A \Rightarrow B \Rightarrow -A \cup B(x \le A \Rightarrow B)(x \le A \Rightarrow B)(x \le A \Rightarrow B)(x \ge A \Rightarrow B)(y \le A)(y \le A)(y \le A)(y \le A)(y \le A)$		
Note: x is implicitly university quantifie:The relative preclamation of relative precla		
Proving $5 \le c$ $X \le (A \Rightarrow B) = X \cap A \le B$ $5 \le c$ $(\text{The given equivalence, with x = 5 \)5 \le 55 \le 5- \text{This is Reflexivity of } \leCalculate the relative pseudocomplement A \Rightarrow B as a set expressionnot using \Rightarrow! That is:Calculate A \Rightarrow B = ?c \le 5c \le 5c \le \text{This is Reflexivity of } \leCalculate A \Rightarrow B = ?With antisymmetry of (\text{that is, } a \le b \land b \le a \Rightarrow a = b), we obtain c = 5- \text{An instance of}Calculate x \in A \Rightarrow B = x \in ?Characterisation of relative pseudocomplement of sets: X \le (A \Rightarrow B) = X \cap A \subseteq Bx \in A \Rightarrow B = (x \in S = (p \in S) \text{Exercise})x \in A \Rightarrow B = (x \in S = (p \in S) \text{Exercise})(X \le (A \Rightarrow B)= (M = X \Rightarrow A \oplus B)Theorem: A \Rightarrow B = -A \cup Bc = (M = (M = M = M \otimes A))Theorem: A \Rightarrow B = -A \cup B(Y = Y) = x \times y \in A \to y \in B)= ((M = M \otimes A) = -A \cup B)(Y = Y) = x \times y \in A \to y \in B)= ((M = M \otimes A) = -A \cup B)(Y = Y) = x \times y \in A \to y \in B)x \in A \Rightarrow B = -A \cup B= ((M = M \otimes A) = M \otimes A)x \in A \Rightarrow B = -A \cup B= (y \in (x) = y = x - Exercise)x \in A \Rightarrow B = -A \cup B(Y = Y) = x \times y \in A \to y \in B)x \in A \Rightarrow x \in B= (M = M \otimes A) = M \otimes A \otimes A \otimes A = A \oplus A \otimes A \otimes$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$5 \le 5 - \text{This is Reflexivity of } \le 1$ Proving ≤ 55 $c \le 5$ $c \le 5$ $(\text{Given equivalence, with x := c) c \le c - \text{This is Reflexivity of } \le 1 With antisymmetry of \le (\text{that is, } a \le b \land b \le a \Rightarrow a = b), we obtain c = 5 — An instance of: (1547) \text{ Indirect equality:} a = b = (\forall z \cdot z \le a = z \le b) Characterisation of relative pseudocomplement of sets: X \le (A \Rightarrow B) = x \land CA \le B = (c \le 5 = (c) \le 5 - \text{Exercise!}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B = (b \le - \text{with } X = \{x\}) (x) \le A \Rightarrow B (x) \le A \Rightarrow B$		
Proving $c \le 5$: $c \le 5$ $\equiv (Given equivalence, with x := c)c \le c — This is Reflexivity of \leCalculateA \Rightarrow B = ?With antisymmetry of \le (that is, a \le b \land b \le a \Rightarrow a = b), we obtain c = 5 — An instance of:(15.47) Indirect equality:a = b = (\forall z \bullet z \le a = z \le b)Using set extensionality, that is:Calculate x \in A \Rightarrow B = x \in ?Characterisation of relative pseudocomplement of sets:x \in A \Rightarrow B\equiv (e^{c} \le a[c] \le S = - Exercise]\{x \in A \Rightarrow B == (11.13) Subset(\forall y \mid y \in (x) \land y \in B)\equiv ((11.21) Intersection)(\forall y \mid y = (x) \land y \in A \lor y \in B)\equiv (get 3 = y = x$		
$c \le 5$ $\equiv (\text{Given equivalence, with } x := c)$ $c \le c - \text{This is Reflexivity of } \le \text{Using set extensionality, that is:}$ $Calculate x \in A \Rightarrow B \equiv x \in ?$ $Calculate x \in A \Rightarrow B \equiv x \in A \Rightarrow B \equiv x \cap A \cup B$ $Calculate x \in A \Rightarrow B \equiv x \in A \Rightarrow B \equiv x \cap A \cup B$ $Calculate x \in A \Rightarrow B \equiv (11.20) \text{ Union, } (1$		
$ = (Given equivalence, with x := c) c \le c - This is Reflexivity of \le With antisymmetry of \le (that is, a \le b \land b \le a \Rightarrow a = b), we obtain c = 5 - An instance of: (1547) Indirect equality: a = b = (\forall z \cdot z \le a = z \le b) Characterisation of relative pseudocomplement of sets: X \le (A \Rightarrow B) = X \cap A \subseteq B z \in A \Rightarrow B = (e \le S = (e) \le S - Exercise!) (x) \le A \Rightarrow B = (e \le S = (e) \le S - Exercise!) (x) \cap A \le B = (e \le S = (e) \le S - Exercise!) (x) \cap A \le B = (11.13) Subset)(\forall y \mid y \in (x) \land y \le A) \ge (y \in A) \land y \in B) = ((11.21)$ Intersection) $(\forall y \mid y \in (x) \land y \le A \to y \in B) $ $= ((y \le 1) = (x - Exercise!) \land (y \mid y = xxy \in A \lor y \in B) $ $= ((9 \le 1) (y = 1) = (x) \land A \le B = -A \cup B $ $= ((11.20) \text{ Union}, (11.17) \text{ Set complement}) \land (x \in A \to x \in B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = ((11.17) Set complement, (11.20) Union) $x \in A \to B $ = (21 Calculate!		
Calculate $x \in A \Rightarrow B \equiv x \in t$ Calculate!		
$(1547) \text{ Indirect equality:} a = b \equiv (\forall z \cdot z \le a \equiv z \le b)$ Characterisation of relative pseudocomplement of sets: $X \subseteq (A \Rightarrow B) \equiv X \cap A \subseteq B$ $x \in A \Rightarrow B$ $\equiv (e \in S = \{e\} \subseteq S - Exercise\}$ $\{x\} \subseteq A \Rightarrow B$ $\equiv (Def. \Rightarrow \text{with } X \coloneqq \{x\})$ $\{x\} \cap A \subseteq B$ $\equiv (11.23) \text{ Subset}$ $(Y = J = \{e\} (x] \land A \in y \in B)$ $\equiv ((11.21) \text{ Intersection})$ $(Y = J = \{e\} (x] \land A \in y \in B)$ $\equiv ((11.21) \text{ Intersection})$ $(Y = J = \{e\} (x] \land A \in y \in B)$ $\equiv ((11.21) \text{ Intersection})$ $(Y = J = \{e\} (x] \land A \in A = y \in B)$ $\equiv ((12.20) \text{ Union}, (11.17) \text{ Set complement})$ $(Y = J = x \land y \in A \cup y \in B)$ $\equiv ((9.44) \text{ Trading for } V, \text{ Def. } \epsilon)$ $(Y = J = x \land y \in A \cup y \in B)$ $\equiv ((11.20) \text{ Union} + (11.20) \text{ Union})$ $x \in A \to x \in B$ $\equiv ((11.21) \text{ Set complement}, (11.20) \text{ Union})$ $x \in A \cup B$ $\equiv ((11.27) \text{ Set complement}, (11.20) \text{ Union})$ $x \in A \cup B$ Fower Set For Set Calculate! Calculate!		
$(15.47) Indirect equality: a = b = (\forall z \cdot z \le a = z \le b)$ Characterisation of relative pseudocomplement of sets: $X \subseteq (A \Rightarrow B) \equiv X \cap A \subseteq B$ $x \in A \Rightarrow B$ $\equiv (e \in S = (e) \subseteq S - Exercise!)$ $(x) \subseteq A \Rightarrow B$ $\equiv (Def. \Rightarrow, with X := \{x\})$ $(x) \cap A \subseteq B$ $\equiv (11.23) Subset)$ $(\forall y \mid y \in \{x\}) \land A + y \in B$) $\equiv ((11.21) Intersection)$ $(\forall y \mid y \in \{x\}) \land A + y \in B$) $\equiv ((11.21) Intersection)$ $(\forall y \mid y = x.y \in A + y \in B)$ $\equiv ((9.44) Trading for x) Def. \notin(\forall y \mid y = x.y \notin A + y \in B)\equiv ((11.20) Trading for x) Def. \notin(\forall y \mid y = x.y \notin A + y \in B)\equiv ((11.20) Trading for x) Def. \notin(\forall y \mid y = x.y \notin A + y \in B)\equiv ((11.21) Set complement, (11.20) Union)x \in A \to x \in B\equiv ((11.21) Set complement, (11.20) Union)x \in A \to x \in B\equiv ((11.21) Set complement, (11.20) Union)x \in A \to X \in B\equiv ((11.21) Set complement, (11.20) Union)x \in A \to B\equiv ((11.21) Set complement, (11.20) Union)x \in A \to X \in B\equiv ((11.21) Set complement, (11.20) Union)x \in A \to B\equiv ((11.21) Set complement, (11.20) Union)x \in A \to B\equiv ((11.21) Set complement, (11.20) Union)x \in A \to B\equiv (21.22) Union, (21.27) Set complement wrt. {} is complement:A \Rightarrow {} = x \in A \Rightarrow x \in B\equiv Say to see: On sets, relative pseudocomplement wrt. {} is complement:A \Rightarrow {} = x \in AA \Rightarrow {} = x \in A$		
$\begin{aligned} x \in A \Rightarrow B \\ &= \langle e \in s \subseteq \{e\} \subseteq S \text{ Exercise}\} \\ &\{x\} \subseteq A \Rightarrow B \\ &= \langle Def, \Rightarrow, \text{ with } X := \{x\} \\ &\{x\} \cap A \in B \\ &= \langle (11.13) \text{ Subset} \} \\ &\{x\} \cap A \in B \\ &= \langle (11.13) \text{ Subset} \} \\ &= \langle (11.21) \text{ Intersection} \rangle \\ &(\forall y \mid y \in \{x\} \cap A + y \in B) \\ &= \langle y \in \{x\} \equiv y = x \text{ Exercise} \} \\ &\{\forall y \mid y = x \land y \in A \land y \in B \end{pmatrix} \end{aligned}$ $\begin{aligned} &= \langle (9.4b) \text{ Trading for } \forall, \text{ Def}, \phi \\ &(\forall y \mid y = x \land y \notin A \lor y \in B) \\ &= \langle (8.14) \text{ One-point rule} \rangle \\ &x \notin A \lor B \\ &= \langle (11.12) \text{ Union} \rangle \\ &x \notin A \lor x \in B \\ &= \langle (11.12) \text{ Complement, } (11.20) \text{ Union} \rangle \\ &x \notin A \lor B \end{aligned}$ $\begin{aligned} &= \langle (11.12) \text{ Vinic} \rangle \\ &x \notin A \lor B \\ &= \langle (2.59) \text{ Material implication} \rangle \\ &x \notin A \Rightarrow x \in B \\ &= \langle (3.59) \text{ Material implication} \rangle \\ &x \notin A \Rightarrow x \in B \\ &= \langle (3.59) \text{ Material implication} \rangle \\ &x \notin A \Rightarrow x \in B \\ &= \langle (3.59) \text{ Material implication} \rangle \\ &x \notin A \Rightarrow x \in B \\ &= \langle (3.59) \text{ Material implication} \rangle \\ &x \notin A \Rightarrow x \in B \\ &= \langle (3.59) \text{ Material implication} \rangle \\ &x \notin A \Rightarrow x \in B \\ &= x \notin A \Rightarrow x \in B \\ &\text{Corollary "Membership in pseudocomplement":} \\ &x \notin A \Rightarrow B \\ &= x \notin A \Rightarrow B \\ &= x \notin A \Rightarrow X \oplus B \\ &\text{Easy to see: } \frac{On sets, relative pseudocomplement wrt. } \} \text{ is complement:} \\ &A \Rightarrow \{\} \\ &= -x A \\ &\text{Calculate!} \end{aligned}$		
$\begin{aligned} x \in A \Rightarrow B \\ &= \langle e \in S \equiv \{e\} \subseteq S Exercise! \rangle \\ &\{x\} \subseteq A \Rightarrow B \\ &= \langle Def, \Rightarrow, with X := \{x\} \rangle \\ &\{x\} \cap A \in B \\ &= \langle (11.13) \text{ Subset} \rangle \\ &\{y \in \{x\} \cap A = B \\ &= \langle (11.21) \text{ Intersection} \rangle \\ &\{\forall y \mid y \in \{x\} \land y \in A \rightarrow y \in B) \\ &= \langle (y \in \{x\} \equiv y = x Exercise! \rangle \\ &\{\forall y \mid y = x \land y \in A \land y \in B) \\ &= \langle (9.4b) \text{ Trading for } \forall Def, e \rangle \\ &\{\forall y \mid y = x \land y \notin A \lor y \in B) \\ &= \langle (8.14) \text{ One-point rule} \rangle \\ &x \notin A \lor B \\ &= \langle (11.20) \text{ Union} \rangle \\ &x \notin A \lor x \in B \\ &= \langle (11.20) \text{ Union} \rangle \\ &x \notin A \Rightarrow x \in B \\ &= \langle (3.59) \text{ Material implication} \rangle \\ &x \notin A \Rightarrow x \in B \\ &= \langle (3.59) \text{ Material implication} \rangle \\ &x \notin A \Rightarrow x \in B \\ &= \langle (11.17) \text{ Set complement, } (11.20) \text{ Union} \rangle \\ &x \notin A \lor B \\ &= \langle (11.17) \text{ Set complement, } (11.20) \text{ Union} \rangle \\ &x \notin A \lor B \\ &= \langle (21.20) \text{ Union} \rangle \\ &x \notin A \Rightarrow X \in B \\ &= x \notin A \Rightarrow x \in B \\ &= x \notin A \Rightarrow X \oplus A \\ &= x \notin A \Rightarrow X \oplus A \\ &= x \notin A \Rightarrow X \oplus A \\ &= x \notin A \Rightarrow X \oplus A \\ &= x \notin A \Rightarrow X \oplus $		
$\{x\} \subseteq A \Rightarrow B$ Calculation: $\{x\} \cap A \in B$ $\{(Def, \Rightarrow, with X := \{x\})$ $\{x\} \cap A \in B$ $x \in A \Rightarrow B$ $\equiv ((11.13)$ Subset) $(\forall y \mid y \in \{x\} \cap A \bullet y \in B)$ Theorem: $A \Rightarrow B = \neg A \cup B$ $x \in A \Rightarrow B$ $\equiv ((11.21)$ Intersection) $(\forall y \mid y \in \{x\} \cap y \in A \bullet y \in B)$ $Theorem: A \Rightarrow B = \neg A \cup B$ $x \in A \cup B$ $\equiv ((11.21)$ Intersection) $(\forall y \mid y = x \land y \in A \circ y \in B)$ $= ((11.20)$ Union, (11.17) Set complement) $\neg (x \in A) \lor x \in B$ $\equiv ((9.4b)$ Trading for \forall , Def, \notin $(\forall y \mid y = x \bullet y \notin A \lor y \in B)$ $= ((8.14)$ One-point rule) $x \in A \to x \in B$ $\equiv ((11.17)$ Set complement, (11.20) Union) $x \in A \to x \in B$ Corollary "Membership in pseudocomplement": $x \in A \Rightarrow B \equiv x \in A \Rightarrow x \in B$ $\equiv ((11.17)$ Set complement, (11.20) Union) $x \in A \cup B$ Easy to see: On sets, relative pseudocomplement wrt. {} is complement: $A \Rightarrow {} = -\infty A$ Power SetCalculate!		
$ \begin{array}{c} \exists \left(\operatorname{Def.} \Rightarrow, \operatorname{with} X := \{x\}\right) \\ \{x\} \cap A \subseteq B \\ \exists \left((11.13) \operatorname{Subset} \right) \\ (\forall y \mid y \in \{x\} \cap A \bullet y \in B) \\ \exists \left((11.21) \operatorname{Intersection} \right) \\ (\forall y \mid y \in \{x\} \cap y \in A \bullet y \in B) \\ \exists \left(y \in \{x\} \equiv y = x - \operatorname{Exercise!} \right) \\ (\forall y \mid y = x \wedge y \in A \bullet y \in B) \\ \exists \left((94b) \operatorname{Trading} \text{ for } \forall, \operatorname{Def.} \notin \right) \\ (\forall y \mid y = x \bullet y \notin A \bullet y \in B) \\ \exists \left((8.14) \operatorname{One-point rule} \right) \\ x \in A \to B \\ \exists \left((11.17) \operatorname{Set complement}, (11.20) \operatorname{Union} \right) \\ x \in A \to B \\ \exists \left((11.17) \operatorname{Set complement}, (11.20) \operatorname{Union} \right) \\ x \in A \to B \\ \exists \left((11.17) \operatorname{Set complement}, (11.20) \operatorname{Union} \right) \\ x \in A \to B \\ \exists \left((11.17) \operatorname{Set complement}, (11.20) \operatorname{Union} \right) \\ x \in A \to B \\ \exists \left((11.17) \operatorname{Set complement}, (11.20) \operatorname{Union} \right) \\ x \in A \to B \\ \exists \left((11.17) \operatorname{Set complement}, (11.20) \operatorname{Union} \right) \\ x \in A \to B \\ \end{bmatrix} $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$(\forall y \mid y \in \{x\} \cap A \cdot y \in B)$ Induction $(1 + e^{y} - e^{-x} + e^{y} + e^{y})$ $\equiv ((11.21)$ Intersection $)$ $(\forall y \mid y \in \{x\}, \forall y \in A \cdot y \in B)$ $\equiv (y \in \{x\} \equiv y = x - e^{-x} - e^{-x} + e^{y} \in B)$ $\equiv ((11.20)$ Union, (11.17) Set complement $)$ $(\forall y \mid y = x \wedge y \in A \cdot y \in B)$ $\equiv ((3.59)$ Material implication $)$ $x \in A \rightarrow x \in B$ $(\forall y \mid y = x \wedge y \notin A \vee y \in B)$ $\equiv ((11.17)$ Set complement, (11.20) Union $)$ $x \in A \Rightarrow x \in B$ $x \in A \rightarrow b$ $x \in A \Rightarrow x \in B$ $\equiv ((11.17)$ Set complement, (11.20) Union $)$ $x \in A \Rightarrow x \in B$ $x \in A \rightarrow B$ $x \in A \Rightarrow x \in B$ Easy to see: $On sets$, relative pseudocomplement wrt. {} is complement: $A \Rightarrow {} = -x A$ <td 2<="" column="" t<="" td=""><td></td></td>	<td></td>	
$ \begin{array}{c} = \left((1.17) \text{ Intersection} \right) \\ (\forall y \mid y \in \langle x \rangle \forall y \in A \circ y \in B \rangle \\ \equiv \left(\langle y \in \langle x \rangle \equiv y = x & - & \text{Exercise} \right) \\ (\forall y \mid y = x \wedge y \in A \circ y \in B \rangle \\ \equiv \left((9.4b) \text{ Trading for } \forall, \text{Def. } \epsilon \right) \\ (\forall y \mid y = x \circ y \notin A \lor y \in B \rangle \\ \equiv \left((8.14) \text{ One-point rule} \right) \\ x \notin A \lor x \in B \\ \equiv \left((11.17) \text{ Set complement, } (11.20) \text{ Union} \right) \\ x \in \neg A \cup B \end{array} $ $ \begin{array}{c} \text{Power Set} \end{array} \qquad \begin{array}{c} \neg (x \in A) \lor x \in B \\ \equiv \left((3.59) \text{ Material implication} \right) \\ x \in A \Rightarrow x \in B \\ \hline \text{Corollary "Membership in pseudocomplement":} \\ x \in A \Rightarrow x \in B \\ \hline \text{Calculate!} \end{array} $		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
\equiv ((9.4b) Trading for \forall , Def. \notin) (\forall y y = x • y \notin A \lor y \notin B) \equiv ((8.14) One-point rule) $x \notin A \lor x \in B$ Corollary "Membership in pseudocomplement": $x \in A \Rightarrow B \equiv x \in A \Rightarrow x \in B$ \equiv ((11.17) Set complement, (11.20) Union) $x \in \neg A \cup B$ Easy to see: On sets, relative pseudocomplement wrt. {} is complement: $A \Rightarrow$ {} = $\neg A$ Calculate!		
$(\forall y \mid y = x \cdot y \notin A \lor y \notin B)$ Corollary "Membership in pseudocomplement": $x \notin A \lor x \notin B$ $\equiv ((8.14) \text{ One-point rule})$ $x \notin A \lor x \in B$ $x \notin A \Rightarrow x \in B$ $\equiv ((11.17) \text{ Set complement, (11.20) Union})$ $x \notin A \cup B$ Easy to see: On sets, relative pseudocomplement wrt. {} is complement: $A \Rightarrow {} = -A$ Power SetCalculate!		
$x \notin A \lor x \notin B$ Easy to see: On sets, relative pseudocomplement wrt. {} is complement: $A \Rightarrow$ {} = $\sim A$ Power SetCalculate!		
\equiv (11.17) Set complement, (11.20) Union) $x \in \neg A \cup B$ Easy to see: On sets, relative pseudocomplement wrt. {} is complement: $A \Rightarrow \{\} = \neg A$ Power SetCalculate!		
Power Set Calculate!		
(11.23) Axiom, Power set: $v \in \mathbb{P}S = v \subseteq S$ The size of a finite set S is written #S.		
Declaration: \mathbb{P}_{-} : set $t \to set$ (set t) (11.23) Axiom, Power set: $v \in \mathbb{P}S \equiv v \subseteq S$		
- remember: set : Type \rightarrow Type $\bullet \#(\mathbb{P}\mathbb{B})$		
$\mathbb{P}\left\{0,1\right\} = \left\{\left\{\right\}, \{0\}, \{1\}, \{0,1\}\right\}$ $\#\left(\mathbb{P}\left\{1,2,3\right\}\right)$		
 ● For a set <i>S</i>, the set of its subsets is ℙ<i>S</i> ● # (ℙ {1,2,3,4,5}) ● # (ℙ {2,3,4,5}) 		
• For a type <i>t</i> , the type of sets of elements of type <i>t</i> is set <i>t</i> • Therefore we have: $\sum_{t=1}^{t} e^{t} = e^{t}$, $t = e^{t}$,		
• According to the textbook, type annotations $v: t$, in particular in variable • $\#(\mathbb{P}\{2,3,4,5\}) - \mathbb{P}\{1,2,3\})$		
declarations in quantifications and in set comprehensions, may only use types t. • $(\Sigma S : \mathbb{P} \{1, 2, 3, 4, 5\} \cdot (\Sigma n \mid n \in S \cdot n))$		
• (The specification notation Z allows the use of sets in variable declarations $(\Sigma S : \mathbb{P} \{1, 2, 3, 4, 5\} \mid \#S > 1 \cdot (\Sigma n \mid n \in S \cdot n))$		
$- \text{ this makes } \forall \text{ and } \exists \text{ rules more complicated.} $ $\bullet (\Sigma S : \mathbb{P} \{1, 2, 3, 4, 5\} \mid \#S > 2 \bullet (\Sigma n \mid n \in S \bullet n))$		
Calculate! Metatheorem (11.25): Sets		
• P,Q,R,\ldots be set variables		
Calculate: • p,q,r,\ldots be propositional variables • $\# \downarrow_{\mathbb{R}}^{\mathbb{B}}$ • F be expressions built from these set variables		
• $\# \subseteq \mathbb{D}^{\vee}$, • $\# \{S : set \mathbb{B} \mid true \in S \bullet S\}$ • $\# \{S : set \mathbb{B} \mid true \in S \bullet S\}$		
• # $\{T: \text{ set set } \mathbb{B} \mid \{\} \notin T \bullet T\}$ Define the Boolean expressions E_p and F_p by replacing		
• # { $S: set \mathbb{N} \mid (\forall x: \mathbb{N} \mid x \in S \bullet x < n) \land \#S = k \bullet S$ }		
$ \cup$ with \vee U with <i>true</i>		
• $\mathbb{B}_{j} = \{ false, true \}$ \cap with \land $\{ \}$ with false		
• $S \in set \mathbb{B}$, $\equiv S \subseteq \mathbb{B}$, Then:		
• set $\mathbb{B}_{j} = \{\{\}, \{false\}, \{true\}, \{false, true\}\}$ • $E = F$ is valid iff $E_p \equiv F_p$ is valid.		
• $T \in set set \mathbb{B}$, $\equiv T \subseteq \mathbb{P} \setminus \mathbb{B}$, • $E \subseteq F$ is valid iff $E_p \Rightarrow F_p$ is valid. • $E = \mathbf{U}$ is valid iff E_p is valid.		

Metatheorem (11.25): Sets \iff Propositions — Examples	Tuples and Tuple Types in CALCCHECK
Let E, F be expressions built from set variables $P, Q, R,$	Tuples can have arbitrary "arity" at least 2.
and ∪, ∩, ~ , U , {}.	Example: A triple with type: $(2, true, "Hello") : \{ \mathbb{Z}, \mathbb{B}, String \}$
Define the Boolean expressions E_p and F_p by replacing $\begin{array}{c c c c c c c c c c c c c c c c c c c $	Example: A seven-tuple: $(3, true, 5 < \epsilon, (5, false), "Hello", \{2, 8\}, \{42 < \epsilon\})$ The type of this: $(\mathbb{Z}, \mathbb{B}, Seq \mathbb{Z}, \{\mathbb{Z}, \mathbb{B}\}, String, set \mathbb{Z}, set (Seq \mathbb{Z})\}$ • Tuples are enclosed in (\ldots) as in LADM. (type "\<" and "\>") • Tuple types are enclosed in (\ldots) . (type "\ " and "\ !") • Otherwise, tuples and tuple types "work" as in Haskell. • In particular, there is no implicit nesting: $(\{A, B\}, C\}$ and $\{A, B, C\}$ and $\{A, \{B, C\}\}$ are three different types!
$ \begin{array}{ccc} P \cup (Q \cap R) &\subseteq P \cup Q \\ \vdots \\ \end{array} $	
Pairs and Pair Projections	LADM: Pairs and Cross Products
Cartesian product of types: Two-tuple types, pair types: $b:t_1$ and $c:t_2$ are well-typed iff $\langle b, c \rangle : \{t_1, t_2\}$ is well-typed. Pair projections: fst : $\{t_1, t_2\} \rightarrow t_1$ fst $\langle b, c \rangle = b$ snd : $\{t_1, t_2\} \rightarrow t_2$ snd $\langle b, c \rangle = c$ Pair equality: For $p, q: \{t_1, t_2\}$, $p = q \equiv \text{fst } p = \text{fst } q \land \text{snd } p = \text{snd } q$ Theorem "Pair extensionality": For $p: \{t_1, t_2\}$, $p = (\text{fst } p, \text{snd } p)$ Proof: $p = \langle \text{fst } p, \text{snd } p \rangle$ $= \langle \text{Pair equality} \rangle$ fst $p = \text{fst } (\text{fst } p, \text{snd } p) \land \text{snd } p = \text{snd } (\text{fst } p, \text{snd } p)$ $= \langle \text{Pair projections} \rangle$ fst $p = \text{fst } p \land \text{snd } p = \text{snd } p$ $= \langle \text{Reflexivity of equality, Idempotency of } \land \rangle$	If b and c are expressions, then $\langle b, c \rangle$ is their 2-tuple or ordered pair — "ordered" means that there is a first constituent $\langle b \rangle$ and a second constituent $\langle c \rangle$. (14.2) Axiom, Pair equality: $\langle b, c \rangle = \langle b', c' \rangle \equiv b \equiv b' \land c \equiv c'$ (14.3) Axiom, Cross product: $S \times T \equiv b \in S \land c \in T \circ \langle b, c \rangle$ } — This uses: $_x_:$ set $t_1 \rightarrow$ set $t_2 \rightarrow$ set $\{t_1, t_2\}$ (14.4) Membership: $\langle b, c \rangle \in S \times T \equiv b \in S \land c \in T$ (14.5) $\langle x, y \rangle \in S \times T \equiv \langle y, x \rangle \in T \times S$ (14.6) $S = \{\} \Rightarrow S \times T = T \times S = \}$ (14.7) $S \times T = T \times S \equiv S = \{\} \lor T = \{\} \lor S = T$ (14.8) Distributivity of \times over \cup : $S \times (T \cup U) = (S \times T) \cup (S \times U)$ $(S \cup T) \times U = (S \times U) \cup (T \times U)$ (14.9) Distributivity of \times over \neg : $S \times (T - U) = (S \times T) \cap (S \times U)$ $(S \cap T) \times U = (S \times U) \cap (T \times U)$ (14.10) Distributivity of \times over \neg : $S \times (T - U) = (S \times T) \cap (S \times U)$ $(S - T) \times U = (S \times U) \cap (T \times U)$ (14.10) Distributivity of \times over \neg : $S \times (T - U) = (S \times T) - (S \times U)$ $(S - T) \times U = (S \times U) \cap (T \times U)$ (14.12) Monotonicity: $S \subseteq S' \land T \subseteq T' \Rightarrow S \times T \subseteq S' \times T'$
Some Spice	
Converting between "different ways to take two arguments": $\begin{array}{rcl} curry & : & (\{A, B\} \rightarrow C) \rightarrow (A \rightarrow B \rightarrow C) \\ curry f x y & = & f \langle x, y \rangle \\ uncurry & : & (A \rightarrow B \rightarrow C) \rightarrow (\{A, B\} \rightarrow C) \end{array}$	Logical Reasoning for Computer Science COMPSCI 2LC3
$\begin{array}{rcl} \text{uncurry } g(x,y) &=& g(x,y) \\ \text{uncurry } g(x,y) &=& g(x,y) \end{array}$	McMaster University, Fall 2024
These functions correspond to the "Shunting" law:(3.65)Shunting: $p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$	Wolfram Kahl
The "currying" concept is named for Haskell Brooks Curry (1900–1982),	2024-10-10
but goes back to Moses Ilyich Schönfinkel (1889–1942) and Gottlob Frege (1848–1925).	General Induction
Descending Chains in NumbersConsider numbers with the usual strict-order <, and consider descending chains,	 Idea Behind Induction — How Does It Work? — Informally Proving (∀ x: t • P) by induction, for an appropriate type t: You are familiar with proving a base case and an induction step The base cases establish P[x := S], for each S that are "simplest t" The induction steps work for x : t for which we already know P[x := x] and from that establish P[x := C x] for elements C x : t that "are slightly more complicated than x". Since the construction principle(s) ("C") used in the induction step is/are sufficiently powerful to construct all x : t, this justifies (∀ x : t • P).
 Idea beind Induction — How Does It Work? — Informally Proving (∀ x: t • P) by induction, for an appropriate type t: You are familiar with proving a base case and an induction step The base cases establish P[x = S], for each 5 that are "simplest t" The induction steps work for x: i for which we already know P[x = x] and from that establish P[x = C x] for elements C x: t that "are slightly more complicated than x". Since the construction principle(s) ("C") used in the induction step is/are sufficiently powerful to construct all x: t, this justifies (∀ x: t • P). Looking at this from the other side: Each element x : t is either a "simplest element" ("S"), or constructed via a construction principle ("C") from "slightly simpler elements" y, that is, x = C y. In the first case, the base case gives you the proof for P[x := S]. In the second case, you obtain P[x := Cy] via the induction step from a proof for P[x := y], if you can find that. You can find that proof if repeated decomposition into S or C always terminates. 	Idea Behind Induction — Reduction via Well-founded Relations• Goal: prove $(\forall x: T • P x)$ for some property $P: T \to \mathbb{B}$ (with $\neg occurs('x', 'P')$)• Situation: Elements of T are related via $\geq : T \to T \to \mathbb{B}$ with "simpler" elements (constituents, predecessors, parts,) " $y \prec x$ " may read "y precedes x" or "y is an (immediate) constituent of x" or "y is simpler than x" or "y is below x"• If for every $x: T$ there is a proof that if P y for all predecessors y of x, then P x, then for every $z: T$ with $\neg (P z)$: • there is a predecessor u of z with $\neg (P u)$ • and so there is an infinite \succeq -chain (of elements c with $\neg (P c)$) starting at z.Theorem "Mathematical induction over $\langle T, \triangleleft \rangle$ ": If there are no infinite \succeq -chains in T, (that is, if \dashv is noetherian), then: $(\forall x • P x) \equiv (\forall x • (\forall y \mid y \dashv x • P y) \Rightarrow P x)$

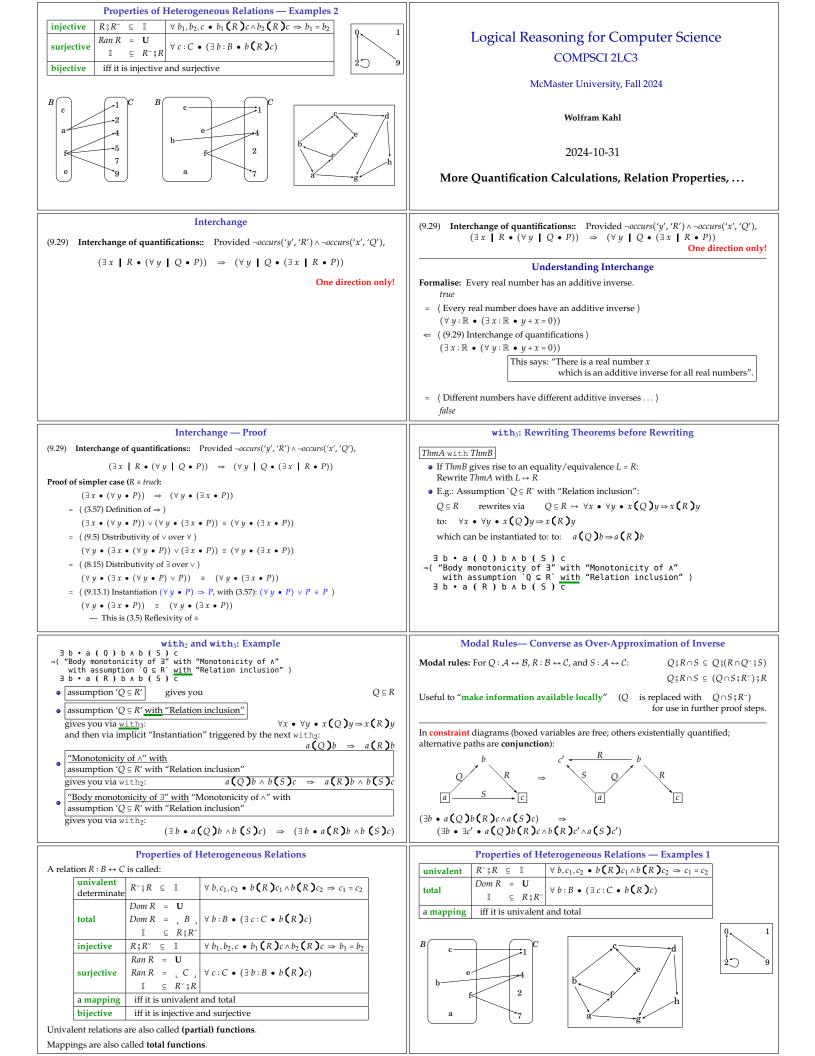
	X. d d. IX. L. d N
" (T, z) Admits Induction" (LADM Section 12.4)	$\begin{array}{l} \text{Mathematical Induction in } \mathbb{N} \\ \text{Consider } _{}_{\!\!\!\!}: \mathbb{N} \to \mathbb{N} \to \mathbb{B} \text{ with } (x \not \prec y) = (y \not \succ x) = (y = suc x). _{}_{\!\!\!\!}= `suc_`$
Definition (12.19): (T, \prec) admits induction iff the following principle of mathematical induction over (T, \prec) holds for all properties $P : T \rightarrow \mathbb{B}$:	Mathematical induction over (\mathbb{N}, \mathbf{z}) :
$(\forall x \bullet P x) \equiv (\forall x \bullet (\forall y \mid y \prec x \bullet P y) \Rightarrow P x)$	$(\forall x : \mathbb{N} \bullet P x)$
Definition (12.21): (T, \prec) is well-founded iff every non-empty subset of <i>T</i> has a minimal	= ((12.19) Math. induction; Def. ⊰)
element wrt. \prec , that is: $\forall S : \text{set } T \bullet S \neq \{\} \equiv \exists x : T \bullet x \in S \land \forall y : T \mid y \prec x \bullet y \notin S$	$(\forall x : \mathbb{N} \bullet (\forall y : \mathbb{N} \mid suc y = x \bullet P y) \Rightarrow P x)$
	= $\langle \text{Disjoint range split, with } true \equiv x = 0 \lor x > 0 \rangle$ ($\forall x \in \mathbb{N}$ $x = 0 \Rightarrow (\forall y \in \mathbb{N}$ $x = 0 \Rightarrow (x = x \Rightarrow x \Rightarrow x) \Rightarrow 0 \Rightarrow 0$)
Theorem (12.22): (T, \prec) is well-founded iff it admits induction.	$(\forall x : \mathbb{N} \mid x = 0 \bullet (\forall y : \mathbb{N} \mid \text{suc } y = x \bullet P y) \Rightarrow P x) \land (\forall x : \mathbb{N} \mid x > 0 \bullet (\forall y : \mathbb{N} \mid \text{suc } y = x \bullet P y) \Rightarrow P x)$
Definition (12.25'): (T, \prec) is noetherian iff there are no infinite \succeq -chains in <i>T</i> .	= (One-point rule; (8.22) Change of dummy $-x \mapsto \text{Suc } z$)
Definition (12.25''): (T, \prec) is noetherian iff $\neg (\exists s : \mathbb{N} \to T \bullet \forall n : \mathbb{N} \bullet s (n+1) \prec s n)$	$((\forall y:\mathbb{N} \text{suc } y = 0 \bullet P y) \Rightarrow P 0) \land$
Theorem (12.26): (T, \prec) is well-founded iff it is noetherian.	$(\forall z : \mathbb{N} \bullet (\forall y : \mathbb{N} \operatorname{suc} y = \operatorname{suc} z \bullet P y) \Rightarrow P(\operatorname{suc} z))$
Theorem "Mathematical induction over (T, \prec) ": If there are no infinite \succeq -chains in <i>T</i> , that is, if \prec is noetherian , then:	$= \begin{pmatrix} (8.13) \text{ Empty range, with suc } y = 0 \equiv false; \\ \text{Cancellation of suc, } (8.14) \text{ One-point rule for } \forall \end{pmatrix}$
$(\forall x \bullet P x) \equiv (\forall x \bullet (\forall y \mid y \triangleleft x \bullet P y) \Rightarrow P x)$	$P 0 \land (\forall z : \mathbb{N} \bullet P z \Rightarrow P (\operatorname{suc} z))$
Mathematical Induction in ℕ (ctd.)	Natural Numbers Generated from 0 and SUC — Explicit Induction Principle
Mathematical induction over $(\mathbb{N}, ^{r}Suc^{2})$:	Mathematical induction over (\mathbb{N}, suc) :
$(\forall x : \mathbb{N} \bullet P x) \equiv P 0 \land (\forall z : \mathbb{N} \bullet P z \Rightarrow P (\operatorname{suc} z))$	$(\forall n : \mathbb{N} \bullet P n) \equiv P 0 \land (\forall n : \mathbb{N} \bullet P n \Rightarrow P (\operatorname{suc} n))$
	As inference rule underlying "Du induction on `u. N`".
$(\forall x : \mathbb{N} \bullet P x) \equiv P 0 \land (\forall z : \mathbb{N} \bullet P z \Rightarrow P (z+1))$	As inference rule underlying "By induction on ` $n : \mathbb{N}$ ": With variable $P : \mathbb{N} \to \mathbb{B}$: With $P : \mathbb{B}$ as metavariable for an expression: "P n"
Absence of infinite descending 'SuC' chains is due to the inductive definition of \mathbb{N} with constructors 0 and Suc : "and nothing else is a natural number."	$\frac{P 0 \qquad P(\operatorname{suc} n)}{P n} \qquad \frac{P[n \coloneqq 0] \qquad P[n \coloneqq \operatorname{suc} n]}{P}$
Mathematical induction over $(\mathbb{N},<)$ "Complete induction over \mathbb{N} ":	As axiom / theorem — LADM p. 219: "weak induction":
$(\forall x : \mathbb{N} \bullet Px) \equiv (\forall x : \mathbb{N} \bullet (\forall y : \mathbb{N} \mid y < x \bullet Py) \Rightarrow Px)$	Axiom "Induction over ℕ":
Complete induction gives you a stronger induction hypothesis	P[n := 0] $\Rightarrow (\forall n : \mathbb{N} \mid P \bullet P[n := \operatorname{suc} n])$
for non-zero x — some proofs become easier.	$\Rightarrow (\forall n : \mathbb{N} \bullet P)$
Denoting #Disk (identify a for # train of the Industrian Dair sints (-0)	Durania = #Dialetita = Communication = Communi
Proving "Right-identity of +" Using the Induction Principle (v0) Axiom "Induction over N":	Proving "Right-identity of +" Using the Induction Principle (v1) Axiom "Induction over N":
P[n = 0]	P[n = 0]
<pre></pre>	→ (∀ n : N P • P[n = suc n]) → (∀ n : N • P)
Theorem "Right-identity of +": $\forall m : \mathbb{N} \cdot m + \theta = m$	Theorem "Right-identity of +": $\forall m : \mathbb{N} \cdot m + \Theta = m$
Proof: Using "Induction over ℕ": Subproof for `(m + 0 = m)[m = 0]`:	Proof: Using "Induction over ℕ":
By substitution and "Definition of +" Subproof for $\forall m : \mathbb{N} \mid m + \theta = m \cdot (m + \theta = m)[m = suc m]`:$	Subproof for `0 + 0 = 0`: By "Definition of +"
For any `m : \mathbb{N} ` satisfying `m + Θ = m`:	Subproof for ` \forall m : \mathbb{N} m + θ = m • suc m + θ = suc m`: For any `m : \mathbb{N} ` satisfying `m + θ = m`:
<pre>(m + 0 = m)[m = suc m] =(Substitution, "Definition of +")</pre>	suc m + θ =("Definition of +")
suc $(m + 0) = suc m$ =(Assumption `m + 0 = m`, "Reflexivity of =")	suc (m + 0)
true	=(Assumption `m + 0 = m`) suc m
(I never use this pattern with substitutions in the subproof goals.)	
Proving "Right-identity of +" Using the Induction Principle (v2)	"By induction on " versus Using Induction Principles
Theorem "Right-identity of +": $\forall m : \mathbb{N} \cdot m + \Theta = m$ Proof:	• Using induction principles directly is not much more verbose than "By
Using "Induction over N": Axiom "Induction over N":	induction on"
$ \begin{array}{c} 0 + 0 \\ = ("Dofinition of "") \\ \end{array} $	• "By induction on" only supports very few built-in induction principles
0	 Induction principles can be derived as theorems, or provided as axioms, and
Subproof: For any `m : ℕ` satisfying "IndHyp" `m + θ = m`:	then can be used directly!
<pre>suc m + 0 =("Definition of +")</pre>	
suc (m + 0) =(Assumption "IndHyp")	
SUC m	
 (Subproof goals can be omitted where they are clear from the contained proof.) 	
 You need to understand (v0) and (v1) to be able to do (v2)! 	
Mathematical Induction on Sequences	Sequences — Induction Principle Cons induction: Mathematical induction over (Seq A, \exists) where
Cons induction: Mathematical induction over (Seq A, \prec) where	$xs \prec ys \equiv \exists x: A \bullet x \triangleleft xs = ys$
$xs \prec ys \equiv \exists x : A \bullet x \triangleleft xs = ys$	$(\forall xs: \mathbf{Seq} A \bullet P xs) \equiv P \epsilon \land (\forall xs: \mathbf{Seq} A \mid P xs \bullet (\forall x: A \bullet P(x \triangleleft xs)))$
$(\forall xs : \mathbf{Seq} A \bullet P xs) \equiv P \epsilon \land (\forall xs : \mathbf{Seq} A \mid P xs \bullet (\forall x : A \bullet P(x \triangleleft xs)))$	
Snoc induction: Mathematical induction over (Seq A , \prec) where	As inference rule underlying "By induction on `xs : Seq A `": With variable P : Seq $A \rightarrow \mathbb{B}$: With $P : \mathbb{B}$ as metavariable for an expression:
$xs \prec ys \equiv \exists x : A \bullet xs \triangleright x = ys$ $(\forall xc : Seq A \bullet P xc) = P(A (\forall xc : Seq A \models P xc \bullet (\forall x : A \bullet P(xc \triangleright x)))$	'P xs' 'P'
$(\forall xs: \mathbf{Seq} A \bullet Pxs) \equiv P \epsilon \land (\forall xs: \mathbf{Seq} A \mid Pxs \bullet (\forall x: A \bullet P(xs \triangleright x)))$	$\begin{bmatrix} \vdots \\ P_{\ell} & \forall \mathbf{y} \bullet P(\mathbf{y} \bullet \mathbf{y} \mathbf{s}) & P[\mathbf{y} \mathbf{s} \cdot \mathbf{z} \bullet \ell] & \forall \mathbf{y} \bullet P[\mathbf{y} \mathbf{s} \cdot \mathbf{y} \bullet \mathbf{y} \mathbf{s}] \end{bmatrix}$
Strict prefix induction: Mathematical induction over (Seq A , \prec) where $xs \prec ys \equiv \exists z : A; zs : Seq A \bullet xs \sim z \triangleleft zs = ys$	$\frac{P \ \epsilon}{P \ xs} \qquad \frac{P[xs \coloneqq \epsilon]}{P[xs} \qquad \frac{P[xs \coloneqq \epsilon]}{P[xs \coloneqq \epsilon]} \qquad \frac{P[xs \coloneqq \epsilon]}{P[xs \coloneqq x \triangleleft xs]}$
$(\forall xs: \mathbf{Seq} A \bullet P xs) \equiv (\forall xs: \mathbf{Seq} A \bullet P xs) = (\forall xs: \mathbf{Seq} A $	Axiomn "Induction over sequences":
$(\forall xs : Seq A \bullet (\forall ys : Seq A \mid ys \prec xs \bullet P ys) \Rightarrow P xs)$	$P[xs := \epsilon]$
Different induction hypotheses make certain proofs easier.	$\Rightarrow (\forall xs : \text{Seq } A \mid P \bullet (\forall x : A \bullet P[xs := x \triangleleft xs]))$ $\Rightarrow (\forall xs : \text{Seq } A \bullet P)$

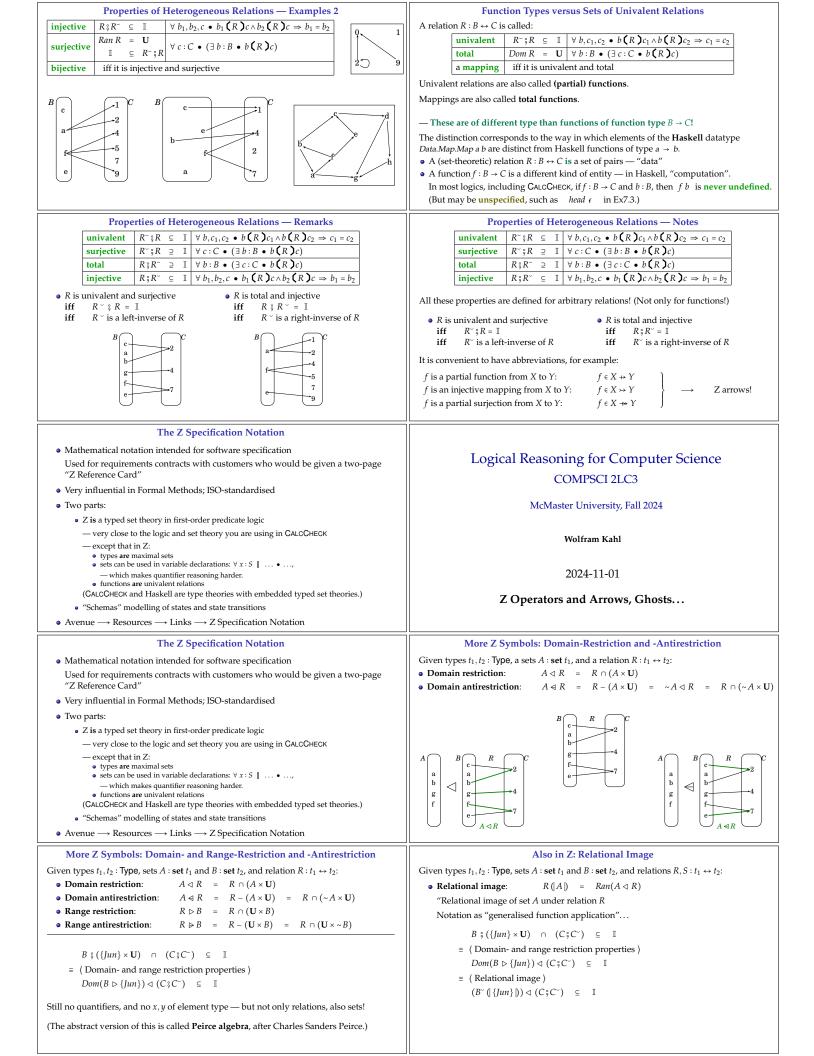
Declaration:	Structural Induction — Remember!
Declaration: $_____$: Tree A \rightarrow A \rightarrow Tree A \rightarrow Tree A \rightarrow Tree A	Theorem (12.19) Mathematical induction over (T, \prec) , if \prec is well-founded
Fact "Alternative definition of `t1`": $t1 = (\lceil 2 \rfloor \ a \ 3 \land \lceil 5 \rfloor)$	$(\forall x \bullet P x) \equiv (\forall x \bullet (\forall y \mid y \prec x \bullet P y) \Rightarrow P x)$
	Structural induction is mathematical induction over, e.g.,
Declaration: _⊰_ : Tree A → Tree A → B Axiom "HTree ⊰":	• finite sequences with the strict suffix relation
(t ⊰ △ = false)	• expressions with the direct constituent relation
$\Lambda (t \prec (l \sqcup x \lor r) \equiv t = l \lor t = r)$ Theorem (12.10) Mathematical induction over (T, z) if z is well founded	• propositional formulae with the strict subformula relation
Theorem (12.19) Mathematical induction over (T, \prec) , if \prec is well-founded $(\forall x \bullet P x) \equiv (\forall x \bullet (\forall y \mid y \prec x \bullet P y) \Rightarrow P x)$	• trees with the appropriate strict subtree relation
Equivalently:	
Axiom "Tree induction": P[t = △]	 proofs with appropriate strict sub-proof relation
	• programs with appropriate strict sub-program relation
) ⇒ (∀ t : Tree A • P)	•
	with — Overview CALCCHECK currently knows three kinds of "with":
Logical Reasoning for Computer Science	 "with": For explicit substitutions: "Identity of +" with 'x := 2'
COMPSCI 2LC3	• <i>ThmA</i> with <i>ThmB</i> and <i>ThmB</i> ₂
COMITSCI 2LCS	• "with_2": If <i>ThmA</i> gives rise to an implication $A_1 \Rightarrow A_2 \Rightarrow \dots (L = R)$:
McMaster University, Fall 2024	Perform conditional rewriting , rigidly applying $L\sigma \mapsto R\sigma$
	if using <i>ThmB</i> and <i>ThmB</i> ₂ to prove $A_1\sigma, A_2\sigma, \ldots$ succeeds
Wolfram Kahl	Using hi_1 :
	sp_1 is essentially syntactic sugar for: By hi_1 with sp_1 and sp_2 sp_2
2024-10-11	• "with ₃ ": ThmA with ThmB
	 With3 : InmA with InmB If ThmB gives rise to an equality/equivalence L = R:
Part 2: with ₂ and with ₃	Rewrite $ThmA$ with $L \mapsto R$ to $ThmA'$,
	and use $ThmA'$ for rewriting the goal.
with ₂ : Conditional Rewriting	Limitations of Conditional Rewriting Implementation of with ₂
ThmA with ThmB and ThmB ₂	• If <i>ThmA</i> gives rise to an implication $A_1 \Rightarrow A_2 \Rightarrow \dots (L = R)$:
• If <i>ThmA</i> gives rise to an implication $A_1 \Rightarrow A_2 \Rightarrow \dots (L = R)$,	• Find substitution σ such that $L\sigma$ matches goal
where $FVar(L) = FVar(A_1 \Rightarrow A_2 \Rightarrow \dots (L = R))$:	• Resolve $A_1\sigma$, $A_2\sigma$, using <i>ThmB</i> and <i>ThmB</i> ₂ • Rewrite goal applying $L\sigma \mapsto R\sigma$ rigidly.
• Find substitution σ such that $L\sigma$ matches goal	• E.g.: "Transitivity of \subseteq " with Assumptions $Q \cap S \subseteq Q$ and $Q \subseteq R$
 Resolve A₁σ, A₂σ, using ThmB and ThmB₂ Rewrite goal applying Lσ → Rσ rigidly. 	when trying to prove $Q \cap S \subseteq R$ • "Transitivity of \subseteq " is: $Q \subseteq R \Rightarrow R \subseteq S \Rightarrow Q \subseteq S$
	• For application, a fresh renaming is used: $q \subseteq r \Rightarrow r \subseteq s \Rightarrow q \subseteq s$
• E.g.: "Cancellation of " with Assumption $(m + n \neq 0)$	• We try to use: $q \subseteq s \mapsto true$, so L is: $q \subseteq s$ • Matching L against goal produces $\sigma = [q, s \coloneqq Q \cap S, R]$
when trying to prove $(m + n) \cdot (n + 2) = (m + n) \cdot 5 \cdot k$: • "Cancellation of ." is: $c \neq 0 \Rightarrow (c \cdot a = c \cdot b \equiv a = b)$	• $(q \subseteq r)\sigma$ is $(Q \cap S \subseteq r)$, and $(r \subseteq s)\sigma$ is $r \subseteq R$
• We try to use: $c \cdot a = c \cdot b \mapsto a = b$, so L is $c \cdot a = c \cdot b$	— which cannot be proven by "Assumption $Q \cap S \subseteq Q'''$ resp. by "Assumption $Q \subseteq R'''$
• Matching <i>L</i> against goal produces $\sigma = [a, b, c := (n+2), (5 \cdot k), (m+n)]$	 Narrowing or unification would be needed for such cases — not yet implemented
• $(c \neq 0)\sigma$ is $(m+n) \neq 0$ and can be proven by "Assumption ' $m + n \neq 0$ "	 Adding an explicit substitution should help:
• The goal is rewritten to $(a = b)\sigma$, that is, $(n + 2) = 5 \cdot k$.	"Transitivity of \subseteq " with ` <i>R</i> := <i>Q</i> ` and assumption ` <i>Q</i> ∩ <i>S</i> \subseteq <i>Q</i> ` and assumption ` <i>Q</i> \subseteq <i>R</i> `
with3: Rewriting Theorems before Rewriting	with3: Rewriting Theorems before Rewriting
ThmA with ThmB	ThmA with ThmB
• If <i>ThmB</i> gives rise to an equality/equivalence $L = R$: Rewrite <i>ThmA</i> with $L \mapsto R$	• If <i>ThmB</i> gives rise to an equality/equivalence <i>L</i> = <i>R</i> :
• E.g.: Assumption $p \Rightarrow q$ with (3.60) $p \Rightarrow q \equiv p \land q \equiv q$	Rewrite <i>ThmA</i> with $L \mapsto R$ • E.g.: "Instantiation" with (3.60)
The local theorem $p \Rightarrow q$ (resulting from the Assumption)	"Instantiation" $(\forall x \bullet P) \Rightarrow P[x := E]$ rewrites via (3.60) $q \Rightarrow r \mapsto q \equiv q \land r$
rewrites via: $p \Rightarrow q \mapsto p \equiv p \land q$ (from (3.60))	to: $(\forall x \bullet P) \equiv (\forall x \bullet P) \land P[x \coloneqq E]$
to: $p \equiv p \land q$ which can be used for the rewrite: $p \mapsto p \land q$	which can be used as: $(\forall x \bullet P) \mapsto (\forall x \bullet P) \land P[x := E]$
Theorem (4.3) "Left-monotonicity of \land ": $(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r))$ Proof:	H11: $(\forall x : \mathbb{Z} \bullet 5 < f x)$
Assuming $p \Rightarrow q^{:}$ $p \land r$	$\equiv ("Instantiation" with "Definition of \Rightarrow via \land " (3.60))$
$\equiv \langle Assumption p \Rightarrow q \text{ with "Definition of } \Rightarrow \text{ via } \land " \rangle$	$(\forall x : \mathbb{Z} \bullet 5 < f x) \land (5 < f x)[x := 9]$
$ \begin{array}{c} p \land q \land r \\ \Rightarrow \langle \text{"Weakening"} \rangle \end{array} $	$\Rightarrow (\text{``Monotonicity of } \land '' \text{ with ``Instantiation'' }) \qquad $
q ^ r	
How can you simplify if you know $P_1 \Rightarrow P_2$?	How can you simplify if you know $S_1 \subseteq S_2$?
⋮ : = () = ()	: :
$\equiv (\dots) \qquad \equiv (\dots) \\ \dots \lor P_1 \lor P_2 \lor \dots \qquad \dots \land P_1 \land P_2 \land \dots$	= ()
$\equiv \langle ? \rangle \qquad \equiv \langle ? \rangle$	$\ldots \cup S_1 \cup S_2 \cup \ldots \qquad \ldots \cap S_1 \cap S_2 \cap \ldots$
? ?	= (?) = (?)
	? ?
≡ () ≡ ()	
$\dots \lor P_1 \lor P_2 \lor \dots \qquad \dots \land P_1 \land P_2 \land \dots$	
$\equiv \langle \text{ "Reason for } P_1 \Rightarrow P_2 \text{"} \qquad \equiv \langle \text{ "Reason for } P_1 \Rightarrow P_2 \text{"} \\ \text{with "Def. of } \Rightarrow \text{via } \land \text{"} \rangle \qquad \text{with "Def. of } \Rightarrow \text{via } \land \text{"} \rangle$	\rightarrow Set Theory:
with "Def. of \Rightarrow via \land ") $\lor P_2 \lor$ $\land P_1 \land$	• "Set inclusion via \cup " $S \subseteq T \equiv S \cup T = T$
	• "Set inclusion via \cap " $S \subseteq T \equiv S \cap T = S$

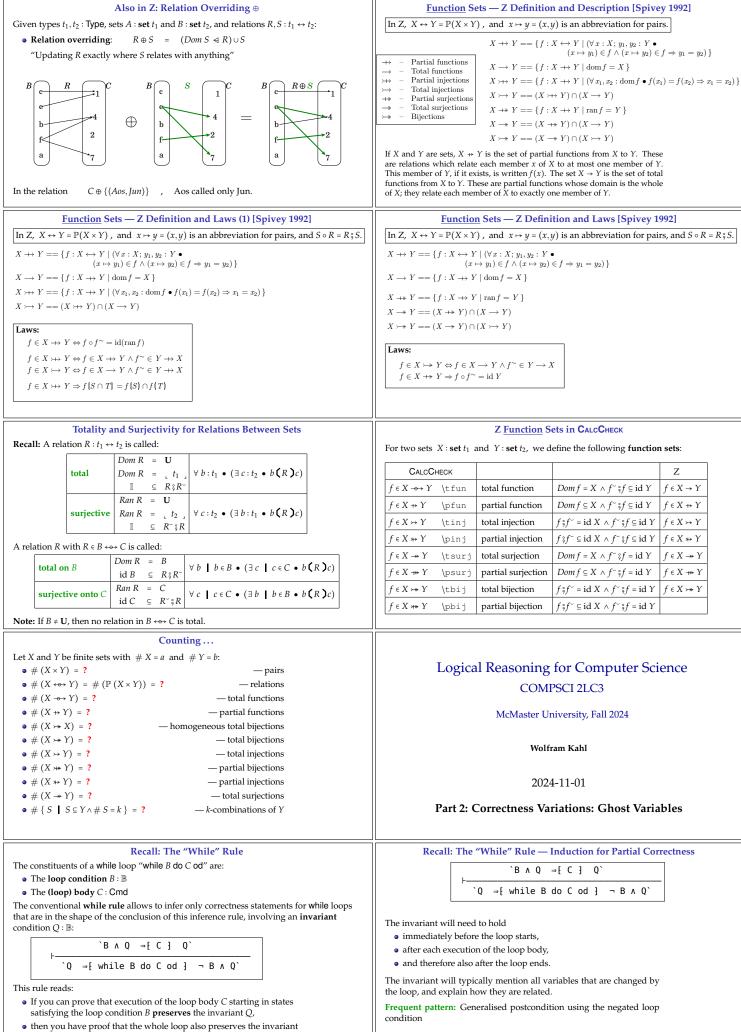


Notation for Relationship	Experimental Key Bindings
Notations for "x is related via R with y'' :	— US keyboard only! Firefox only?
• explicit membership notation: $\langle x, y \rangle \in R$ • ambiguous traditional infix notation: $x R y$	
• CALCCHECK: x (R)y	• Alt-= for \equiv in addition to $=$
Type "\ ((\dots \))" for these "tortoise shell bracket" Unicode codepoints	• Alt-< for (in addition to \<
The operator $(t_1 \leftrightarrow t_2) \to t_2 \to \mathbb{B}$ • is conjunctional:	 Alt-> for) in addition to \> Alt-(for (in addition to \((
$(1 = x (R) y < 5) \equiv (1 = x) \land (x (R) y) \land (y < 5)$ • and calculational:	Alt-) for) in addition to \))
x	
$ \begin{array}{c} (R) & \langle \text{ Reason why } x (R) y \rangle \\ y \end{array} $	
Set Operations Used as Operations on Binary Relations Relation union: $\langle u, v \rangle \in (R \cup S) = \langle u, v \rangle \in R \lor \langle u, v \rangle \in S$	Empty and Universal Binary Relations
$u(\mathbf{R} \cup \mathbf{S})\mathbf{v} \equiv u(\mathbf{R})\mathbf{v} \lor u(\mathbf{S})\mathbf{v}$	• The empty relation on (t_1, t_2) is $\{\} : t_1 \leftrightarrow t_2$ $\langle x, y \rangle \in \{\} = false$
Relation intersection: $u(R \cap S)v = u(R)v \wedge u(S)v$	
Relation difference: $u(R-S)v \equiv u(R)v \land \neg(u(S)v)$ Relation complement: $u(\sim R)v \equiv \neg(u(R)v)$	• The universal relation on (t_1, t_2) is (t_1, t_2) , $: t_1 \leftrightarrow t_2$ or $\mathbf{U} : t_1 \leftrightarrow t_2$ $\mathbf{v} (t_1, t_2) \mathbf{u} = true$ $\mathbf{v} (\mathbf{U}) \mathbf{u} = true$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Relation extensionality: $R = S \equiv (\forall x \cdot \forall y \cdot x(R)y \equiv x(S)y)$ $R = S \equiv (\forall x, y \cdot x(R)y \equiv x(S)y)$	• The universal relation on $B \times C$ is $B \times C$
<u>Relation inclusion</u> : $R \subseteq S \equiv (\forall x \bullet \forall y \bullet x (R) y \Rightarrow x (S) y)$	$x (B \times C) y = x \in B \land y \in C$
$R \subseteq S \equiv (\forall x \cdot \forall y \mid x (R)y \cdot x (S)y)$ $R \subseteq S \equiv (\forall x, y \cdot x (R)y \Rightarrow x (S)y)$	(14.4) $\langle x, y \rangle \in B \times C \equiv x \in B \land y \in C$
$R \subseteq S = (\forall x, y \bullet x (R)y \Rightarrow x (S)y)$ $R \subseteq S = (\forall x, y \mid x (R)y \bullet x (S)y)$	
Relation-Algebraic Operations: Operations on Relations	
• Set operations \sim , \cup , \cap , $-$, \Rightarrow are all available.	Logical Personing for Commuter Science
• If $R: B \leftrightarrow C$, then its converse $R^{\sim}: C \leftrightarrow B$	Logical Reasoning for Computer Science COMPSCI 2LC3
(in the textbook called "inverse" and written: R^{-1})	COMPSCI 2LC5
stands for "going <i>R</i> backwards": • If $R: B \leftrightarrow C$ and $S: C \leftrightarrow D$, • $B \xrightarrow{R} C \xrightarrow{S} D$	McMaster University, Fall 2024
then their composition R ; S (in the textbook written: $R \circ S$)	Wolfram Kahl
is a relation in $B \leftrightarrow D$, and stands for "going first a step via R , and then a step via S'' :	
$b(R;S)d \equiv (\exists c: C \bullet b(R)c(S)d)$	2024-10-24
The resulting relation algebra allows concise formalisations without quantifications,	Relations in Set Theory (ctd.)
enables simple calculational proofs.	
What is a Binary Relation?	Binary Relation Types Contain Subsets of Cartesian Products
	• The type of binary relations between types t_1 and t_2 : $t_1 \leftrightarrow t_2 = \text{set } \{t_1, t_2\} - \text{ \rel Theorem "Universe of relations"}$
	• The set of binary relations between sets <i>B</i> and <i>C</i> : $t_1 \leftrightarrow t_2$, $=$ t_1 , $\leftrightarrow t_2$, t_2 ,
A binary relation	$B \leftrightarrow C = \mathbb{P}(B \times C)$ — \Rel Proof: Using "Set extensionality":
is a set of pairs.	Note that for a type t, the universal setFor any $R: t_1 \leftrightarrow t_2$: $R \in t_1 \leftrightarrow t_2$
is a set of pairs.	U: set t $\equiv \langle "Definition of *" \rangle$ is the set of all members of t. $R \in _{c}$ set (t_1, t_2)
	Or, $(\mathbf{U}: \mathbf{set} t)$ is "type t as a set". $\mathbb{E} \left\{ \begin{array}{c} \text{"Universe of sets"} \\ \mathbb{E} \left\{ \begin{array}{c} \mathbb{E} \left\{ \begin{array}{c} \mathbb{E} t \\ $
	We abbreviate: $t_{i} := (\mathbf{U} : set t),$ $\mathbf{K} \in \mathbb{T} \setminus \{1, 1/2\},$ (\llcorner \lrcorner) and have: $\equiv \langle "Universe of pairs" \rangle$ $R \in \mathbb{P} \setminus \{1, 1 \times \{1/2\}, 2\}$
	$S \in \operatorname{set} t = S \subseteq t $ $\equiv ("Definition of \leftrightarrow ")$
Domain and Damas at Diman D. 1. (1997)	"Universe of sets": set $t_{j} = \mathbb{P}_{t_{j}}$ $R \in t_{1}$, $e^{it_{j}}$ $R \in t_{2}$
Domain and Range of Binary Relations For $R: t_1 \leftrightarrow t_2$, we define $Dom R$: set t_2 and $Ran R$: set t_3 as follows:	
For $R: t_1 \leftrightarrow t_2$, we define $Dom R$: set t_1 and $Ran R$: set t_2 as follows:	"Universe of sets": $(set t) = \mathbb{P}(t)$ Formalise Without Quantifiers!
	"Universe of sets": $set t = \mathbb{P} t$, Formalise Without Quantifiers! P = type of persons $C : P \leftrightarrow P$
For $R: t_1 \leftrightarrow t_2$, we define $Dom R: set t_1$ and $Ran R: set t_2$ as follows: (14.16) $Dom R = \{x: t_1 \mid (\exists y: t_2 \bullet x (R) y)\} = \{p \mid p \in R \bullet fst p\} = map_{set} fst R$ (14.17) $Ran R = \{y: t_2 \mid (\exists x: t_1 \bullet x (R) y)\} = \{p \mid p \in R \bullet snd p\} = map_{set} snd R$	"Universe of sets": $set t = \mathbb{P} t = \mathbb{P} t$ Formalise Without Quantifiers! P = type of persons $C : P \leftrightarrow P$ p (C) q = p called q
For $R: t_1 \leftrightarrow t_2$, we define $Dom R: \operatorname{set} t_1$ and $Ran R: \operatorname{set} t_2$ as follows: (14.16) $Dom R = \{x: t_1 \mid (\exists y: t_2 \bullet x (R) y)\} = \{p \mid p \in R \bullet \operatorname{fst} p\} = \operatorname{map}_{\operatorname{set}} fst R$ (14.17) $Ran R = \{y: t_2 \mid (\exists x: t_1 \bullet x (R) y)\} = \{p \mid p \in R \bullet \operatorname{snd} p\} = \operatorname{map}_{\operatorname{set}} snd R$ "Membership in ` Dom '": $x \in Dom R \equiv (\exists y: t_2 \bullet x (R) y)$ Bob $define get for get $	"Universe of sets": $set t = \mathbb{P} t$ Formalise Without Quantifiers! P = type of persons $C : P \leftrightarrow P$ p (C)q = p called $qRemember: For R: t_1 \leftrightarrow t_2:"Membership in `Dom'":x \in Dom R \equiv (\exists y: t_2 \bullet x(R)y)"Membership in `Ran'":$
For $R: t_1 \leftrightarrow t_2$, we define $Dom R: \operatorname{set} t_1$ and $Ran R: \operatorname{set} t_2$ as follows: (14.16) $Dom R = \{x: t_1 \mid (\exists y: t_2 \circ x (R) y)\} = \{p \mid p \in R \circ \operatorname{fst} p\} = \operatorname{map}_{\operatorname{set}} fst R$ (14.17) $Ran R = \{y: t_2 \mid (\exists x: t_1 \circ x (R) y)\} = \{p \mid p \in R \circ \operatorname{snd} p\} = \operatorname{map}_{\operatorname{set}} snd R$ "Membership in `Dom`": $x \in Dom R \equiv (\exists y: t_2 \circ x (R) y)$ "Membership in `Ran": $y \in Ran R \equiv (\exists x: t_1 \circ x (R) y)$	"Universe of sets": $\underbrace{set t}_{} = \mathbb{P}_{\underbrace{t}}_{} t$, Formalise Without Quantifiers! P = type of persons $C : P \leftrightarrow P$ p (C) q = p called q Remember: For $R: t_1 \leftrightarrow t_2$: "Membership in 'Dom'": $x \in Dom R \equiv (\exists y: t_2 \bullet x(R)y)$
For $R: t_1 \leftrightarrow t_2$, we define $Dom R: set t_1$ and $Ran R: set t_2$ as follows: (14.16) $Dom R = \{x: t_1 \mid (\exists y: t_2 \bullet x (R) y)\} = \{p \mid p \in R \bullet fst p\} = map_{set} fst R$ (14.17) $Ran R = \{y: t_2 \mid (\exists x: t_1 \bullet x (R) y)\} = \{p \mid p \in R \bullet snd p\} = map_{set} snd R$ "Membership in `Dom'": $x \in Dom R \equiv (\exists y: t_2 \bullet x (R) y)$ "Membership in `Ran'": $y \in Ran R \equiv (\exists x: t_1 \bullet x (R) y)$ "Membership in `Ran'": $y \in Ran R \equiv (\exists x: t_1 \bullet x (R) y)$	"Universe of sets": $set t = \mathbb{P} t$ Formalise Without Quantifiers! P = type of persons $C : P \leftrightarrow P$ p(C)q = p called $qRemember: For R: t_1 \leftrightarrow t_2:"Membership in `Dom'":x \in Dom R \equiv (\exists y: t_2 \bullet x(R)y)"Membership in `Ran'":y \in Ran R \equiv (\exists x: t_1 \bullet x(R)y)\bullet Helen called somebody.$
For $R: t_1 \leftrightarrow t_2$, we define $Dom R: \operatorname{set} t_1$ and $Ran R: \operatorname{set} t_2$ as follows: (14.16) $Dom R = \{x: t_1 \mid (\exists y: t_2 \circ x (R) y)\} = \{p \mid p \in R \circ \operatorname{fst} p\} = \operatorname{map}_{\operatorname{set}} fst R$ (14.17) $Ran R = \{y: t_2 \mid (\exists x: t_1 \circ x (R) y)\} = \{p \mid p \in R \circ \operatorname{snd} p\} = \operatorname{map}_{\operatorname{set}} snd R$ "Membership in ` Dom '": $x \in Dom R \equiv (\exists y: t_2 \circ x (R) y)$ "Membership in ` Ran ": $y \in Ran R \equiv (\exists x: t_1 \circ x (R) y)$ The set f_2 is the	"Universe of sets": $set t = \mathbb{P} t$ Formalise Without Quantifiers! P = type of persons $C : P \leftrightarrow P$ p(C)q = p called $qRemember: For R: t_1 \leftrightarrow t_2:"Membership in `Dom'":x \in Dom R \equiv (\exists y: t_2 \bullet x(R)y)"Membership in `Ran'":y \in Ran R \equiv (\exists x: t_1 \bullet x(R)y)$
For $R: t_1 \leftrightarrow t_2$, we define $Dom R: \operatorname{set} t_1$ and $Ran R: \operatorname{set} t_2$ as follows: (14.16) $Dom R = \{x: t_1 \mid (\exists y: t_2 \bullet x (R) y)\} = \{p \mid p \in R \bullet \operatorname{fst} p\} = \operatorname{map}_{\operatorname{set}} fst R$ (14.17) $Ran R = \{y: t_2 \mid (\exists x: t_1 \bullet x (R) y)\} = \{p \mid p \in R \bullet \operatorname{snd} p\} = \operatorname{map}_{\operatorname{set}} snd R$ "Membership in `Dom'": $x \in Dom R \equiv (\exists y: t_2 \bullet x (R) y)$ "Membership in `Ran": $y \in Ran R \equiv (\exists x: t_1 \bullet x (R) y)$ Bob $\operatorname{map}_{\operatorname{Joe}}$	"Universe of sets": $\underbrace{set t}_{} = \mathbb{P}_{t} t_{}$ Formalise Without Quantifiers! P = type of persons $C : P \leftrightarrow P$ p(C)q = p called q Remember: For $R : t_{1} \leftrightarrow t_{2}$: "Membership in `Dom'": $x \in Dom R \equiv (\exists y : t_{2} \circ x(R)y)$ "Membership in `Ran'": $y \in Ran R \equiv (\exists x : t_{1} \circ x(R)y)$ \blacksquare Helen called somebody. $Helen \in Dom C \equiv (\exists y : P \circ Helen (C) y)$

Relation-Algebraic Operations: Operations on Relations **Operations** on Relations: Converse • Set operations ~ , \cup , \cap , –, \Rightarrow are all available. $B \xrightarrow{R} C$ • If $R : B \leftrightarrow C$, then its **converse** $R \stackrel{\sim}{:} C \leftrightarrow B$ $B \xrightarrow{R} C$ • If $R : B \leftrightarrow C$, (in the textbook called "inverse" and written: R^{-1}) then its **converse** $R \stackrel{\sim}{}: C \leftrightarrow B$ $c(R^{\vee})b \equiv b(R)c$ stands for "going R backwards": (in the textbook called "inverse" and written: R^{-1}) $c(R^{\vee})b \equiv b(R)c$ stands for "going *R* backwards": - type "\converse" or "\u{}" $B \xrightarrow{R} C \xrightarrow{S} D$ • If $R : B \leftrightarrow C$ and $S : C \leftrightarrow D$, then their **composition** R; SBob Jane Tom Mary Joe Jack Bob Jane Mar, Joe Jill Tom Jill Tom (in the textbook written: $R \circ S$) Bob Boh t×t is a relation in $B \leftrightarrow D$, and stands for ŧΧţ Jill Jill "going first a step via R, and then a step via S": Jane Jane Bob Jane Bob Jane Tom Tom $b(R;S)d \equiv (\exists c: C \bullet b(R)c(S)d)$ • t Mary Mary Joe Joe Joe Mary Jack The resulting relation algebra Jack Mary Jack Jack • allows concise formalisations without quantifications, $parentOf: Person \leftrightarrow Person$ parentOf`: $Person \leftrightarrow Person$ enables simple calculational proofs. **Proving Self-inverse of Converse:** $(R^{\sim})^{\sim} = R$ **Proving Isotonicity of Converse** $(R^{\sim})^{\sim} = R$ = (Relation extensionality) **Proving** $R \subseteq S \equiv R^{\sim} \subseteq S^{\sim}$: $\forall x, y \bullet x ((R^{\sim})^{\sim}) y \equiv x (R) y$ $R^{\sim} \subseteq S^{\sim}$ = (...) = (Relation inclusion) true $\forall y, x \mid y (R^{\sim}) x \bullet y (S^{\sim}) x$ = (Converse, dummy permutation) Using "Relation extensionality": **Subproof** for $\forall x, y \bullet x (R)) y \equiv x (R) y$: $\forall x, y \mid x(R)y \bullet x(S)y$ For any x, y: ≡ (Relation inclusion) $x(\mathbb{R})^{\vee}$ $R \subseteq S$ \equiv (Converse) $y(R^{\sim})x$ = (Converse) x(R)y $B \xrightarrow{R} C \xrightarrow{S} D$ **Properties of Converse** $B \xrightarrow{R} C$ **Operations on Relations: Composition** If $R : B \leftrightarrow C$ and $S : C \leftrightarrow D$, then their **composition** R; $S : B \leftrightarrow D$ is defined by: If $R : B \leftrightarrow C$, then its **converse** $R \ : C \leftrightarrow B$ is defined by: (14.20) $b (R;S) d = (\exists c:C \bullet b (R) c (S) d)$ (for *b* : *B*, *d* : *D*) $\langle c, b \rangle \in R \smile = \langle b, c \rangle \in R$ (14.18)(for b : B and c : C) (14.20) $b (R_{3}S) d = (\exists c : C \bullet b (R) c \land c (S) d)$ (for b: B, d: D) $c (R^{\vee}) b \equiv b (R) c$ (14.18)(for b : B and c : C) parentOf = {(Jill, Bob), (Jill, Jane), (Tom, Bob), (Tom, Jane), (Bob, Mary), (Bob, Joe), (Jane, Jack)} (14.19) **Properties of Converse:** Let $R, S : B \leftrightarrow C$ be relations. grandparentOf = parentOf ; parentOf $Dom(R^{\sim}) = Ran R$ (a) {(Jill, Mary), (Jill, Joe), (Jill, Jack) $Ran(R^{\sim}) = Dom R$ (b) (Tom, Mary), (Tom, Joe), (Tom, Jack)} If $R \in S \iff T$, then $Dom R \subseteq S$ and $Ran R \subseteq T$ (c_0) Jill Ton Bob Jill Jane Mary Jack Jill Jane Mary Mary If $R \in S \iff T$, then $R^{\sim} \in T \iff S$ (c) ₩X↓ Bob Jill Jane Tom Mary Joe Jack Bob Jill Jane Tom Mary Joe Jack Bob Jill Tom Jane (d) $(R^{\sim})^{\sim} = R$ Bob Jane (d) $R\subseteq S \quad \equiv \quad R^{\sim}\subseteq S^{\sim}$ Joe Mary Jack Mary Joe Jack Sub-identity and Identity Relations **Combining Several Operations** Jill Tom 1×1 • The (sub-)identity relation on B: set t is id B: $t \leftrightarrow t$ How to define siblings? Bob Jane id $B = \{x : t \mid x \in B \bullet \langle x, x \rangle\}$: • First attempt: childOf ; parentOf, with childOf = parentOf e lang and $x (id B) y \equiv x = y \in B$ koh ark ack ark Bob Jill Jane Mary Joe Jack Bob fill form form form form form form Joe Mary Jack $\langle x, y \rangle \in \text{id } B \equiv x = y \land y \in B$ id children Bob Jill Bob Jill Jane Tom Mary - LADM writes LB BAD Jill Tom Mary Jack , ™© — Writing "id *B*" follows the Z notation ÷. • The identity relation on t: Type is $\mathbb{I} : t \leftrightarrow t$ with $\mathbb{I} = \mathrm{id} \mathbf{U}$ $x (I) y \equiv x = y$ • Improved: sibling = childOf ; parentOf - id Person Bob Fill forn Aary Se $\langle x, y \rangle \in \mathbb{I} \equiv x = y$ dolli e lio $(\mathbb{I}: Person \leftrightarrow Person)$ Jill Tom Mary Jack Jane Joe **Translating between Relation Algebra and Predicate Logic** = type of persons Р $(\forall x, y \bullet x (R) y \equiv x (S) y)$ R = S= $P \leftrightarrow P$ - "called" $R \subseteq S$ $(\forall x, y \bullet x (R) y \Rightarrow x (S) y)$ $P \leftrightarrow P$ - "brother of" В $u({) = v =$ false Aos : Ρ u **(U)**v Ξ true Jun : P $u(A \times B)v \equiv$ $u \in A \land v \in B$ Convert into English (via predicate logic): $u(\sim S)v \equiv$ $\neg(u(S)v)$ $u(S)v \vee u(T)v$ $u(S \cup T)v \equiv$ Aos (C) Jun $u(S \cap T)v \equiv$ $u(S)v \wedge u(T)v$ Aos (C; B)Jun $u(S-T)v \equiv$ $u(S)v \wedge \neg (u(T)v)$ Aos $(\sim (C; \sim B))$ Jun $u(S \Rightarrow T)v \equiv$ $u(S)v \Rightarrow (u(T)v)$ Aos $(\sim (\sim C; B))$ Jun $u(I)v \equiv$ u = vAos $(\sim ((C \cap \sim (B; C^{\sim})); \sim B))$ Jun $u(\operatorname{id} A)v \equiv$ $u = v \in A$ $u(R^{\sim})v \equiv$ v(R)u $(B_{\mathfrak{g}}({Jun} \times P_{J})) \cap (C_{\mathfrak{g}}C^{\sim}) \subseteq \operatorname{id} P_{J}$ $u(R;S)v \equiv$ $(\exists x \bullet u(R)x(S)v)$

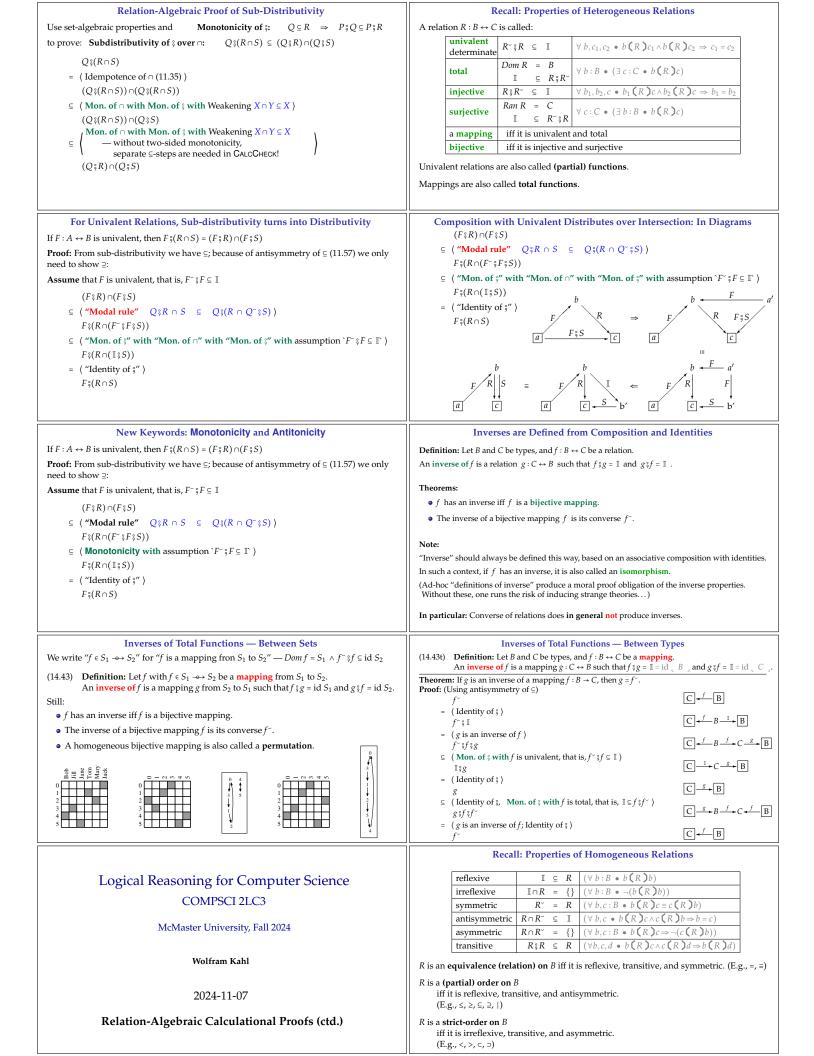

$P = type of persons$ $C : P \leftrightarrow P "called"$ $B : P \leftrightarrow P "brother of"$ $Aos : P$ $Jun : P$ Convert into English (via predicate logic): $Aos \left(C_{\beta}^{*} B \right) Jun$ $\equiv \langle (14.20) \text{ Relation composition} \rangle$ $(\exists b \cdot Aos \left(C \right) b \left(B \right) Jun)$ "Aos called some brother of Jun."	$Aos \left(\sim (C_{5} \sim B) \right) Jun$ $\equiv \langle (11.17) \text{ Relation complement} \rangle$ $\neg (Aos \left(C_{5} \sim B \right) Jun \right)$ $\equiv \langle (14.20) \text{ Relation composition} \rangle$ $\neg (\exists p \circ Aos \left(C \right) p \left(\sim B \right) Jun \right)$ $\equiv \langle (11.17) \text{ Relation complement} \rangle$ $\neg (\exists p \circ Aos \left(C \right) p \land \neg (p \left(B \right) Jun) \right)$ $\equiv \langle (9.18b) \text{ Generalised De Morgan} \rangle$ $(\forall p \circ \neg (Aos \left(C \right) p \land \neg (p \left(B \right) Jun)))$ $\equiv \langle (3.47) \text{ De Morgan, (3.12) Double negation} \rangle$ $(\forall p \circ \neg (Aos \left(C \right) p \land \neg (p \left(B \right) Jun))$ $\equiv \langle (9.3a) \text{ Trading for } \forall \rangle$ $(\forall p \mid Aos \left(C \right) p \circ p \left(B \right) Jun)$ "Everybody Aos called is a brother of Jun." "Aos called only brothers of Jun."
Formalise Without Quantifiers! (2) P :=type of persons C := $P \leftrightarrow P$ p (C) q := p called q	First Simple Properties of CompositionIf $R: B \leftrightarrow C$ and $S: C \leftrightarrow D$, then their composition $R \ S: B \leftrightarrow D$ is defined by:(14.20) $b(R \ S) d \equiv (\exists c: C \bullet b(R) c \land c(S) d)$ (for $b: B, d: D$)
• Helen called somebody who called her.	(14.22) Associativity of \S : $Q \S(R \S S) = (Q \S R) \S S$
 For arbitrary people <i>x</i>, <i>z</i>, if <i>x</i> called <i>z</i>, then there is sombody whom <i>x</i> called, and who was called by somebody who also called <i>z</i>. 	Left- and Right-identities of \$: If $R \in X \leftrightarrow Y$, then:id X \$ $R = R = R$ \$ id Y We defined:I = id U with:Relationship via I: $x \in I$ I is "the" identity of composition:Identity of \$:I \$ $R = R = R$ \$I
 For arbitrary people <i>x</i>, <i>y</i>, <i>z</i>, if <i>x</i> called <i>y</i>, and <i>y</i> was called by somebody who also called <i>z</i>, then <i>x</i> called <i>z</i>. Obama called everybody directly, or indirectly via at most two intermediaries. 	Contravariance: $(R \ S)^{\sim} = S^{\sim} \ R^{\sim}$ $(R \ S)^{\sim} = S^{\sim} \ R^{\sim}$ $(R \ S)^{\sim} = S^{\sim} \ R^{\sim}$
Some of the Predicate Logic Laws You Really Need To Know Now (8.13) Empty Range: (8.14) One-point Rule: Provided, (8.14) One-point Rule: Provided, (8.15) (Quantification) Distributivity: (8.15) (Quantification) Distributivity: (8.16–18) Range split: (9.17) Generalised De Morgan: (9.17) Generalised De Morgan: (9.2) Trading for \forall : (9.19) Trading for \exists : (9.19) Trading for \exists : (9.13) Instantiation: (9.28) \exists -Introduction: (9.28) \exists -Introduction: and correctly handle substitution, Leibniz, bound variable rearrangements, monotonicity/antitonicity, For any Plan for Today • Examples for the kind of quantifier reasoning required in the context of set-theoretical relations • Some properties of relation composition, e.g., \ddagger is monotonic is bijective" Moving towards relation-algebraic formalisations and reasoning	Logical Reasoning for Computer Science COMPSCI 2LC3McMaster University, Fall 2024Wolfram Kahl2024-10-25Quantifier Reasoning, Some Properties of Relation CompositionTranslating between Relation Algebra and Predicate LogicR = S = ($\forall x, y \cdot x(R)y \equiv x(S)y$) $R \subseteq S = (\forall x, y \cdot x(R)y \equiv x(S)y)$ $R \subseteq S = (\forall x, y \cdot x(R)y \Rightarrow x(S)y)$ $u(\{\})v = false$ $u(U)v = true$ $u(U)v = true$ $u(X > V) = false$ $u(S > V) = -(u(S)v)$
$P = \text{type of persons}$ $C : P \leftrightarrow P\text{"called"}$ $B : P \leftrightarrow P\text{"brother of"}$ $Aos : P$ $Jun : P$ Convert into English (via predicate logic): $Aos (C)Jun$ $Aos (C;B)Jun$ $Aos (~(C;B)Jun$ $Aos (~(C;B)Jun$ $Aos (~((C \circ (B;C)); ~B))Jun$ $(B;({Jun} \times U)) \cap (C;C) \subseteq I$	$Aos \left(\sim ((C \cap \sim (B \ddagger C^{\sim})) \ddagger \sim B) \right) Jun$ $\equiv \langle \text{ Relation complement} \rangle \\ \neg (Aos \left((C \cap \sim (B \ddagger C^{\sim})) \ddagger \sim B \right) Jun) \rangle$ $\equiv \langle \text{ Relation composition} \rangle \\ \neg (\exists p \cdot Aos \left(C \cap \sim (B \ddagger C^{\sim}) \right) p \left(\sim B \right) Jun) \rangle$ $\equiv \langle \text{ Relation intersection} \rangle \\ \neg (\exists p \cdot Aos \left(C \right) p \land Aos \left(\sim (B \ddagger C^{\sim}) p \land p \left(\sim B \right) Jun \right) \rangle$ $\equiv \langle \text{ Relation complement} \rangle \\ \neg (\exists p \cdot Aos \left(C \right) p \land (Aos \left(B \ddagger C^{\sim} \right) p) \land \neg (p \left(B \right) Jun)) \rangle$ $\equiv \langle \text{ Relation composition} \rangle \\ \neg (\exists p \cdot Aos \left(C \right) p \land \neg (\exists q \cdot Aos \left(B \right) q \left(C^{\sim} \right) p) \land \neg (p \left(B \right) Jun)) \rangle$ $\equiv \langle (9.18b) \text{ Generalised De Morgan} \rangle \\ \dots$

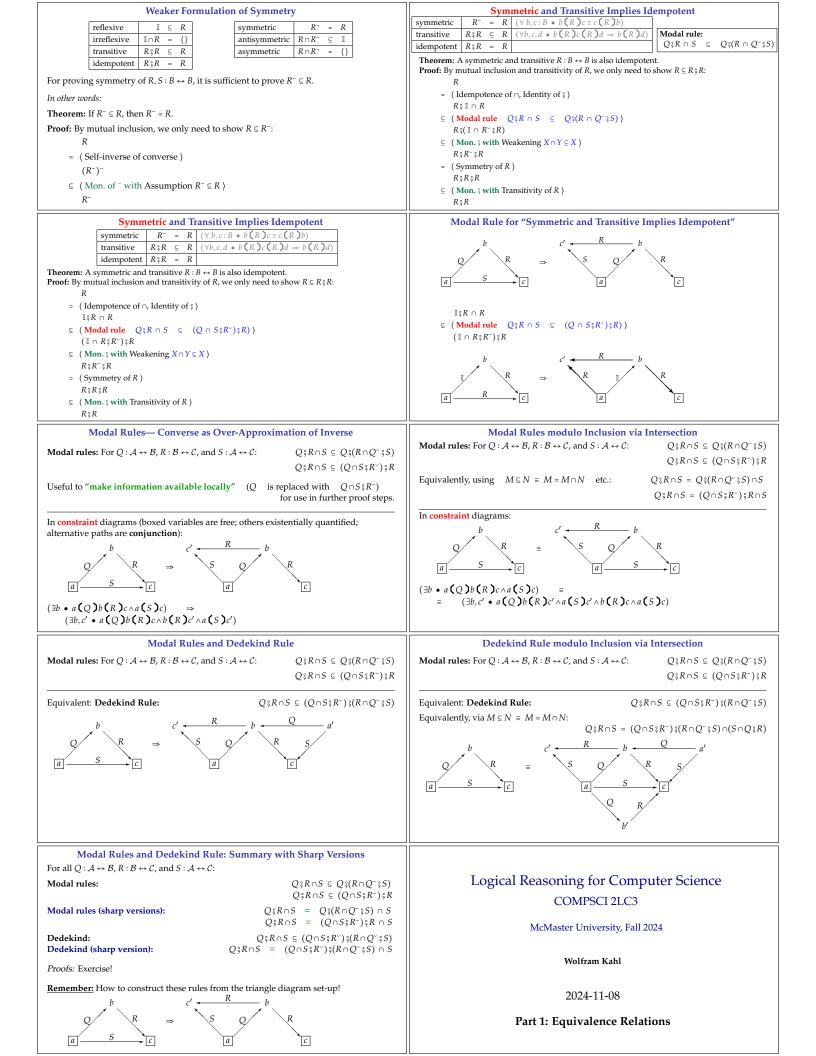

	H11 — Domain of Union — Step 1
	Theorem "Domain of union ": Dom $(R \cup S) = Dom R \cup Dom S$
Logical Reasoning for Computer Science	Proof:
COMPSCI 2LC3	Using "Set extensionality ": For any `x`:
McMaster University, Fall 2024	$x \in Dom(R \cup S)$
Methaster Oniversity, Fan 2024	
Wolfram Kahl	
Wolliant Kalu	≡(?)
2024-10-25	
Part 1: Quantifier Reasoning Examples: H11	$x \in \text{Dom } R \cup \text{Dom } S$
H11 — Domain of Union — Step 2	H11 — Domain of Union — Step 3
Theorem "Domain of union ": Dom $(R \cup S) = \text{Dom } R \cup \text{Dom } S$	Theorem "Domain of union ": Dom $(R \cup S) = \text{Dom } R \cup \text{Dom } S$
Proof: Using "Set extensionality ":	Proof:
For any `x`:	Using "Set extensionality": For any `x`:
$x \in \text{Dom} (R \cup S)$ = ("Membership in `Dom`")	$x \in Dom(R \cup S)$
$\exists y \bullet x \left(R \cup S \right) y$ $\equiv \langle \text{ "Relation union "} \rangle$	$\equiv \langle \text{"Membership in `Dom`"} \rangle$ $\exists y \bullet x \left(R \cup S \right) y$
$\exists y \bullet x (R) y \lor x (S) y$	$\equiv \langle \text{"Relation union"} \rangle$
= (?)	$\exists y \bullet x (R) y \lor x (S) y$ = ("Distributivity of $\exists \text{ over } \lor$ ")
$(\exists y \bullet x (R) y) \lor (\exists y \bullet x (S) y)$	$(\exists y \bullet x (R) y) \lor (\exists y \bullet x (S) y)$
≡ ("Membership in `Dom` ")	$\equiv ("Membership in `Dom`") x \in Dom R \lor x \in Dom S$
$x \in Dom R \lor x \in Dom S$ $\equiv ("Union")$	$\equiv \langle \text{"Union"} \rangle$
$x \in \text{Dom } R \cup \text{Dom } S$	$x \in Dom R \cup Dom S$
H11 — Domain of ∩ — Step 1	H11 — Domain of ∩ — Step 2
Theorem "Domain of intersection ": Dom $(R \cap S) \subseteq \text{Dom } R \cap \text{Dom } S$	Theorem "Domain of intersection ": Dom $(R \cap S) \subseteq$ Dom $R \cap$ Dom S
Proof: Using "Set inclusion ":	Proof: Using "Set inclusion ":
For any `x': $x \in \text{Dom}(R \cap S)$	For any 'x': $x \in \text{Dom}(R \cap S)$
$\equiv \langle \text{"Membership in `Dom`"} \rangle$ $\exists y \bullet x (R \cap S) y$	$\equiv ("Membership in `Dom`") \exists y \bullet x (R \cap S) y $
≡ ("Relation intersection ")	$\equiv \langle \text{"Relation intersection"} \rangle \\ \exists y \bullet x (R) y \land x (S) y$
$\exists y \bullet x (R) y \land x (S) y$	$\equiv (\text{"Idempotency of } \wedge \text{"}) \\ (\exists y \bullet x (R) y \land x (S) y) \land (\exists y \bullet x (R) y \land x (S) y) $
⇒(?)	$\Rightarrow (? with "Weakening")$
$(\exists y \bullet x (R) y) \land (\exists y \bullet x (S) y)$	
$\equiv \langle \text{ "Membership in `Dom` "} \rangle$ $x \in \text{Dom } R \land x \in \text{Dom } S$	$ (\exists y \bullet x (R) y) \land (\exists y \bullet x (S) y) \equiv ("Membership in `Dom`") $
$\equiv (\text{ "Intersection "}) x \in \text{Dom } R \cap \text{Dom } S$	$x \in \text{Dom } R \land x \in \text{Dom } S$ = ("Intersection ")
	$x \in \text{Dom } R \cap \text{Dom } S$
H11 — Domain of \cap — Step 3	H11 — Domain of \cap (B) — Step 1
Theorem "Domain of intersection ": Dom $(R \cap S) \subseteq$ Dom $R \cap$ Dom S Proof:	Theorem "Domain of intersection ": Dom $(R \cap S) \subseteq \text{Dom } R \cap \text{Dom } S$ Proof:
Using "Set inclusion ": For any `x`:	Using "Set inclusion ": For any `x`:
$x \in \text{Dom} (R \cap S)$ = ("Membership in `Dom`")	$x \in Dom(R \cap S)$
$\exists y \bullet x (R \cap S) y$ $\equiv \langle "Relation intersection" \rangle$	$\exists ("Membership in `Dom`") \exists y \bullet x (R \cap S) y$ Theorem (9.21) "Distributivity of \land over \exists ":
$\exists y \bullet x (R) y \land x (S) y$ $\equiv \langle \text{"Idempotency of } \land \text{"} \rangle$	$ = \langle \text{"Relation intersection"} \rangle \\ \exists y \bullet x (R) y \land x (S) y \\ P \land (\exists x \mid R \bullet Q) = (\exists x \mid R \bullet P \land Q) \\ provided \neg occurs('x', 'P') \\ \end{cases} $
$(\exists y \bullet x (R) y \land x (S) y) \land$ $(\exists y \bullet x (R) y \land x (S) y)$	
⇒{ "Monotonicity of ∧" with "Body monotonicity of ∃" with "Weakening" }	\Rightarrow (?)
$(\exists y \circ x (R) y) \land (\exists y \circ x (S) y)$ = ("Membership in 'Dom'")	$(\exists y \bullet x (R) y) \land (\exists y \bullet x (S) y)$ = ("Membership in `Dom`")
$x \in \text{Dom } R \land x \in \text{Dom } S$	$x \in Dom R \land x \in Dom S$
$\equiv \langle \text{ "Intersection "} \rangle \\ x \in Dom R \cap Dom S$	$\equiv (\text{"Intersection"}) x \in \text{Dom } R \cap \text{Dom } S$
H11 — Domain of ∩ (B) — Step 2	H11 — Domain of ∩ (B) — Step 3
Theorem "Domain of intersection ": Dom $(R \cap S) \subseteq \text{Dom } R \cap \text{Dom } S$	Theorem "Domain of intersection ": Dom $(R \cap S) \subseteq \text{Dom } R \cap \text{Dom } S$
Proof: Using "Set inclusion ":	Proof: Using "Set inclusion ":
For any 'x': $x \in \text{Dom} (R \cap S)$	For any 'x': $x \in \text{Dom}(R \cap S)$
$\equiv \langle \text{"Membership in `Dom'"} \rangle$ $\equiv \forall y \cdot x (R \cap S) y$	$\equiv (\text{"Membership in `Dom`"}) \exists y \bullet x (R \cap S) y$
\equiv ("Relation intersection") Theorem (9.21) "Distributivity of \land over \exists ":	$ = \langle "\text{Relation intersection"} \rangle $ = $y \cdot x (R) y \wedge x (S) y$
$\exists y \bullet x (R) y \land x (S) y \qquad P \land (\exists x \mid R \bullet Q) \equiv (\exists x \mid R \bullet P \land Q) $ provided $\neg occurs('x', 'P')$	\equiv (Substitution)
⇒(?)	$\exists y \bullet x (R) y \land (x (S) y)[y := y]$ $\Rightarrow (? \text{ with } "\exists -Introduction")$
$\exists y \bullet x (R) y \land (\exists y \bullet x (S) y)$ = ("Distributivity of \land over \exists")	$\exists y \bullet x (R) y \land (\exists y \bullet x (S) y)$ = ("Distributivity of \land over \exists ")
$(\exists y \bullet x (R) y) \land (\exists y \bullet x (S) y)$	$(\exists y \circ x (\mathbf{R}) y) \land (\exists y \circ x (\mathbf{S}) y)$ = ("Membership in 'Dom'")
$\equiv (\text{``Membership in `Dom`'' }) x \in \text{Dom } R \land x \in \text{Dom } S$	$x \in \text{Dom } R \land x \in \text{Dom } S$
$\equiv (\text{"Intersection"}) \\ x \in \text{Dom } R \cap \text{Dom } S$	$\equiv ("Intersection") x \in Dom R \cap Dom S $

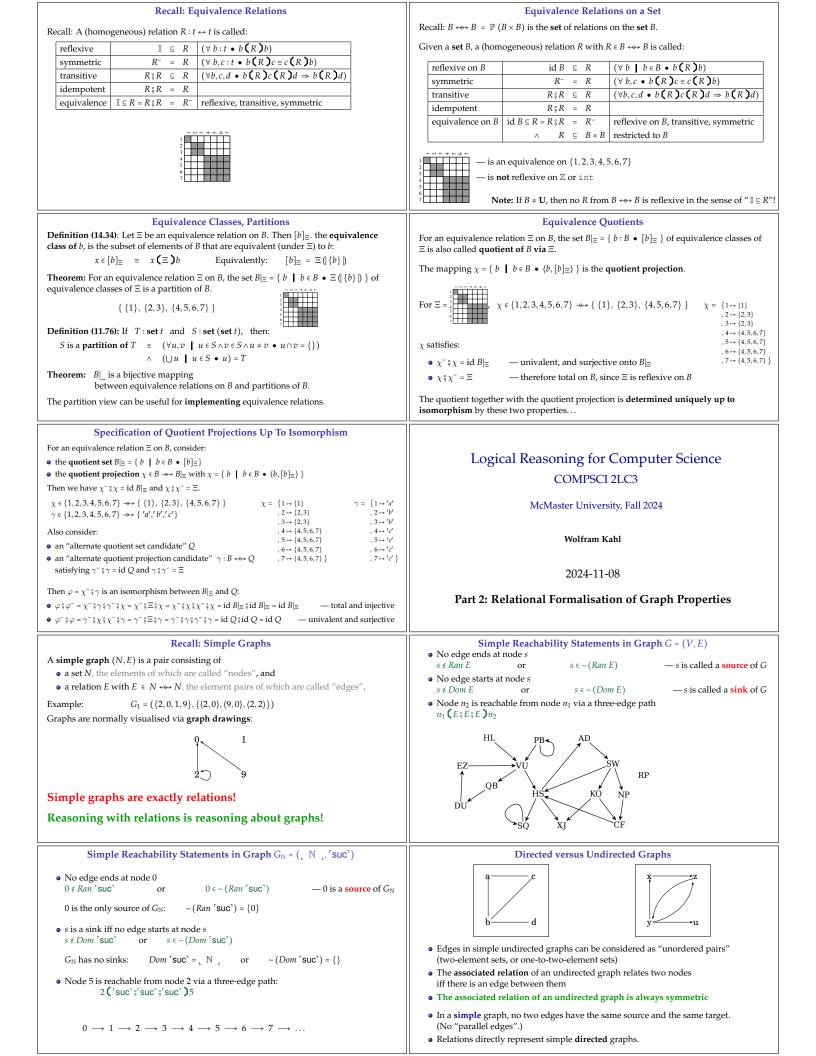


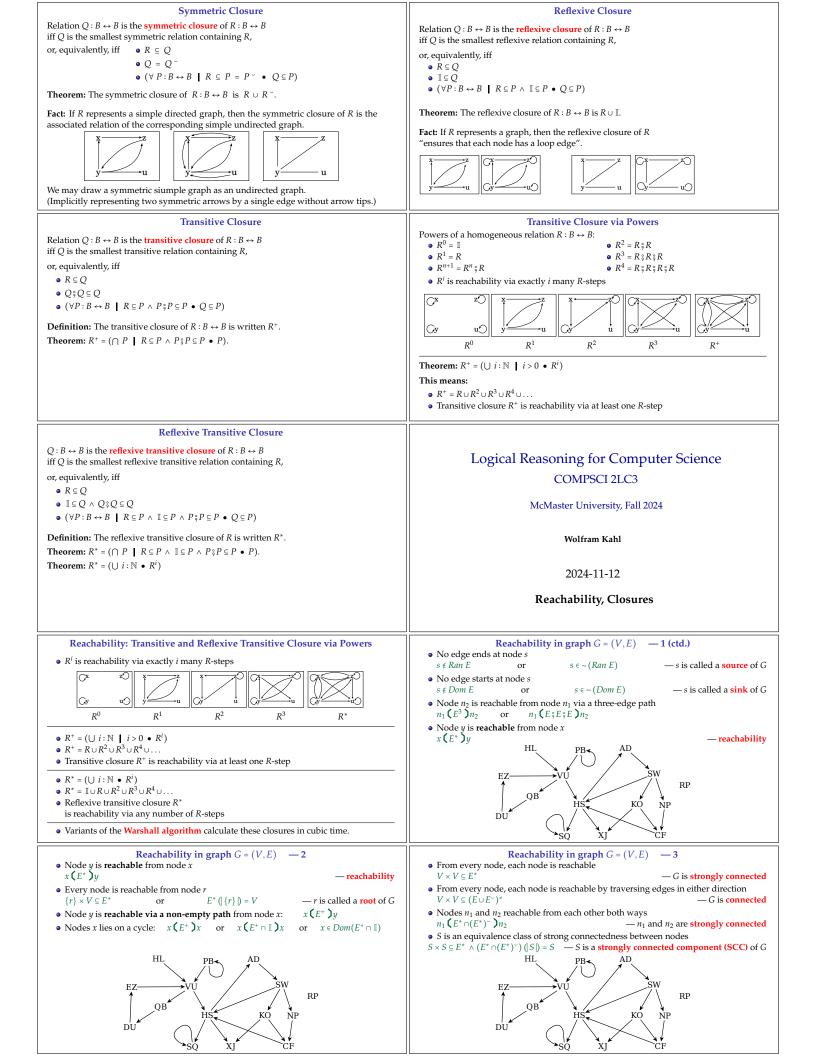
Plan for Today	
• "Residuals": Left- and right-division with respect to $ ho$	Logical Reasoning for Computer Science
• Some properties of homogeneous relations, e.g., " <i>R</i> is transitive", " <i>E</i> is an order"	COMPSCI 2LC3
• Some more properties of relations of arbitrary types, e.g., " <i>R</i> is univalent", " <i>F</i> is	COMITSCI ZLCS
bijective"	McMaster University, Fall 2024
Moving towards relation-algebraic formalisations and reasoning	Wolfram Kahl
	2024-10-29
	Part 1: Residuals
Given: $x \le z \equiv x \le 5$	Given, for $R : A \leftrightarrow B$ and $S : A \leftrightarrow C$: $X \subseteq R \setminus S \equiv R_{3}^{\circ} X \subseteq S$
What do you know about z? Why? (Prove it!)	Calculate the right residual ("left division") $R \setminus S$!
Given: $X \subseteq A \Rightarrow B \equiv X \cap A \subseteq B$	$A \xrightarrow{S} C$
Calculate the relative pseudocomplement $A \Rightarrow B$!	R RS
Given, for $R: A \leftrightarrow B$ and $S: A \leftrightarrow C$: $X \subseteq R \setminus S \equiv R$; $X \subseteq S$ $R \in S$	B
$R \setminus S$ is the largest solution $X : B \leftrightarrow C$ for $R \ S \subseteq S$. Calculate the right residual ("left division") $R \setminus S$!	 b (R\S)c = (Similar to the calculation for relative pseudocomplement)
	$(\forall a \mid a (R)b \bullet a (S)c)$
$A \xrightarrow{S} C$ $R \xrightarrow{R} S$	= (Generalised De Morgan, Relation conversions — Ex. 6.3 (R1))
	$b \left(\sim (R^{\sim}; \sim S) \right) c$
Same idea as for " \Rightarrow ":	Therefore: $R \setminus S = \sim (R^{\circ}_{\beta} \sim S)$
Using extensionality, calculate $b(R \setminus S)c \equiv b(?)c$ Proving $b(R \setminus S)c \equiv (\forall a \mid a(R)b \cdot a(S)c)$:	— monotonic in second argument; antitonic in first argument
$b(R \setminus S)c = (\forall u \mid u(X)b \forall u(S)c);$	Right Residual: $X \subseteq R \setminus S \equiv R \S X \subseteq S$ Proving $R \setminus S = \sim (R^{\sim} \S \sim S)$:
$= \langle e \in S \equiv \{e\} \subseteq S - \text{Exercise!} \rangle$ $\{ \{b, c\} \} \subseteq (R \setminus S)$	$b(R \setminus S)c$
$= \left(\text{Def.} \mathbf{X} \subseteq R \setminus S \equiv R \ \ x \subseteq S \right)$ $R \ \ x \in \{b, c\} \subseteq S$	$= \langle \text{ previous slide} \rangle (\forall a \mid a(R)b \cdot a(S)c)$
$= \langle (11.13r) \text{ Relation inclusion} \rangle (\forall a, c' a (R {(b, c)}) c' • a (S) c')$	= ((9.18a) Generalised De Morgan)
$= \langle (14.20) \text{ Relation composition} \rangle \\ (\forall a, c' \mid (\exists b' \bullet a \{ R \} b' \land b' \{ \{ (b, c) \} \} c') \bullet a \{ S \} c')$	$\neg(\exists a \mid a(R)b \bullet \neg(a(S)c))$
$= \langle y \in \{x\} \equiv y = x - \text{Exercise!} \rangle$ $(\forall a, c' \mid (\exists b' \bullet a (R)b' \land b' = b \land c = c') \bullet a (S)c')$	$= \langle (11.17r) \text{ Relation complement} \rangle$ $\neg (\exists a \mid a (R)b \cdot a (\sim S)c)$
$= \langle (9.19) \text{ Trading for } \exists \rangle$ (\forall a, c' (\forall b' b' = b • a (R) b' \cap c = c') • a (S) c')	= ((9.19) Trading for ∃, (14.18) Converse)
$= \langle (8.14) \text{ One-point rule} \rangle (\forall a, c' a (R) b \land c = c' \bullet a (S) c')$	$\neg (\exists a \bullet b (R^{\sim})a \land a (\sim S)c)$ = ((14.20) Relation composition)
$= \langle (8.20) \text{ Quantifier nesting} \rangle (\forall a \mid a \left(R \right) b \bullet (\forall c' \mid c = c' \bullet a \left(S \right) c'))$	$= \langle (14.20) \text{ Keraton composition } \rangle$ $\neg (b (\mathbf{R}^{\sim} \$ \sim S) c)$
= $\langle (1.3)$ Symmetry of =, (8.14) One-point rule \rangle $(\forall a \mid a (R)b \bullet a (S)c)$	= $\langle (11.17r) \text{ Relation complement} \rangle$
	b (~ (R~ ; ~ S))c Formalisations Using Residuals
Given, for $R : A \leftrightarrow B$ and $S : A \leftrightarrow C$: $X \subseteq R \setminus S \equiv R_{\Im}^{\circ} X \subseteq S$	"Aos called only brothers of Jun." Relationship via \:
Calculate the right residual ("left division") $R \setminus S$! (" <i>R</i> under <i>S</i> ")	"Everybody called by Aos is a brother of Jun."
$A \xrightarrow{S} C$ $R \xrightarrow{R} S$	$ \begin{array}{c c} (\forall p \mid Aos(C)p \bullet p(B)Jun) \\ \equiv \langle (14.18) \text{ Relation converse} \rangle \end{array} \qquad b(R \setminus S)c \\ \equiv (\forall a \mid a(R)b \bullet a(S)c) \\ \end{array} $
R	$(\forall p \mid p(C^{\sim})Aos \bullet p(B)Jun)$
$b(R \searrow S)c$ B	$= (\text{Right residual }) Aos (C^{\sim} B) Jun$
= \langle Similar to the calculation for relative pseudocomplement \rangle	"Aos called every brother of Jun."
$(\forall a \mid a \in \mathbb{R}) b \bullet a \in S c)$ = (Generalised De Morgan, Relation conversions — Ex. 6.3 (R1))	"Every brother of Jun has been called by Aos." $(y_1 + y_2) = (y_1 + y_2)$
$b\left(\sim (R^{\sim}; \sim S)\right)c$	$(\forall p \mid p(B)Jun \bullet Aos(C)p)$ = \langle (14.18) Relation converse \rangle
Therefore: $R \setminus S = \sim (R^{\sim} \Im \sim S)$	$ (\forall p \mid p (B) Jun \bullet p (C^{\sim}) Aos) $ = (Right residual)
— monotonic in second argument; antitonic in first argument	$= (\text{ Kight residual })$ $Jun (B \setminus C) Aos$
Some Properties of Right Residuals	Translating between Relation Algebra and Predicate Logic
Characterisation of right residual: $\forall R : A \leftrightarrow B$; $S : A \leftrightarrow C \bullet X \subseteq R \setminus S \equiv R$; $X \subseteq S$	$R = S \equiv (\forall x, y \bullet x (R) y \equiv x (S) y)$ $R \subseteq S \equiv (\forall x, y \bullet x (R) y \Rightarrow x (S) y)$
Two sub-cancellation properties follow easily: $R \ (R \setminus S) \subseteq S$ $(Q \setminus R) \ (R \setminus S) \subseteq (Q \setminus S)$	$u(\{\})v \equiv false$
Theorem " $\mathbb{I} \setminus$ ": $\mathbb{I} \setminus R = R$ Proof:	$u(A \times B)v \equiv u \in A \land v \in B$ $u(\sim S)v \equiv \neg(u(S)v)$
Using "Mutual inclusion ": Subproof:	$u(S \cup T)v = u(S)v \vee u(T)v$
$\mathbb{I} \setminus \mathbb{R}$ = ("Identity of ;")	$u(S \cap T)v \equiv u(S)v \wedge u(T)v$ $u(S - T)v \equiv u(S)v \wedge \neg(u(T)v)$
$ = \langle \text{ therefy of } \rangle / $ $ I \notin (I \setminus R) $ $ \subseteq \langle \text{ "Cancellation of } \setminus " \rangle $	$u(S \Rightarrow T)v \equiv u(S)v \Rightarrow u(T)v$
R R Subproof:	$u(\operatorname{id} A)v \equiv u = v \in A$ $u(\mathbb{I})v \equiv u = v$
$R \subseteq \mathbb{I} \setminus R$ $\equiv \langle \text{ "Characterisation of } \rangle " \rangle$	$u(R^{\sim})v = v(R)u$
$ = \langle \text{ characterisation of } \langle \gamma \rangle $ $ = \{ \text{ "Identity of } \text{", "Reflexivity of } \subseteq \text{"} \} $	$u(R \S S)v = (\exists x \cdot u(R)x(S)v)$ $u(R \backslash S)v = (\forall x \mid x(R)u \cdot x(S)v)$
true	$u(R \setminus S)v \equiv (\forall x \mid x(R)u \bullet x(S)v)$ $u(S/R)v \equiv (\forall x \mid v(R)x \bullet u(S)x)$

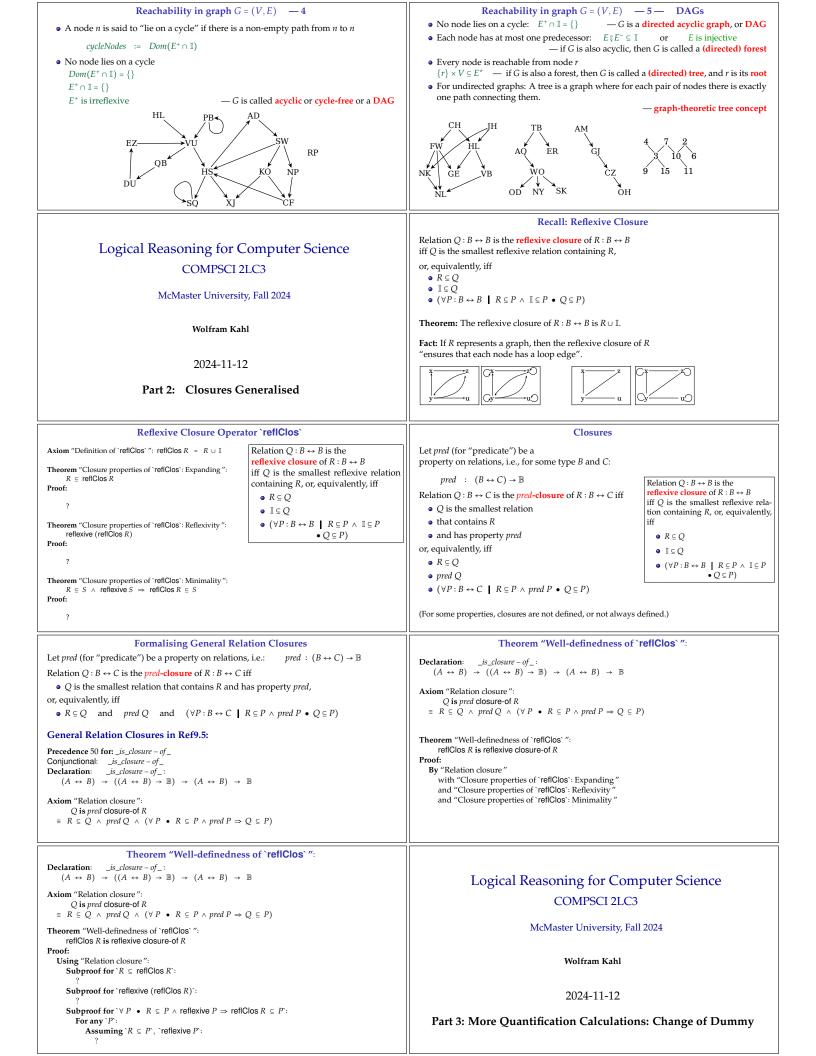
Translating between Relation Algebra and Predicate Logic $R = S = (\forall x, y \cdot x(R)y \equiv x(S)y)$ $R \subseteq S = (\forall x, y \cdot x(R)y \Rightarrow x(S)y)$ $u \subseteq S = (\forall x, y \cdot x(R)y \Rightarrow x(S)y)$ $u \{\} v = false$ $u(A \times B)v = u \in A \land v \in B$ $u(-S)v = -(u(S)v)$ $u(S \cup T)v = u(S)v \lor u(T)v$ $u(S \cap T)v = u(S)v \land u(T)v$ $u(S - T)v = u(S)v \land u(T)v$ $u(S - T)v = u(S)v \Rightarrow u(T)v$ $u(R - T)v = u(S)v \Rightarrow u(T)v$ $u(I)v = u = v \in A$ $u(I)v = v = v \in A$ $u(R^-)v = v(R)u$ $u(R^{\circ}S)v = (\exists x \mid u(R)x \cdot x(S)v)$ $u(R \setminus S)v = (\forall x \mid x(R)u \cdot x(S)v)$ $u(S \land R)v = (\forall x \mid v(R)x \cdot u(S)x)$	Translating between Relation Algebra and Predicate Logic $R = S \equiv (\forall x, y \cdot x(R) y \equiv x(S) y)$ $R \subseteq S \equiv (\forall x, y \cdot x(R) y \Rightarrow x(S) y)$ $u \{\} v \equiv false$ $u(A \times B) v \equiv u \in A \land v \in B$ $u(\sim S) v \equiv \neg(u(S) v)$ $u(S \cup T) v \equiv u(S) v \lor u(T) v$ $u(S \cup T) v \equiv u(S) v \land u(T) v$ $u(S \cap T) v \equiv u(S) v \land u(T) v$ $u(S \cap T) v \equiv u(S) v \land u(T) v$ $u(S \cap T) v \equiv u(S) v \land u(T) v$ $u(S \cap T) v \equiv u(S) v \land u(T) v$ $u(S \cap T) v \equiv u(S) v \Rightarrow u(T) v$ $u(S \cap T) v \equiv u(S) v \Rightarrow u(T) v$ $u(S \cap T) v \equiv u(S) v \Rightarrow u(T) v$ $u(R \neg v \equiv u = v \in A)$ $u(I) v \equiv u = v$ $u(R \neg v) v \equiv v(R) u$ $u(R \land S) v \equiv (\forall x \cdot u(R) x \land x(S) v)$ $u(S \land R) v \equiv (\forall x \cdot v(R) x \Rightarrow u(S) x)$
Symmetric DifferenceSymmetric difference is usually defined on sets: $S \ominus T = (S - T) \cup (T - S)$ Theorem "Membership in \ominus ": $x \in (S \ominus T) = x \in S \neq x \in T$ We can define it also on numbers, e.g., on \mathbb{Z} or \mathbb{N} : $k \ominus m = (k - m) \uparrow (m - k)$ Then we have:Theorem "Size of symmetric set difference":Theorem "Size of symmetric set difference": $(\# S) \ominus (\# T) \leq \# (S \ominus T)$ Proof:— Exercise!Let the following sets be given: S_1 : S_1 :all students who normally attended lectures up to Midterm 1 S_s :all students who achieved a grade of at least 50% in Midterm 1Observation: $(\# S_1) \ominus (\# S_2) \leq 20$ Conjecture: $\# (S_1 \ominus S_2) \leq 20$	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-10-29 Part 2: Relation Properties
Properties of Homogeneous Relations (Table 14.1) $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	Properties of Homogeneous Relations (ctd.)
Divisibility Order with Hasse Diagram 16 16 18 12 16 18 18 10 18 18 10	Inclusion Order on Power Set of {1,2,3,4} (1,2,3,4) (1,2,3,4) (1,2,3,4) (1,2,3,4) (1,2,3,4) (1,3) (2,3) (1,4) (2,4) (1,3) (2,3) (1,4) (2,4) (3,4) (1) (2) (3) (4) Hasse diagram for an order: • Edge direction is upwards - antisymmetric • Loops not drawn - reflexive • Transitive edges not drawn
Properties of Heterogeneous RelationsA relation $R : B \leftrightarrow C$ is called: $\boxed{univalent}{determinate} = R^- {}_S^R \in I \forall b, c_1, c_2 \bullet b(R)c_1 \wedge b(R)c_2 \Rightarrow c_1 = c_2$ $\boxed{univalent}{determinate} = R^- {}_S^R \in I \forall b, c_1, c_2 \bullet b(R)c_1 \wedge b(R)c_2 \Rightarrow c_1 = c_2$ $\boxed{univalent}{total} = Dom R = U$ $\boxed{univalent}{univalent} = R^- {}_S^R \in I \forall b_1, b_2, c \bullet b_1(R)c \wedge b_2(R)c \Rightarrow b_1 = b_2$ $\boxed{univalent}{univalent} = R^- {}_S^R \in I \forall b_1, b_2, c \bullet b_1(R)c \wedge b_2(R)c \Rightarrow b_1 = b_2$ $\boxed{univalent}{univalent} = R^- {}_S^R \in I \forall c : C \bullet (\exists b : B \bullet b(R)c)$ $\boxed{univalent}{univalent} = I \forall c : C \bullet (\exists b : B \bullet b(R)c)$ $\boxed{univalent}{univalent} = I \text{outivalent relations are also called (partial) functions.}$ Mappings are also called total functions.	Properties of Heterogeneous Relations — Examples 1univalent $\mathbb{R}^{\sim} \Im \mathbb{R} \subseteq \mathbb{I}$ $\forall b, c_1, c_2 \bullet b(\mathbb{R})c_1 \land b(\mathbb{R})c_2 \Rightarrow c_1 = c_2$ total $Dom \mathbb{R} = U$ $\forall b : B \bullet (\exists c : C \bullet b(\mathbb{R})c)$ a mappingiff it is univalent and total \mathbb{B} $\bigcirc f$ $\bigcirc f$ a $\bigcirc f$ </td



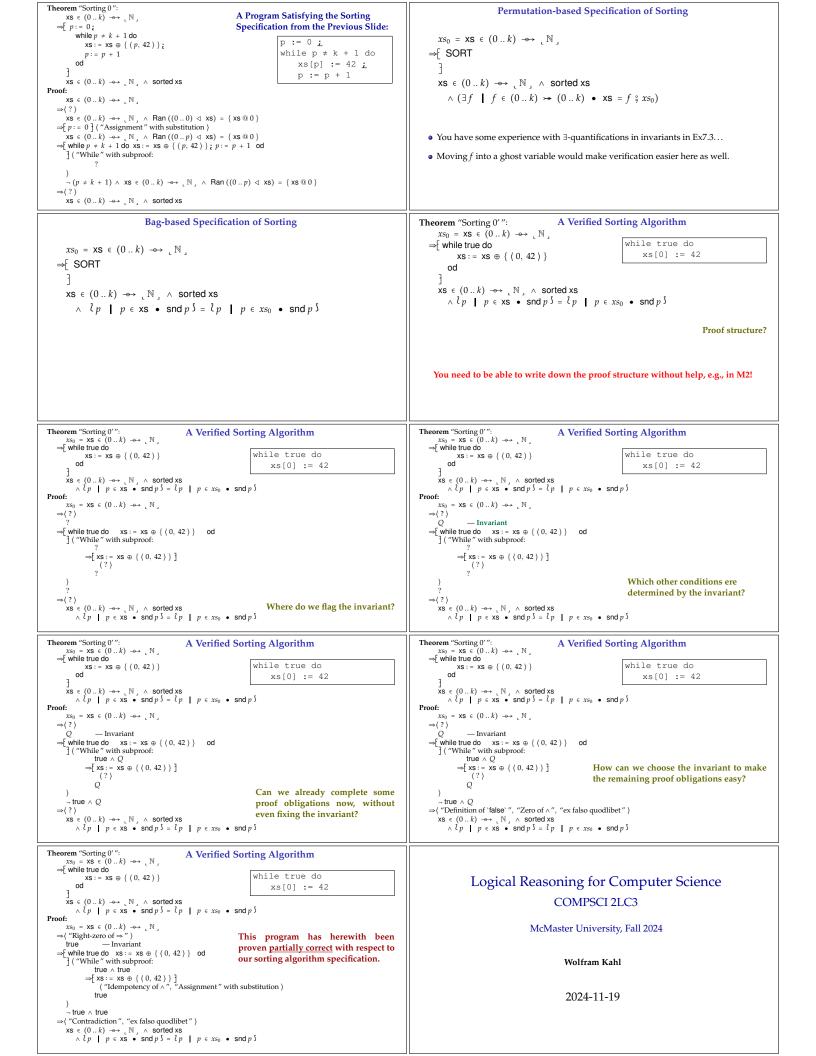



Q, and in addition establishes the negation of the loop condition.


Recall: Using the "While" Rule	Using the "While" Rule — Closer Look
Theorem "While-example": Proof: Pre Pre \Rightarrow [INIT; Pre while B Q	$\vdash \frac{B \land Q \implies [C] Q}{Q \implies [while B \text{ do } C \text{ od }] \neg B \land Q}$
do C od; FINAL] Post \Rightarrow [while <i>B</i> do C od] ("While" with subproof: $B \land Q$ Loop condition and invariant \Rightarrow [C] (?) QIvariant \Rightarrow $\neg B \land Q$ Ivariant \Rightarrow $\neg B \land Q$ Ivariant \Rightarrow [FINAL] (?)	: Q Invariant \Rightarrow [while <i>B</i> do <i>C</i> od] ("While" with subproof: $B \land Q$ Loop condition and invariant \Rightarrow [<i>C</i>] (?) <i>Q</i> Invariant)
PostPostcondition	$\neg B \land Q$ •••••• Negated loop condition, and invariant :
Exercise 7.3: Correctness of a Program Containing a while-LoopTheorem "Correctness of `elem` ":truetrue $\Rightarrow [xs := xs_0;$ $\Rightarrow [xs := xs_0;$ $b := false;$ $b := false$ while $xs \neq \epsilon$ do]if head $xs = x$ ($\exists us \bullet (us \circ xs = xs_0) \land (b \equiv x \in us)$)then $b := true$ $\Rightarrow [while xs \neq \epsilon do$ else skipif head $xs = x$ fi;then $b := true$ $xs := tail xs$ else skipodfi; $b = x \in xs_0$) ••••••• Parentheses!od $("While " with "Invariant for `elem` ")$ $\rightarrow (while " with "Invariant for `elem` ")$ $(b \equiv x \in xs_0) •••••••• Parentheses!od(b \equiv x \in xs_0) ••••••• Parentheses!if each is execus)(b \equiv x \in xs_0)Invariant involves quantifier: Good for practice with quantifier reasoning$	Easier to Prove than Exercise 7.3: With Ghost Variable — Ex9.1Theorem "Correctness of `elem` ":true \Rightarrow [XS := xS_0 ;US := ℓ_i Ghost variable: Does not influence program flow or result $b := false ;Ghost variable: Does not influence program flow or resultb := false ;Ghost variable: Does not influence program flow or resultb := false ;$
	Plan for Today
Logical Reasoning for Computer Science COMPSCI 2LC3	Relation-algebraic calculational proofs — "abstract relation algebra"
McMaster University, Fall 2024	Relation-algebraic proof •is what you started in the fill-in-the-blanks questions of H12
Wolfram Kahl	• will be the main topic of Exercises 9.*
2024-11-05 Relation-Algebraic Calculational Proofs	 will be on Midterm 2 (in addition to predicate logic reasoning, in particular about relations in set theory, etc) is easier than quantifier reasoning
Recall: Translating between Relation Algebra and Predicate Logic $R = S \equiv (\forall x, y \cdot x(R)y \equiv x(S)y)$ $R \subseteq S \equiv (\forall x, y \cdot x(R)y \Rightarrow x(S)y)$ $R \subseteq S \equiv (\forall x, y \cdot x(R)y \Rightarrow x(S)y)$ $u(\{\})v \equiv false$ $u(A \times B)v \equiv u \in A \land v \in B$ $u(A \times B)v \equiv u \in A \land v \in B$ $u(S \cup T)v \equiv u(S)v \lor u(T)v$ $u(S \cup T)v \equiv u(S)v \land u(T)v$ $u(S \cap T)v \equiv u(S)v \land u(T)v$ $u(S \cap T)v \equiv u(S)v \land u(T)v$ $u(S \rightarrow T)v \equiv u(S)v \land u(T)v$ $u(S \rightarrow T)v \equiv u(S)v \land u(T)v$ $u(S \rightarrow T)v \equiv u(S)v \land u(T)v$ $u(R \neg v)v \equiv u(S)v \Rightarrow u(T)v$ $u(R \neg v)v \equiv u(S)v \Rightarrow u(T)v$ $u(R \neg v)v \equiv v(R)u$ $u(R \neg v)v \equiv v(R)u$ $u(R \neg v)v \equiv v(R)u$ $u(R \neg v)v \equiv (\forall x \cdot u(R)x \land x(S)v)$ $u(S \land V)v \equiv (\forall x \cdot v(R)x \Rightarrow u(S)x)$	Using Extensionality/Inclusion and the Translation Table, you Proved: Theorem "Self-inverse of ": $R \to S \to R \to S$ " Theorem "Converse of i ": $(R \in S) \to R \to S \to R$ Theorem "Converse of i ": $(R \in S) \to S \to R$ " Theorem "Converse of i ": $R \to S \to R \to S$ " Theorem "Converse of i ": $R \to S \to R \to S$ " Theorem "Converse of i ": $R \to S \to R \to S$ " Theorem "Converse of i ": $(R \cup S) \to R \to S$ " Theorem "Converse of i ": $(R \cup S) \to R \to S$ " Theorem "Distributivity of i over \cup ": $Q \notin (R \cup S) = Q \oplus R \cup Q \oplus S$ Theorem "Left-identity of j " "Identity of j ": $I \notin R = R$ Theorem "Associativity of j ": $(Q \oplus R) \oplus S \to Q \oplus R \cup Q \oplus S$ Theorem "Sub-distributivity of i over \cup ": $(Q \oplus R) \oplus S \oplus Q \oplus R \cup Q \oplus S$ Theorem "Sub-distributivity of i " "Identity of j ": $I \oplus R = R$ Theorem "Sub-distributivity of i over \cup ": $(Q \oplus R) \oplus S \oplus Q \oplus R \cup Q \oplus S$ Theorem "Massociativity of j ": $(Q \oplus R) \oplus S \oplus Q \oplus R \cup Q \oplus S$ Theorem "Monotonicity of j ": $Q \oplus R \to Q \oplus S \oplus Q \oplus R \cup Q \oplus S$ Theorem "Converse of I ": $I \oplus R = R$ Theorem "Converse of I ": $I \oplus R = R$ Theorem "Monotonicity of j ": $Q \oplus R \to Q \oplus S \oplus Q \oplus S \oplus R \oplus S$ Theorem "Monotonicity of j ": $Q \oplus R \to Q \oplus S \oplus R \oplus S$ Theorem "Converse of I ": $\{Q \oplus R \to S \oplus Q \oplus S \oplus R \oplus S \oplus S \oplus R \oplus S \oplus S \oplus R \oplus S \oplus S$
Relation Algebra — Overview of Important Operatioons and Laws• For any two types B and C, on the type $B \leftrightarrow C$ of relations between B and C we have the ordering \subseteq with:• binary minima $_ \bigcirc$ and maxima $_ \bigcirc$ (which are monotonic)• least relation {} and largest ("universal") relation U• complement operation $_$ such that $R \cap ~R = \{\}$ and $R \cup ~R = U$ • relative pseudo-complement $R \oplus S = ~R \cup S$ • The composition operation $\{_}$ • is defined on any two relations $R : B \leftrightarrow C_1$ and $S : C_2 \leftrightarrow D$ iff $C_1 = C_2$ • is associative, monotonic, and has identities I• distributes over union: $Q : (R \cup S) = Q : R \cup Q : S$ • The converse operation $_$ • maps relation $R : B \leftrightarrow C to R^- : C \leftrightarrow B$ • is self-inverse ($R^{} = R$) and monotonic• is contravariant wrt. composition: $(R : S)^- = S^- : R^-$ • The Dedekind rule holds: $Q : R \cap S \subseteq (Q \cap S : R^-) : (C \cap Q^- : S)$ • The Schröder equivalences hold: $Q : R \subseteq S = Q^- : S^- : S \subset R$ and $Q : R \subseteq S = ~S : R^- \subseteq Q$ • $: a kaleft-residuals S / R = ~(~S : R^-) and right-residuals Q \screws S)$	Recall: Monotonicity of Relation CompositionRelation composition is monotonic in both arguments: $Q \subseteq R \Rightarrow Q_S^*S \subseteq R_S^*S$ $Q \subseteq R \Rightarrow P_S^*Q \subseteq P_S^*R$ We could prove this via "Relation inclusion" and "For any", but we don't need to:Assume $Q \subseteq R$, which by (11.45) is equivalent to $Q \cup R = R$:Proving $Q_S^*S \subseteq R_S^*S$: R_S^*S $= \langle Assumption Q \cup R = R \rangle$ $(Q \cup R)_S^*S$ $= \langle (14.23)$ Distributivity of \S over $\cup \rangle$ $Q_S^*S \cup R_S^*S$ $\geq \langle (11.31)$ Strengthening $S \subseteq S \cup T \rangle$ Q_S^*S



$ \frac{ x = x + x }{ x = x + x } = x = x + x = x = x + x = x = x + x = x = x + x = x = x + x = x = x + x = x = x + x = x = x + x = x = x +$	Homogeneous Relation Properties are Preserved by Converse	Reflexive and Transitive Implies Idempotent
$\frac{ \mathbf{x} _{1} + \mathbf{x} _{1} + \mathbf{x} \mathbf{x} _{1} + \mathbf{x} _{1} + \mathbf{x} _{1} + \mathbf{x} _{1} + x$	reflexive $\mathbb{I} \subseteq R$ $(\forall b: B \circ b(R)b)$ irreflexive $\mathbb{I} \cap R = \{\}$ $(\forall b: B \circ \neg(b(R)b))$	reflexive $\mathbb{I} \subseteq R (\forall b : B \bullet b (R) b)$
$\frac{ _{R_{1}} _{R_{1}} _{R_{2}} _{R_$		transitive $R \ \ R \ \subseteq R$ ($\forall b, c, d \bullet b \ \ C \ \ d \Rightarrow b \ \ R \ \ d)$
Theorem IF $k^2 = k$ is a close of $k + k = k$ Theorem IF $k^2 = k$ is definition of $k + k = k$ Theorem IF $k^2 = k = k$ is definition of $k = k = k$ Theorem IF $k^2 = k = k$ Theorem IF $k^2 = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k = k$ Reflective and Lensitive Lapping to the second of $k = k = k = k$ Reflective and Lensit		idempotent $R \ ; R = R$
$\frac{\log_{10}}{\log_{10}} = \frac{1}{\log_{10}} + \frac{1}{\log_{10}} +$		Theorem: If $R: B \leftrightarrow B$ is reflexive and transitive, then it is also idempotent
Line construction of decompositionLine and the set of the set		
Reflexive and Transitive Implies Idempotent — Direct ApproachReflexive and Transitive Implies Idempotent — Direct ApproachIntervent $k \in k \in k$ The discrete and transitive Implies Idempotent $k \in k \in k$ Intervent $k \in k \in k$ Intervent $k \in k \in k$ Intervent	Theorem: If $R : B \leftrightarrow B$ is reflexive/irreflexive/symmetric/antisymmetric/asymmetric/ transitive/idempotent, then R^{\sim} has that property, too. Proof: Reflexivity: R^{\sim} Transitivity: R^{\sim} R^{\sim} \$ R^{\sim} 2 (Mon. $$ with Reflexivity of R) = (Converse of $$ } \mathbb{I}^{\sim} (R \$ R^{\sim}) $=$ (Symmetry of \mathbb{I}) \subseteq (Mon. $$ with Trans. of R)	
There is the prove of the section of parameter $\frac{1}{k + k} = \frac{1}{k + k}$ The section $\frac{1}{k + k} = \frac{1}{k + k}$ T	I R [°]	
$ \frac{\operatorname{release}{\operatorname{transitive}} \operatorname{R} \ S \ C \ R \ C \ S \ C \ S \ S \ S \ S \ S \ S \ S$	Theorem "Idempotency from reflexive and transitive ": reflexive $R \Rightarrow$ transitive $R \Rightarrow$ idempotent R Proof: Assuming `reflexive $R`$, `transitive $R`$: idempotent R $\equiv \langle "Definition of idempotency" \rangle$ $R \ddagger R = R$ $\equiv \langle "Mutual inclusion" \rangle$ $R \ddagger R \subseteq R \land R \subseteq R \ddagger R$ $\equiv \langle "Definition of transitivity", assumption `transitive R`, "Identity of \land" \rangleR \ddagger C R \ddagger R\equiv \langle "Identity of \ddagger" \rangleR \ddagger I \subseteq R \ddagger R\equiv \langle Assumption `reflexive R` with "Definition of reflexivity" \rangle$	Theorem "Idempotency from reflexive and transitive": reflexive $R \Rightarrow$ transitive $R \Rightarrow$ idempotent R Proof: Assuming 'reflexive R and using with "Definition of reflexivity", 'transitive R ' and using with "Definition of transitivity": idempotent R \equiv ("Definition of idempotency") $R \ddagger R = R$ \equiv ("Mutual inclusion") $R \ddagger R \in R \land R \in R \ddagger R$ \equiv (Assumption 'transitive R ', "Identity of \land ") $R \subseteq R \ddagger R$ \equiv ("Identity of \ddagger ") $R \ddagger I \in R \ddagger R$ \equiv ("Monotonicity of \ddagger ") $I \subseteq R$ \equiv (Assumption `reflexive R ')
$ \frac{\operatorname{release}{\operatorname{transitive}} \operatorname{R} \ S \ C \ R \ C \ S \ C \ S \ S \ S \ S \ S \ S \ S$	Reflexive and Transitive Implies Idempotent — Semi-formal	Reflexive and Transitive Implies Idempotent — Cyclic ⊆-chain Proving ` = `
		Theorem "Idempotency from reflexive and transitive":
idempotent $R(R = R)$ According reflective $R(R)$ According reflective $R(R)$ $R(R = R)$ Theorem: $I, R : B \rightarrow B$ is reflective and transitive, then it is also idempotent. $R(R = R)$ $R(R = R)$ $R(R = R)$ Proof: By mutual inclusion and transitivity of R , we only need to show $R \leq R/R$: $R : R = R$ $R : R = R$ $R = (Identity of f)$ $R : R = R$ Theorem: $R : R : R = R$ $R : R = R$ <td></td> <td>reflexive $R \Rightarrow$ transitive $R \Rightarrow$ idempotent R</td>		reflexive $R \Rightarrow$ transitive $R \Rightarrow$ idempotent R
Theorem: If $R: B \rightarrow B$ is reflexive, then it is also idempotent.Theorem: If $R: B \rightarrow B$ is reflexive, then it is also idempotent.Theorem: If $R: B \rightarrow B$ is reflexive, then it is also idempotent.Theorem: If $R: S = B$ are reflexive/irreflexive/symmetric $R \cap R^{-} = R$ Theorem: If $R: S : B \rightarrow B$ are reflexive/irreflexive / symmetric $R \cap R^{-} = R$ Theorem: If $R: S : B \rightarrow B$ are reflexive/irreflexive / symmetric $R \cap R^{-} = R$ Theorem: If $R: S : B \rightarrow B$ are reflexive/irreflexive / symmetric $R \cap R^{-} = R$ Some Homogeneous Relation Properties are Preserved by UnionReflexive: I $R \in R$ If $R: S : B \rightarrow B$ are reflexive/irreflexive / symmetric $R \cap R^{-} = R$ Some Homogeneous Relation Properties are Preserved by UnionReflexive: I $R \in R$ If $R: S : B \rightarrow B$ are reflexive/irreflexive / symmetric $R \cap R^{-} = R$ In IIf $R: S : B \rightarrow B$ are reflexive/irreflexive / symmetric $R \cap R^{-} = R$ In IIn IIn IIn IIn IIn I (R:S) (R: R) (S; S)Some Homogeneous Relation Properties are Preserved by UnionIf Relaxivity of R I (R:S) (R: R) (S; S)In IIn IIn IIn IIn II (R:S) $B \rightarrow B$ are reflexive/irreflexive/irreflexive/irreflexive/irreflexive/irreflexive/irreflexive/irreflexive/irreflexive/irrefle		
Subpose for $R \in R = R$:Subpose for $R \in R = R$:R if R (Identify of 1) $R \downarrow I$ $R \downarrow R$ Subpose for $R \in R = R$: $R \downarrow R$ Subpose for $R \in R = R$: $R \downarrow R$ Subpose for $R \in R = R$: $R \downarrow R$ Subpose for $R \in R = R$: $R \downarrow R$ Subpose for $R \in R \in R$: $R \downarrow R$ Subpose for $R \in R \in R$: $R \downarrow R$ Subpose for $R \in R \in R$: $R \downarrow R$ Subpose for $R \in R \in R$: $R \downarrow R$ Subpose for $R \in R \in R$: $R \downarrow R = R$:Subpose for $R \in R \in R$: $R \downarrow R = R$:Subpose for $R \in R \in R$: $R \downarrow R = R$:Subpose for $R \in R \in R$: $R \downarrow R = R$:Subpose for $R \in R \setminus R = R$: $R \downarrow R = R$:Theorem: $I R, S \models B = R$ are reflexive/irreflexive/symmetrid antisymmetrid $R \cap R = 0$) $R \land R \cap R = R \mid R \to R$ Theorem: $I R, S \models B = R$ are reflexive/irreflexive $R \land R \land R = R$ Theorem: $I R, S \models B = R$ reflexive/irreflexive/symmetrid $R \cap R = 0$) $R \land R \land R \cap R = R$ $I (Mon or or with Refl. R)$ $I (Mon for with Refl. R)$ $I (R \cap R \cap R \cup R)$ <	Idempotent K;K = K	
Proof: By mutual inclusion and transitivity of R, we only need to show $R \subseteq R$; R: R R : I R : I Chamity of (1) R : I R : I R : R $R : R$ R : R R : R : R : R : R : R : R : R : R R : R : R R : R : R : R : R : R : R : R : R : R :	Theorem: If $R : B \leftrightarrow B$ is reflexive and transitive, then it is also idempotent.	
$ \begin{array}{c} k \\ c \ (demity of 1) \\ R + 1 \\ c \ (Mon; with Reflexivity of R) \\ R + R \end{array} \\ \hline \\ $	Proof: By mutual inclusion and transitivity of <i>R</i> , we only need to show $R \subseteq R \colon R$.	-
$ \begin{array}{c} \left(\operatorname{dentyly of 1} \right) \\ R & 1 \\ \leq \left(\operatorname{Mon, 1} \operatorname{with Relexity of R} \right) \\ R & 1 \\ R & 1 \\ \end{array} \right) \\ \left(\operatorname{Mon efnowing Review Relation Properties are Preserved by Intersection \\ \hline \operatorname{Mon efnowing R} \\ R & 1 \\ \hline \operatorname{Mon efnowing R} \\ R & 1 \\ \hline \operatorname{Mon efnowing R} \\ R & 1 \\ \hline \operatorname{Mon efnowing Review Relation Properties are Preserved by Intersection \\ \hline \operatorname{Mon efnowing R} \\ R & 1 \\ \hline \operatorname{Mon efnowing R} \\ R & 1 \\ \hline \operatorname{Mon efnowing Review Relation Properties are Preserved by Intersection \\ \hline \operatorname{Mon efnowing R} \\ R & 1 \\ \hline \operatorname{Mon efnowing Review R} \\ R & 1 \\ \hline \operatorname{Mon efnowing Review Relation Properties are Preserved by Intersection \\ R & 1 \\ R & 1 \\ \hline \operatorname{Mon efnowing Review R} \\ R & 1 \\ \hline \operatorname{Mon efnowing Ref R} \\ R & 1 \\ \hline \operatorname{Mon efnowing Ref R} \\ R & 1 \\ \hline \operatorname{Mon efnowing Ref Ref R} \\ R & 1 \\ \hline Mon efnowing Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref$		
$ \begin{array}{c} \left(\operatorname{Adenity}_{0,1} \right)_{\substack{R \in \mathbb{Z} \\ R \in \mathbb{Z} \\$		
$ \begin{cases} (\text{Mon}; \text{with Relexity of } R) \\ R ; R \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
$ \begin{array}{l} \begin{array}{l} \mathbb{R} \\ \frac{1}{2} \\ \mathbb{R} \\ \frac{1}{2} \\ \mathbb{R} \\ \mathbb{R}$		
Using cyclic ±-chains to prove equalities requires activation of antisymmetry of £.Most Homogeneous Relation Properties are Preserved by Intersection $\frac{reflexive}{large are (low in Refl R.)}$ $\frac{symmetric R \cap R^- \in I}{antisymmetric R \cap R^- \in I}$ $large diver equalities Right are Relative / irreflexive /$		
Most Homogeneous Relation Properties are Preserved by Intersection $ImplexiteImplex$	K § K	Using cyclic E-chains to prove equalities requires activation of antisymmetry of E
reflexiveIERtransliveR/RRtransliveR/RRidempotentR;R = RTheorem: If R, S: B + B are reflexive/irreflexive/symmetric/antisy		Using cyclic E-chains to prove equalities requires activation of antisymmetry of E.
reflexiveIERtransliveR/RRtransliveR/RRidempotentR;R = RTheorem: If R, S: B + B are reflexive/irreflexive/symmetric/antisy	Most Homogeneous Relation Properties are Preserved by Intersection	Most Homogeneous Relaton Properties are Preserved by Intersection
$\begin{split} & \begin{array}{ c } \hline reflexive & \overline{1 \cap R} = () \\ \hline transitive & R;R \subseteq R \\ \hline idempotent & R;R = R \\ \hline reflexive \\ refl$		
idempotent $R; R = R$ idempotent $R; R = R$ Theorem: If $R, S: B \rightarrow B$ are reflexive/irreflexive/symmetric/antisymmetric/ansitiveImage: constraint of the symmetric/antisymmetric/ansitymmetric/ansitymmetric/ansitiveImage: constraint of the symmetric/ansitymmetric/ansitymmetric/ansitymmetric/ansitiveProof:Reflexivity: $(R \cap S); (R \cap S)$ $(R (R \cap S); (R \cap S))$ $(R (R (R \cap S); (R \cap S)))$ $(R (R (R (R \cap S))))$ $(R (R (R (R \cap S))))$ $(R (R (R (R \cap S))))$ $(R (R (R (R (R \cap S)))))$ Some Homogeneous Relation Properties are Preserved by UnionTheorem: If $R, S: B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too.Some Homogeneous Relation Properties are Preserved by Constraint $R (R \cap S \cap S)$ $R (R \cap S \cap S)$ Theorem: If $R, S: B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too.Some Homogeneous Relation Properties are Preserved by Constraint $R (R \cap S \cap S)$ $R (R \cap S \cap$		
idempotent $R; R = R$ idempotent $R; R = R$ Theorem: If $R, S: B \Rightarrow B$ are reflexive/irreflexive/symmetric/antisymmetric/ansitivemetric/asymmetric/antisymmetric/antisymmetric/ansitymmetric/ansitivemetric/asymmetric/antisymmetric/ansitivemetric/asymmetric/ansitiveTheorem: If $R, S: B \Rightarrow B$ are reflexive/irreflexive/symmetric/antisymmetric/asymmetric/transitive $R \cap S$ $(R \cap S) \notin (R \cap S)$ 2 (Mon. of \cap with Refl. S) $(R \cap S) \cap (S; S) \cap (S; S)$ 2 (Mon. of \cap with Refl. R) $(R \cap S) \cap (S; S) \cap (S; S)$ 2 (Mon. of \cap with Refl. R) $(R \cap S) \cap (S; S) \cap (S; S)$ 2 (Mon. of \cap with Refl. R) $(R \cap S) \cap (S; S) \cap (S; S) \cap (S; S)$ 2 (Mon. of \cap with Refl. R) $(R \cap S) \cap (S; $		
metric/transitive, then $R \cap S$ has that property, too.metric/asymmetric/transitive, then $R \cap S$ has that property, too.Proof:Reflexivity: $(R \cap S) (R \cap S)$ $\leq (Mon. of n with Refl. R)$ I $(Mon. of n with Refl. R)$ $(R \notin R) \cap (R \notin S) \cap (S \notin S)$ metric/asymmetric/transitive, then $R \cap S$ has that property, too. $I \cap I$ $(R \oplus R) \cap (R \oplus S) \cap (S \oplus R) \cap (S \oplus S)$ $\leq (Mon. of n with Refl. R)$ I $(R \oplus R) \cap (R \oplus S) \cap (S \oplus R) \cap (S \oplus S)$ $\leq (Mon. of n with Refl. R)$ I $(R \oplus R) \cap (R \oplus S) \cap (S \oplus R) \cap (S \oplus S)$ $\leq (Mon. n with transitivity of R and S)$ $R \cap S$ $R \cap S$ $e - e$ $R \cap S$ $e - e$ Theorem: If $R \subseteq R$ idempotent $R \oplus R$ $R \cap S = R$ idempotent $R \oplus R = R$ $R \cap S = R$ idempotent $R \oplus R = R$ Symmetric $R \cap R^- \in I$ antisymmetric, $R \cap R^- \in I$ $I \cap R \cup S$ Some Homogeneous Relation Properties are Preserved by UnionTheorem: If $R, S : B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too.In effexivity: Proof:In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ Theorem: If $R, S : B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too.Proof:In $(R \cup S)$ $(R \in W \otimes V)$ In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ In $(R \cup S)$ $(R \in e - e - q)$ In $(R \cup S)$ $(R \in e - e - q)$ Counter-example for preservation of transitivity: $(R \cap e - e - q)$ $(R \cap e - e - q)$ $(R \cap e - e - q)$ $(R \cap e - e - q)$ <td></td> <td></td>		
metric/transitive, then $R \cap S$ has that property, too.metric/asymmetric/transitive, then $R \cap S$ has that property, too.Proof:Reflexivity: $(R \cap S) (R \cap S)$ $\leq (Mon. of n with Refl. R)$ I $(Mon. of n with Refl. R)$ $(R \notin R) \cap (R \notin S) \cap (S \notin S)$ metric/asymmetric/transitive, then $R \cap S$ has that property, too. $I \cap I$ $(R \oplus R) \cap (R \oplus S) \cap (S \oplus R) \cap (S \oplus S)$ $\leq (Mon. of n with Refl. R)$ I $(R \oplus R) \cap (R \oplus S) \cap (S \oplus R) \cap (S \oplus S)$ $\leq (Mon. of n with Refl. R)$ I $(R \oplus R) \cap (R \oplus S) \cap (S \oplus R) \cap (S \oplus S)$ $\leq (Mon. n with transitivity of R and S)$ $R \cap S$ $R \cap S$ $e - e$ $R \cap S$ $e - e$ Theorem: If $R \subseteq R$ idempotent $R \oplus R$ $R \cap S = R$ idempotent $R \oplus R = R$ $R \cap S = R$ idempotent $R \oplus R = R$ Symmetric $R \cap R^- \in I$ antisymmetric, $R \cap R^- \in I$ $I \cap R \cup S$ Some Homogeneous Relation Properties are Preserved by UnionTheorem: If $R, S : B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too.In effexivity: Proof:In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ Theorem: If $R, S : B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too.Proof:In $(R \cup S)$ $(R \in W \otimes V)$ In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ In $(R \cup S)$ $(I \cap R) \cup (I \cap S)$ In $(R \cup S)$ $(R \in e - e - q)$ In $(R \cup S)$ $(R \in e - e - q)$ Counter-example for preservation of transitivity: $(R \cap e - e - q)$ $(R \cap e - e - q)$ $(R \cap e - e - q)$ $(R \cap e - e - q)$ <td>Theorem: If $R, S: B \leftrightarrow B$ are reflexive/irreflexive/symmetric/antisym-</td> <td>Theorem: If $R, S: B \leftrightarrow B$ are reflexive/irreflexive/symmetric/antisym-</td>	Theorem: If $R, S: B \leftrightarrow B$ are reflexive/irreflexive/symmetric/antisym-	Theorem: If $R, S: B \leftrightarrow B$ are reflexive/irreflexive/symmetric/antisym-
$R \cap S$ $(R \cap S)$; $(R \cap S)$		
$\begin{array}{c} (\operatorname{All} S) \\ (\operatorname{All} S) $	Proof: Reflexivity: Transitivity:	
$\begin{array}{c c} R \cap I \\ \hline I & I \\ \hline I$		Counter-example for preservation of idempotence:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		R
$\begin{bmatrix} I \cap I \\ = (Idempotence of \cap) \\ I \end{bmatrix} \begin{pmatrix} (R \ddagger R) \cap (S \ddagger S) \\ \subseteq (Mon. \cap with transitivity of R and S) \\ R \cap S \end{bmatrix}$ $\begin{bmatrix} (R \ddagger R) \cap (S \ddagger S) \\ \subseteq (Mon. \cap with transitivity of R and S) \\ R \cap S \end{bmatrix}$ $\begin{bmatrix} (R \ddagger R) \cap (S \ddagger S) \\ \exists n n symmetric \ R \cap R = R \\ antisymmetric \ R \cap R + I \\ asymmetric \ R \cap R^{-} = I \\ asymmetric \ R \cap I \\ asymmetric \ R \cap I$		$\left[\begin{array}{c} c \longrightarrow e^{\checkmark} \end{array}\right] \qquad R \cap S$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
I $R \cap S$ Some Homogeneous Relation Properties are Preserved by Union $IarreflexiveI \subseteq RirreflexiveSymmetricR \cap R^- \subseteq IasymmetricSome Homogeneous Relation Properties are Preserved by UnionIarreflexiveI \subseteq RirreflexiveSymmetricR \cap R^- \subseteq IasymmetricSome Homogeneous Relation Properties are Preserved by UnionIntegrationSymmetricR \cap R^- \subseteq IasymmetricSome Homogeneous Relation Properties are Preserved by UnionIntegrationSymmetricR \cap R^- \subseteq IasymmetricSome Homogeneous Relation Properties are Preserved by UnionIntegrationSymmetricR \cap R^- \subseteq IasymmetricSome Homogeneous Relation Properties are Preserved by UnionIntegrationSymmetricR \cap R^- \subseteq IasymmetricSome Homogeneous Relation Properties are Preserved by UnionIntegrationSymmetricR \cap R^- \subseteq IasymmetricSome Homogeneous Relation Properties are Preserved by UnionIntegrationSymmetricR \cap R^- \subseteq IasymmetricSome Homogeneous Relation Properties are Preserved by UnionIntegrationSymmetricR \cap R^- \subseteq IasymmetricSome Homogeneous Relation Properties are Preserved by UnionIntegrationIntegrationRelexiveIntegrationSome Homogeneous RelationIIntegrationIntegrationIntegrationIntegrationIIntegrationIntegrationIntegrationIntegrationIIntegrationIntegrationIntegrationRIntegrationIntegrationIntegration<$		
$ \frac{\text{reflexive} \text{I} \text{C} \text{R}}{\text{irreflexive} \text{I} \text{R} \text{R}} = R \\ \frac{\text{irreflexive} \text{I} \text{R} \text{R}}{\text{irreflexive} \text{I} \text{R} \text{R}} = R \\ \frac{\text{antisymmetric} R \text{R}^{\vee} \text{C} R \\ \frac{\text{antisymmetric} R \text{R}^{\vee} \text{C} \text{I} \\ \frac{\text{antisymmetric} R \text{R}^{\vee} \text{R}^{\vee} \text{I} \\ \frac{\text{I} \{I} \{R} \text{R}^{\vee} \text{R}^{\vee} \text{I} \\ \frac{\text{I} \{R} \text{R}^{\vee} \text{R}^{\vee} \text{I} \\ \frac{\text{I} \{R} \text{R}^{\vee} \text{R}^{\vee} \text{R}^{\vee} \text{I} \\ \frac{\text{R} \text{R}^{\vee} \text{R}^{\vee} \text{R}^{\vee} \text{R}^{\vee} \text{I} \\ \frac{\text{R} \text{R}^{\vee} \text{R}^{\vee} $		
$ \frac{\text{reflexive} \text{I} \text{C} \text{R}}{\text{irreflexive} \text{I} \text{R} \text{R}} = R \\ \frac{\text{irreflexive} \text{I} \text{R} \text{R}}{\text{irreflexive} \text{I} \text{R} \text{R}} = R \\ \frac{\text{antisymmetric} R \text{R}^{\vee} \text{C} R \\ \frac{\text{antisymmetric} R \text{R}^{\vee} \text{C} \text{I} \\ \frac{\text{antisymmetric} R \text{R}^{\vee} \text{R}^{\vee} \text{I} \\ \frac{\text{I} \{I} \{R} \text{R}^{\vee} \text{R}^{\vee} \text{I} \\ \frac{\text{I} \{R} \text{R}^{\vee} \text{R}^{\vee} \text{I} \\ \frac{\text{I} \{R} \text{R}^{\vee} \text{R}^{\vee} \text{R}^{\vee} \text{I} \\ \frac{\text{R} \text{R}^{\vee} \text{R}^{\vee} \text{R}^{\vee} \text{R}^{\vee} \text{I} \\ \frac{\text{R} \text{R}^{\vee} \text{R}^{\vee} $	Some Homogeneous Relation Properties are Preserved by Union	Some Homogeneous Relation Properties are Preserved by Union
irreflexive $\square \cap R = \{\}$ antisymmetric $\square \cap R^{\vee} \subseteq \square$ asymmetric \square antisymmetric $\square \cap R^{\vee} \subseteq \square$ asymmetric \square antisymmetric $\square \cap R^{\vee} \subseteq \square$ asymmetricTheorem: If $R, S: B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too.Irreflexivity: $\square \cap (R \cup S)$ $\square \cap (R \cup S)$ $= (Distributivity of \cap over \cup)(\square \cap R) \cup (\square \cap S)Integration of transitivity:R \in C \longrightarrow e \longrightarrow qIntegration of transitivity:R \in C \longrightarrow e \longrightarrow qI\square (R \cup S)\subseteq (Weakening X \subseteq X \cup Y)= (Idempotence of \cup)R \cap R^{\vee} \subseteq \squareasymmetricR \cap R^{\vee} \subseteq \squareantisymmetricI\square (R \cup S)\subseteq (Weakening X \subseteq X \cup Y)= (Idempotence of \cup)R \cup S\subseteq (Idempotence of \cup)R \cup S\subseteq (Idempotence of \cup)$		
transitive $R \notin R \subseteq R$ asymmetric $R \cap R^{\sim} = \{\}$ idempotent $R \notin R = R$ idempotent $R \notin R \subseteq R$ asymmetric $R \cap R^{\sim} = \{\}$ Theorem: If $R, S : B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too.Irreflexivity:It $n(R \cup S)$ It $n(R \cup S)$ Proof: $I \cap (R \cup S)$ Image:		
idempotent $R \ \ R = R$ idempotent $R \ \ R = R$ Theorem: If $R, S : B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too.Interflexivity:Proof: $I \cap (R \cup S)$ Reflexivity: $I \cap (R \cup S)$ I $(I \cap R) \cup (I \cap S)$ \subseteq (Reflexivity of R) R $=$ (Irreflexivity of R and S) $\{\} \cup \{\}$ \subseteq (Weakening $X \subseteq X \cup Y$) $=$ (Idempotence of \cup)		
Theorem: If $R, S: B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too.Theorem: If $R, S: B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too.Proof: $\mathbb{I} \cap (R \cup S)$ $\mathbb{I} \cap (R \cup S)$ \mathbb{C} counter-example for preservation of transitivity: \mathbb{I} $(\mathbb{I} \cap R) \cup (\mathbb{I} \cap S)$ \mathbb{R} $\mathbb{C} \longrightarrow \mathbb{C}$ \subseteq (Reflexivity of R) $=$ (Irreflexivity of R and S) $\{\} \cup \{\}$ $\mathbb{R} \cup S$ $\mathbb{C} \longrightarrow \mathbb{C}$ \subseteq (Weakening $X \subseteq X \cup Y$) $=$ (Idempotence of \cup) $\mathbb{C} \longrightarrow \mathbb{C}$ $\mathbb{C} \longrightarrow \mathbb{C}$		
property, too.Irreflexivity:property, too.Proof: $\mathbb{I} \cap (R \cup S)$ property, too.Reflexivity:= $\langle \text{Distributivity of } \cap \text{ over } \cup \rangle$ \mathbb{C} I $(\mathbb{I} \cap R) \cup (\mathbb{I} \cap S)$ \mathbb{R} \subseteq (Reflexivity of R)= $\langle \text{Irreflexivity of } R \text{ and } S \rangle$ $R \cup S$ R $\{\} \cup \{\}$ \mathbb{C} \subseteq (Weakening $X \subseteq X \cup Y$)= $\langle \text{Idempotence of } \cup \rangle$ \mathbb{C}		
Proof: $\mathbb{I} \cap (R \cup S)$ $\mathbb{I} \cap (R \cup S)$ Reflexivity: $= \langle \text{Distributivity of } \cap \text{ over } \cup \rangle$ $= \langle \text{Distributivity of } \cap \text{ over } \cup \rangle$ \mathbb{I} $(\mathbb{I} \cap R) \cup (\mathbb{I} \cap S)$ $R \in \mathbb{C} \longrightarrow \mathbb{C}$ $\subseteq \langle \text{Reflexivity of } R \rangle$ $= \langle \text{Irreflexivity of } R \text{ and } S \rangle$ $R \cup S$ R $\{ \} \cup \{ \}$ $S \in \mathbb{C} \longrightarrow \mathbb{C} \rightarrow \mathbb{C} \rightarrow$	much only to a	
Reflexivity:= $\langle \text{Distributivity of } \circ \text{over } \cup \rangle$ Counter-example for preservation of transitivity:I $(I \cap R) \cup (I \cap S)$ R $\subseteq \langle \text{Reflexivity of } R \rangle$ $= \langle \text{Irreflexivity of } R \text{ and } S \rangle$ $R \cup S$ R $\{\} \cup \{\}$ S $\subseteq \langle \text{Weakening } X \subseteq X \cup Y \rangle$ $= \langle \text{Idempotence of } \cup \rangle$	inclexivity.	
$ \begin{array}{c c} \mathbb{I} & (\mathbb{I} \cap R) \cup (\mathbb{I} \cap S) \\ \subseteq \langle \text{Reflexivity of } R \rangle & = \langle \text{Irreflexivity of } R \text{ and } S \rangle \\ R & \{\} \cup \{\} \\ \subseteq \langle \text{Weakening } X \subseteq X \cup Y \rangle & = \langle \text{Idempotence of } \cup \rangle \end{array} \right) \qquad $		Counter-example for preservation of transitivity:
$ \begin{array}{c} \subseteq \langle \operatorname{Reflexivity} \text{ of } R \rangle \\ R \\ \subseteq \langle \operatorname{Weakening} X \subseteq X \cup Y \rangle \end{array} = \langle \operatorname{Idempotence} \text{ of } \cup \rangle \end{array} $		
$R \qquad \{\} \cup \{\} \\ \subseteq \langle \text{ Weakening } X \subseteq X \cup Y \rangle \qquad = \langle \text{ Idempotence of } \cup \rangle \qquad \qquad$		
$\subseteq (Weakening X \subseteq X \cup Y) = (Idempotence of \cup) $		$ \begin{array}{ } \\ \hline \\ $
	$R \cup S \qquad \{\}$	

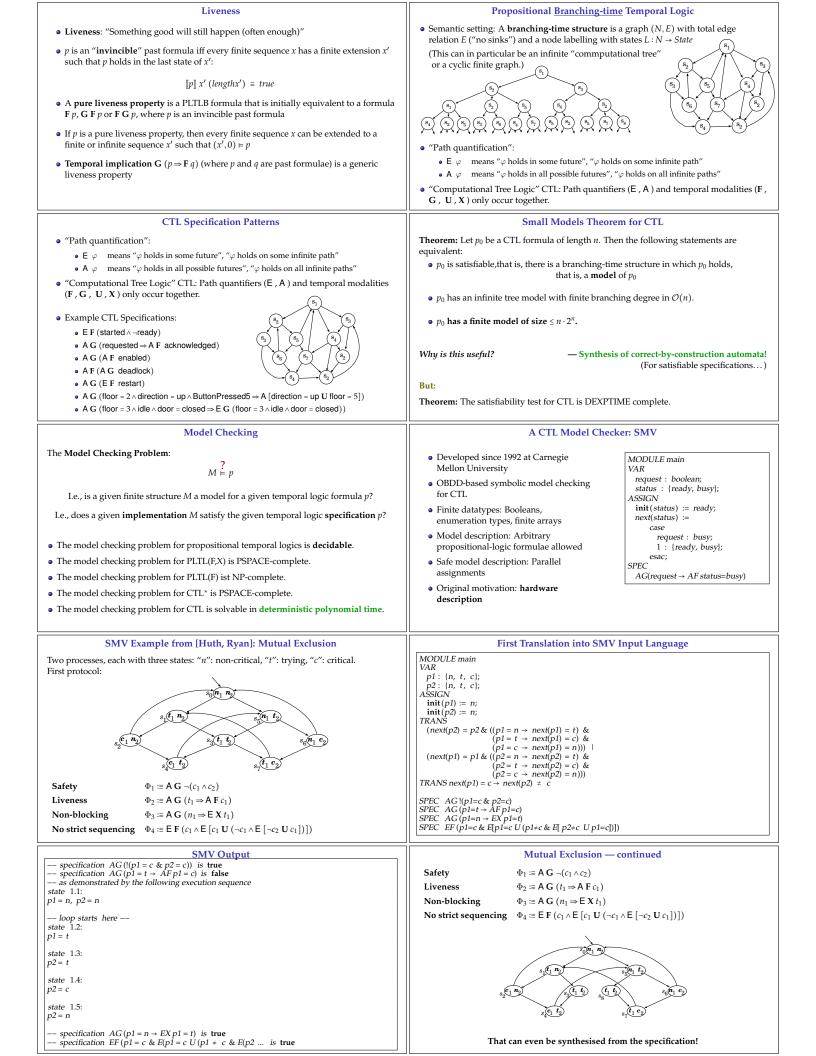


Changing the Quantified Domain	Inverses of Functions from Function Types
$(\sum i \mid 2 \le i < 10 \bullet i^2)$	LADM for (8.22): "A function f has an inverse f^{-1} iff $x = f y \equiv y = f^{-1} x$ "
$= \langle (8.22) \text{ with } (_+_2) \text{ hasAnInverse} \rangle$	This is not a definition of a new inverse concept but a theorem about the proper inverse concept for functions between types:
(5.22) where (-2) hardware for (-	• Equality of functions can be proven via "Function extensionquity":
	Axiom "Function extensionality axiom": $(\forall x \bullet f x = g x) \Rightarrow f = g$ • Composition is conventional mathematical function composition _o_ (read "after"):
(8.22) Change of dummy: Provided <i>f</i> has an inverse and $\neg occurs('y', 'R, P')$	Declaration : $_\circ_: (B \to C) \to (A \to B) \to (A \to C)$
(that is, " <i>y</i> is fresh"), then:	Axiom "Function composition": $(g \circ f) x = g(f x)$ Theorem "Associativity of \circ ": $h \circ (g \circ f) = (h \circ g) \circ f$
$(\star x \mid R \bullet P) = (\star y \mid R[x \coloneqq f y] \bullet P[x \coloneqq f y])$	 This composition has identities at every type:
	Declaration: $Id: A \to A$ Axiom "Identity function ": $Id x = x$
Above: $f y = 2 + y$ and $f^{-1} x = x - 2$	Theorem "Identity of \circ ": Id \circ f = f = f \circ Id
	• This gives rise to the conventional inverse concept: Declaration : $_isInverseOf_: (B \rightarrow A) \rightarrow (A \rightarrow B) \rightarrow \mathbb{B}$
A function <i>f</i> has an inverse f^{-1} iff $x = f y \equiv y = f^{-1} x$	Axiom "Inverse function": g is inverse Of $f \equiv g \circ f = Id \land f \circ g = Id$ •and we can prove:
	Theorem "Inverse function connection ": g is inverse Of $f \equiv (\forall x \bullet \forall y \bullet y = f x \equiv x = g y)$
Assume <i>f</i> has an inverse and $\neg occurs('y', 'x, R, P')$	
$(* y \mid R[x := f y] \bullet P[x := f y])$	
= $\langle (8.14) \text{ One-point rule: } \neg occurs('x', 'f y') \rangle$	Logical Reasoning for Computer Science
$(\star y \mid R[x \coloneqq f y] \bullet (\star x \mid x = f y \bullet P))$	COMPSCI 2LC3
= $\langle (8.20) \text{ Nesting: } \neg occurs('x', 'R[x := f y]'), \text{ Dummy permutation } $ $(\star x, y \mid R[x := f y] \land x = f y \bullet P)$	
$= \langle (3.84a) \text{ Replacement } (e = f) \land E[z := e] = (e = f) \land E[z := f] \rangle$	McMaster University, Fall 2024
$(\star x, y \mid R[x := x] \land x = f y \bullet P)$	
= $\langle R[x := x] = R; (8.20) \text{ Nesting: } -occurs('y', 'R') \rangle$	Wolfram Kahl
$ (* x \mid R \bullet (* y \mid x = f y \bullet P)) $ = (Assumption "Inverse" $\forall x, y \bullet x = f y \equiv y = f^{-1} x^{`}) $	
$= (Assumption inverse \forall x, y \bullet x = f \cdot y = y = f \cdot x)$ $(* x \mid R \bullet (* y \mid y = f^{-1} x \bullet P))$	2024-11-14
= $((8.14) \text{ One-point rule: } \neg occurs('y', 'f^{-1}x'))$	
$(\star x \mid R \bullet P[y := f^{-1} x])$ = (Textual substitution, -occurs('y', 'P'))	Part 1: Functions, Change of Dummy
$(*x \mid R \bullet P)$	
Changing the Quantified Domain	Recall: Inverses of Functions from Function Types
	LADM for (8.22): "A function <i>f</i> has an inverse f^{-1} iff $x = f y \equiv y = f^{-1} x''$
$\left(\sum i \mid 2 \le i < 10 \bullet i^2\right)$	This is not a definition of a new inverse concept
= ((8.22) with `(_+_ 2) hasAnInverse`)	but a theorem about the proper inverse concept for functions between types:
$(\sum k \mid 0 \le k < 8 \bullet (k+2)^2)$	• Equality of functions can be proven via "Function extensionqality": Axiom "Function extensionality axiom": $(\forall x \bullet f x = g x) \Rightarrow f = g$
(8.22) Change of dummy: Provided <i>f</i> has an inverse and $\neg occurs('y', 'R, P')$	• Composition is conventional mathematical function composition $_\circ_$ (read "after"): Declaration : $_\circ_: (B \to C) \to (A \to B) \to (A \to C)$
(6.22) Change of dulling . Provided y has an inverse and "occurs(y', R, P') (that is, "y is fresh"), then:	Axiom "Function composition": $(g \circ f) x = g(f x)$
$(\star x \mid R \bullet P) = (\star y \mid R[x \coloneqq f y] \bullet P[x \coloneqq f y])$	Theorem "Associativity of \circ ": $h \circ (g \circ f) = (h \circ g) \circ f$ • This composition has identities at every type:
	Declaration : $d: A \rightarrow A$ Axiom "Identity function ": $ld x = x$
Above: $f y = 2 + y$ and $f^{-1} x = x - 2$	Theorem "Identity of \circ ": Id \circ $f = f = f \circ$ Id
	• This gives rise to the conventional inverse concept: Declaration : $_isInverseOf_{-}: (B \rightarrow A) \rightarrow (A \rightarrow B) \rightarrow \mathbb{B}$
A function <i>f</i> has an inverse f^{-1} iff $x = f y \equiv y = f^{-1} x$	Axiom "Inverse function": g is inverse Of $f \equiv g \circ f = Id \land f \circ g = Id$ • and we can prove:
	Theorem "Inverse function connection ": g is inverse Of $f \equiv (\forall x \bullet \forall y \bullet y = f x \equiv x = g y)$
Some More "Prelude" Functions and Some of Their Properties	How to Prove that flip is Self-inverse?
Declaration: flip: $(A \rightarrow B \rightarrow C) \rightarrow (B \rightarrow A \rightarrow C)$	Declaration: flip: $(A \to B \to C) \to (B \to A \to C)$
Axiom "flip ": flip $f y x = f x y$	Axiom "flip ": flip $f y x = f x y$
Declaration: curry : $(\{A, B\} \rightarrow C) \rightarrow (A \rightarrow B \rightarrow C)$	Theorem "Self-inverse `flip `": flip (flip f) = f Proof:
Declaration: uncurry: $(A \rightarrow B \rightarrow C) \rightarrow ((A, B) \rightarrow C)$	flip (flip f) $\hat{\mathbf{x}}_{y}$
Axiom "curry": Curry $g x y = g \langle x, y \rangle$	$= \langle \text{"flip"} \rangle_{Q}^{Q}$ flip f y Q
Axiom "uncurry ": uncurry $f(x, y) = f x y$	
Theorem "curryouncurry ": curry (uncurry f) = f	The missing pieces
Declaration: swap: $(A, B) \rightarrow (B, A)$	The missing piece: Theorem "Function extensionality": $f = g \equiv \forall x \bullet f x = g x$
Axiom "swap ": swap $\langle x, y \rangle = \langle y, x \rangle$	Theorem Function extensionality : $f = g = \sqrt{x} + f x = g x$
Theorem "flipocurry ": flip (curry f) = curry ($f \circ$ swap)	
Proving that flip is Self-inverse	More Conveniently Proving that flip is Self-inverse
Declaration: flip: $(A \to B \to C) \to (B \to A \to C)$	Declaration: flip: $(A \rightarrow B \rightarrow C) \rightarrow (B \rightarrow A \rightarrow C)$ Axiom "flip ": flip f y x = f x y
Axiom "flip ": flip $f y x = f x y$	
Theorem "Function extensionality": $f = g \equiv \forall x \bullet f x = g x$	Theorem "Function extensionality": $f = g \equiv \forall x \bullet f x = g x$
Theorem "Self-inverse `flip` ": flip (flip f) = f Proof:	Theorem "Function extensionality 2": $f = g \equiv \forall x, y \bullet f x y = g x y$ Proof:
Using "Function extensionality ":	By "Function extensionality ", "Nesting for \forall "
Subproof for $\forall x \bullet \text{flip}(\text{flip} f) x = f x^{:}$ For any `x`:	Theorem "Self-inverse `flip`": flip (flip f) = f
Using "Function extensionality ":	Proof: Using "Function extensionality 2 ":
For any y : flip (flip f) x y	For any x, y : flip (flip f) $x y$
= ("flip ")	= ("flip ")
$ \begin{aligned} & \text{flip} \vec{f} y x \\ &= (" \text{flip} ") \end{aligned} $	$ \begin{aligned} & \text{flip } f \ y \ x \\ &= \langle \ \text{"flip } " \ \rangle \end{aligned} $
$= (\inf f_{xy})$	f x y

Assume f has an inverse and $\neg occurs('y', 'x, R, P')$	Changing the Quantified Domain — $occurs('y', 'x')$
$(* y R[x := f y] \bullet P[x := f y])$	In LADM:
$= \langle (8.14) \text{ One-point rule: } -occurs('x', fy') \rangle$ $(\star y \mid R[x := fy] \bullet (\star x \mid x = fy \bullet P))$	(8.22) Change of dummy: Provided <i>f</i> has an inverse and $-occurs('y', 'R, P')$,
= $\langle (8.20) \text{ Nesting: } \neg occurs('x', 'R[x := f y]'), \text{ Dummy permutation } \rangle$	$(\star x \mid R \bullet P) = (\star y \mid R[x := fy] \bullet P[x := fy])$
$(\star x, y \mid \mathbf{R}[x := f \ y] \land x = f \ y \bullet P)$ $(42.84) \text{ Barlement} (x = 0) \cdot \mathbf{F}[x = x] = (x = 0) \cdot \mathbf{F}[x = x]$	We might have that $occurs('y', 'x')$. (Note that <i>x</i> and <i>y</i> are metavariables for variables!)
$= \langle (3.84a) \text{ Replacement } (e=f) \land E[z := e] \equiv (e=f) \land E[z := f] \rangle$ (* x, y R[x := x] \lapha x = f y \lapha P)	Then x is the same variable as y, and $\neg occurs('x', 'R, P')$.
= $\langle R[x := x] = R; (8.20) \text{ Nesting: } \neg occurs('y', 'R') \rangle$	
$ (* x R \bullet (* y x = f y \bullet P)) $ = $\langle Assumption "Inverse" \forall x, y \bullet x = f y \equiv y = f^{-1} x \rangle $	Therefore $R[x := f y] = R$ and $P[x := f y] = P$.
$(*x \mid R \bullet (*y \mid y = f^{-1}x \bullet P))$	So the theorem's consequence becomes trivial: $(\star x \mid R \bullet P) = (\star x \mid R \bullet P)$
$= \left((8.14) \text{ One-point rule: } \neg occurs('y', 'f^{-1}x') \right)$	So (8.22) as stated in LADM is valid, but the proof covers only the case $\neg occurs('y', 'x')$.
$(\star x \mid R \bullet P[y \coloneqq f^{-1} x]) $ = $\langle \text{Textual substitution, } \neg occurs('y', 'P') \rangle$	50(0.22) as stated in Existin is valid, but the proof covers only the case $-6ccars(y, x)$.
$(*x \mid R \bullet P)$	
Changing the Quantified Domain — Variants — see Ref. 4.2	
Theorem (8.22) "Change of dummy in ★ ":	
$\forall f \bullet \forall g \bullet$	Logical Reasoning for Computer Science
$ (\forall x \bullet \forall y \bullet x = f y \equiv y = g x) \Rightarrow ((\star x \mid R \bullet P)) $	COMPSCI 2LC3
$= (\star y \mid R[x \coloneqq f y] \bullet P[x \coloneqq f y]))$	McMaster University, Fall 2024
Theorem (8.22.1) "Change of dummy in ★ ⁻ variant ":	Welvidser Oniversity, Fun 2024
$(\forall x \bullet \forall y \bullet x = f y \Rightarrow y = g x)$ $\Rightarrow ((\star x) R \land x = f (g x) \bullet P)$	Wolfram Kahl
$= (\star y \mid R[x := f y] \bullet P[x := f y]))$	
Theorem (8.22.3) "Change of restricted dummy in * ":	2024-11-14
$ \forall f \bullet \forall g \bullet (\forall x \mid R \bullet (\forall y \bullet x = f y \equiv y = g x)) $	
$\Rightarrow ((\star x \mid R \bullet P))$	Part 2: Kleene Algebra
$= (\star y \mid R[x := fy] \bullet P[x := fy]))$	
Recall: Reflexive Transitive Closure	Kleene Algebra
$Q: B \leftrightarrow B$ is the reflexive transitive closure of $R: B \leftrightarrow B$	The transitive and reflexive-transitive closure operators satisfy many useful algebraic properties, e.g.:
iff <i>Q</i> is the smallest reflexive transitive relation containing <i>R</i> , or, equivalently, iff	• $(R^*)^{\sim} = (R^{\sim})^*$ $(R^+)^{\sim} = (R^{\sim})^+$
• $R \subseteq Q$	• $R^* = \mathbb{I} \cup R \cup R^*$; R^*
• $\mathbb{I} \subseteq Q \land Q; Q \subseteq Q$	• $(R \cup S)^* = (R^* {}^\circ S)^* {}^\circ R^*$ — Remember this! • $(R \cup S)^+ = R^+ \cup (R^* {}^\circ S)^+ {}^\circ R^*$
• $(\forall P : B \leftrightarrow B \mid R \subseteq P \land \mathbb{I} \subseteq P \land P \circ P \subseteq P \bullet Q \subseteq P)$	• $R^* \cup S^* \subseteq (R \cup S)^*$
Definition: The reflexive transitive closure of <i>R</i> is written R^* .	On can prove such properties via reasoning about arbitrary unions \cup of relation powers — see Ex10.2
Theorem: $R^* = (\bigcap P \mid R \subseteq P \land \mathbb{I} \subseteq P \land P \ P \ P \subseteq P \bullet P).$	One can also derive these properties from a simple axiomatisation starting from \subseteq . $\S_{\mathcal{I}}$ $\mathbb{I}_{\mathcal{I}} \cup$:
Theorem: $R^* = (\bigcup i : \mathbb{N} \bullet R^i)$	Axiom (KA.1) "Definition of *": $R^* = \mathbb{I} \cup R \cup R^* \circ R^*$
• <i>Rⁱ</i> is reachability via exactly <i>i</i> many <i>R</i> -steps	Axiom (KA.2) "Left-induction for *": $R \ "_S S \subseteq S \Rightarrow R * "_S S \subseteq S$
• Reflexive transitive closure <i>R</i> [*] is reachability via any number of <i>R</i> -steps	Axiom (KA.3) "Right-induction for *": $Q \ ; R \subseteq Q \Rightarrow Q \ ; R^* \subseteq Q$
• Transitive closure $R^+ = (\bigcup i : \mathbb{N} \mid i > 0 \bullet R^i)$ is reachability via at least one <i>R</i> -step	Axiom (KA.4) "Definition of + ": $R^+ = R \ {}^\circ_{?} R^*$
Kleene Algebra — Example for Using the Induction Axioms	Kleene Algebra — Not Only Relations: Formal Languages
"Left-ind. *": $R \$ $S \subseteq S \Rightarrow R^* \$ $S \subseteq S$ "Right-ind. *": $Q \$ $R \subseteq Q \Rightarrow Q \$ $R^* \subseteq Q$ Theorem (KA.14) "Shuffle *": $R \$ $R^* = R^* \$ R	Definition: A word over "alphabet" <i>A</i> is a sequence of elements of <i>A</i> .
Proof:	Definition: A formal language over "alphabet" <i>A</i> is a set of words over <i>A</i> .
$R \ ; R^* $ $\subseteq \{ \text{"Identity of }; \text{"Monotonicity of }; \text{"with "Reflexivity of } \text{"} \}$	Interpret:
R^* ; R ; $R^* \subseteq$ { "Right-induction for *" with $Q := R^*$; R^* and subproof:	 I as the language containing only the empty word ∪ as language union
$R^* \ $ [°] R [°] R \subseteq (Monotonicity with "* increases", " [°] -idempotency of *")	• β as language concatenation: $L_1 \ \beta \ L_2 = \{ u, v \mid u \in L_1 \land v \in L_2 \bullet u \land v \}$
R*;R	• _* as language iteration: $L^* = (\bigcup i : \mathbb{N} \bullet L^i)$
$\overset{'}{R} * \overset{\circ}{s} R$ $\subseteq ($ "Identity of $\overset{\circ}{s}$ ", "Monotonicity of $\overset{\circ}{s}$ " with "Reflexivity of $^{*"}$)	Then:Formal languages over A form a Kleene algebra.
$R^* $; $R $; R^* $\subseteq \langle $ "Left-induction for *" with $S := R$; R^* and subproof:	 Formal languages over A form a Kleene algebra. Regular languages over A form a Kleene algebra.
$ \begin{cases} R & R \\ R & R \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(A regular language is generated by a regular grammar, and accepted by a finite
\mathcal{L} (Monotonicity with "increases", \$-idempotency or ") R \$ R *	 automaton — COMPSCI 2AC3.) Each regular language over <i>A</i> is denoted by a Kleene algebra expressions built from
) R ; R *	only \mathbb{I} , and the one-letter-word languages $\{a < \epsilon\}$ for letters $a \in A$ as constants.
Kleene Algebra — Not Only Relations: Control Flow Semantics	
Definition: A trace is a sequence of commands,	Logical Reasoning for Computer Science
Interpret:	COMPSCI 2LC3
• I as the singleton trace set containing the empty trace	
 ∪ as trace set union as trace set concatenation 	McMaster University, Fall 2024
 § as trace set concatenation _* as trace set iteration 	
Then:	Wolfram Kahl
• Kleene algebra can be used for reasoning about traces (possible executions) of	2024-11-15
imperative programsKleene algebra provides semantics for control flow	
- raceic afferra provides semantics for control now	Part 1: Bags/Multisets

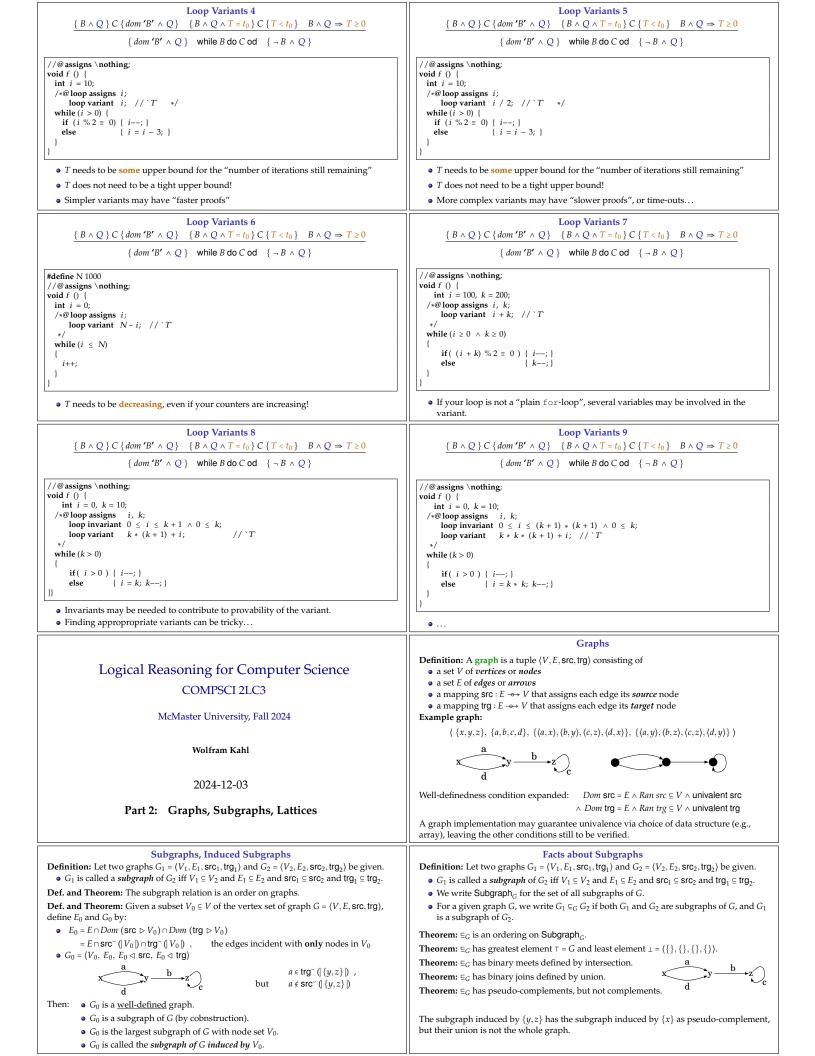
"Multisets" or "Bags" — LADM Section 11.7 A bag (or multiset) is "like a set, but each element can occur any (finite) number of times". Bag comprehension and enumeration: Written as for sets, but with delimiters l and l . Sets versus bags example: ${x:\mathbb{Z} \mid -2 \le x \le 2 \bullet x \cdot x} = {4,1,0} = {0,1,4} = {0,0,0,1,1,4}$ $l_x:\mathbb{Z} \mid -2 \le x \le 2 \bullet x \cdot x$ = $l_{4,1,0,1,4}l_{5} = l_{0,1,1,4,4}l_{5} \neq l_{0,1,4}l_{5}$ The operator _#_ : $t \to Bag t \to \mathbb{N}$ counts the number of occurrences of an element in a bag: $1 \# l_{0,0,0,1,1,4}l_{5} = 2$ Bag extensionality and bag inclusion are defined via all occurrence counts: $B = C = (\forall x \bullet x \# B = x \# C)$ $B \subseteq C = (\forall x \bullet x \# B \le x \# C)$ Bag operations: $x \# (B \cup C) = (x \# B) + (x \# C)$ $x \# (B \cap C) = (x \# B) = (x \# C)$ x # (B - C) = (x # B) - (x # C)	Bag Product and Bag ReconstitutionRecall: A bag is "like a set, but each element can occur any (finite) number of times". $l x: \mathbb{Z} \mid -2 \le x \le 2 \bullet x \cdot x \$ = l4, 1, 0, 1, 4\$ = l0, 1, 1, 4, 4\$ \neq l0, 1, 4\$$ $= \# : t \rightarrow Bag t \rightarrow \mathbb{N}$ counts the number of occurrences: $1 \# l0, 0, 0, 1, 1, 4\$ = 2$ $= = : t \rightarrow Bag t \rightarrow \mathbb{B}$ is membership, with $x \in B = x \# B \neq 0$: $1 \in l0, 0, 0, 1, 1, 4\$ = 1$ Calculate: $lx \mid x \in l0, 0, 0, 1, 1, 4\$ = 1$ Define $bagProd : Bag \mathbb{N} \rightarrow \mathbb{N}$ such that: $bagProd le_1, e_2, \dots, e_n \$ = e_1 \cdot e_2 \cdot \dots \cdot e_n$ e.g., $bagProd l 2, 2, 3, 3, 5\$ = 180$ • Easy with exponentiation $_**_:$ $bagProd B = \prod ?$ • Without exponentiation:?Related question: For sets, we have (11.5): $S = \{x \mid x \in S \bullet x\}$ What is the corresponding theorem for bags?Bag reconstitution: $B = l?$? $\circ x \in l(1, 1) = l(2, 1)$?
Pigeonhole Principle — LADM section 16.4 The pigeonhole principle is usually stated as follows. (16.43) If more than <i>n</i> pigeons are placed in <i>n</i> holes, at least one hole will contain more than one pigeon. Assume: • $S : Bag \mathbb{R}$ is a bag of real numbers • $av S$ is the average of the elements of <i>S</i> • max <i>S</i> is the average of the elements of <i>S</i> • max <i>S</i> is the maximum of the elements of <i>S</i> Reformulating the pigeonhole principle: (16.44) $av S > 1 \Rightarrow max S > 1$ Generalising: (16.45) Pigeonhole principle: If $S : Bag \mathbb{R}$ is non-empty, then: $av S \le max S$ Stronger on integers: (16.46) Pigeonhole principle: If $S : Bag \mathbb{Z}$ is non-empty, then: $[av S] \le max S$	Generalised Pigeonhole Principle — Application(16.46) Pigeonhole principle: If $S : Bag \mathbb{Z}$ is non-empty, then $[av S] \leq max S$ (16.47) Example: In a room of eight people, at least two of them have birthdays on the same day of the week.Proof: Let bag S contain, for each day of the week, the number of people in the room whose birthday is on that day. The number of people is 8 and the number of days is 7. $S = l d : Weekday • \# \{ p \mid p \text{ inRoom } r_0 \land p \text{ HasBirthdayOnA } d \} S$ Then:max S \geq (Pigeonhole principle (16.46) — S contains integers) $[av S]$ $= \langle S \text{ has 7 values that sum to 8 } [8/7]$ $= \langle \text{ Definition of ceiling } 2$
Logical Reasoning for Computer Science COMPSCI 2LC3McMaster University, Fall 2024Wolfram Kahl2024-11-15Part 2: Programming with ArraysSwapping Two Elements of an Array: Specification $i \le k \ge j \land xs = xs_0 \in (0 k) \nleftrightarrow [N]$ $\Rightarrow [$ Swap] $xs = xs_0 \oplus \{(i, xs_0 @ j), (j, xs_0 @ i)\}$	Modelling Arrays as Partial FunctionsPrecedence 100 for: $_ \rightarrow _$ Associating to the right: $_ \rightarrow _$ Declaration: $_ \rightarrow _$: set $A \rightarrow$ set $B \rightarrow$ set $(A \leftrightarrow B)$ $_$ type "\tfun" for $\rightarrow \rightarrow$ Axiom "Definition of $\rightarrow \rightarrow$ ": $X \rightarrow Y = \{f \mid f^{\circ}; f \subseteq id Y \land Dom f = X\}$ Useful for the domain of arrays: Precedence 100 for: $_ _$ Non-associating: $_ _$ Declaration: $_ _ : \mathbb{N} \land \mathbb{N} \rightarrow$ Set \mathbb{N}
Sortedness Declaration: sorted : $(\mathbb{N} \leftrightarrow \mathbb{N}) \rightarrow \mathbb{B}$ Axiom "Definition of `sorted`": sorted $R \equiv R \stackrel{\circ}{\circ} \stackrel{\circ}{} \stackrel{r}{} < \stackrel{\circ}{} \stackrel{\circ}{} R \subseteq \stackrel{r}{} \leq \stackrel{\circ}{} $	Specification of Sorting — First Attempt $xs \in (0k) \rightarrow \mathbb{N}$ $\rightarrow [SORT]$ $]$ $xs \in (0k) \rightarrow \mathbb{N}$ \land $sorted xs$

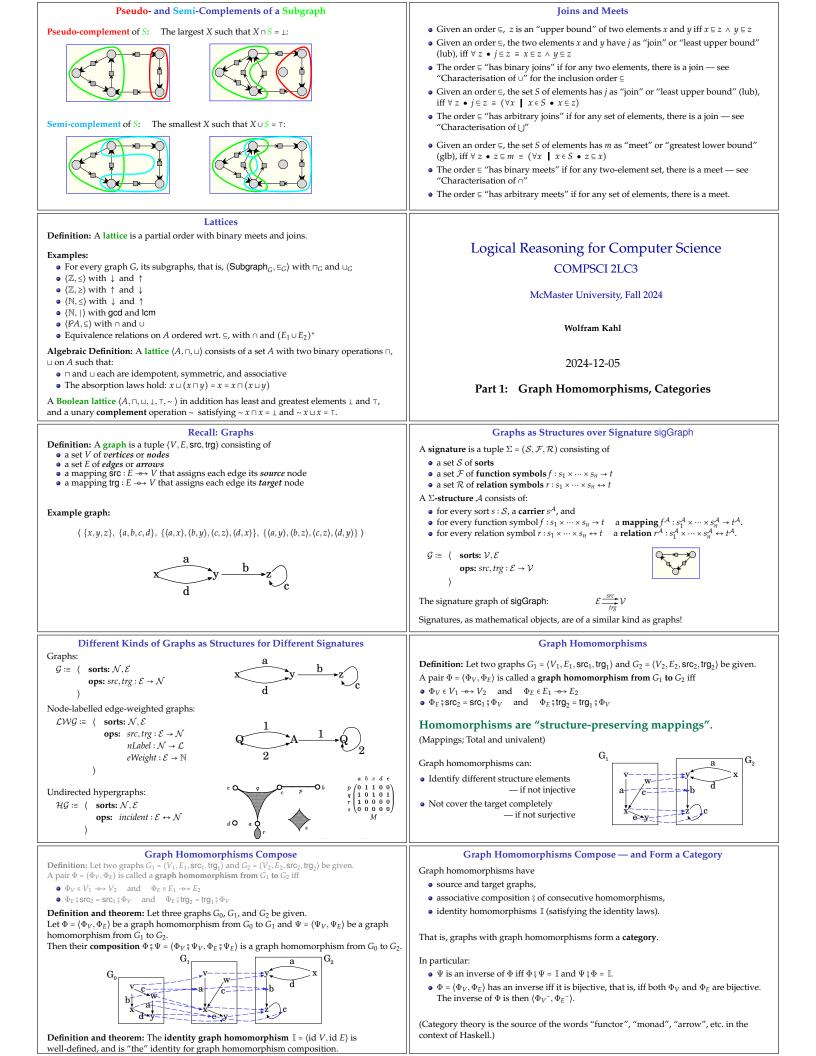
Program Correctness Statements $P \Rightarrow \begin{bmatrix} C \end{bmatrix} Q$ and Their MeaningIn Exercise 6.6 you proved: Theorem "Adding2": $m = m_0 \land n = n_0$ $\Rightarrow \begin{bmatrix} while m \neq 0 \\ do \\ m := m - 1; \\ n := n + 1 \\ od \end{bmatrix}$ • What does this correctness statement imply for start states satisfying $m = m_0 = -3 \land n = n_0 = 3$?Answer: "This program then only terminates in states satisfying $n = 0$."• What does this program the only terminates in states satisfying $n = 0$."• What does this program "do" when started in such a state?	H14: Domain and Range Relation-algebraically• In the abstract relation-algebraic setting, we are only dealing with relation types $A \leftrightarrow B$ • No set types, and therefore no direct way to express $Dom, \triangleleft, (]_)$, etc.• One candidate for "relations representing sets" are subidentities, $q \in I$ • In set theory, id A is a relation that can just serve as a representation of set A • id allows us to define \triangleleft : Theorem (14.237) "Domain restriction via ς ": $A \triangleleft R = id A \varsigma R$ • In the abstract relation-algebraic setting, the role of the operation $Dom : (A \leftrightarrow B) \rightarrow set A$ is taken by the new operation $dom : (A \leftrightarrow B) \rightarrow (A \leftrightarrow A)$ $dom R = R \varsigma R \sim \Pi$ taking each relation R to the subidentity relation representing the set $Dom R$ • In set theory: $dom R = id (Dom R)$
Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-11-19 Relational Semantics: <u>Partial</u> Correctness	Formalising Partial Correctness — Syntax Types So far, we have been using the dynamic logic notation: $P \Rightarrow [C] Q$ with its partial correctness meaning: If command C is started in a state in which the precondition P holds then it will terminate only in a state in which the postcondition Q holds. What are P, Q, C? • P and Q are some kind of Boolean expressions — of type Expr \mathbb{B} • C is a command — of type Cmd • We also need expression e for assignment RHSs, "x :=e" — of type ExprV
The Programming Language: Expressions and CommandsThe types Cmd, ExprV, and ExprB are abstract syntax tree (AST) typesDeclaration: $ExprV$, ExprB : TypeDeclaration: $Var': Var \rightarrow ExprV$ Declaration: $Int': \mathbb{Z} \rightarrow ExprV$ Declaration: $+'_: : ExprB \rightarrow ExprV$ Declaration: $+'_: : ExprB \rightarrow ExprB$ Declaration: $-'_: : ExprB \rightarrow ExprB$ Declaration: $-'_: : ExprB \rightarrow ExprB$ Declaration: $-'_: : ExprB \rightarrow ExprB$ Declaration: $= -'_: : ExprA \rightarrow ExprV \rightarrow ExprB$ Declaration: $-'_: : ExprB \rightarrow ExprB$ Declaration: $= -: : Cmd \rightarrow Cmd$ Declaration: $:= -: Var \rightarrow ExprV \rightarrow Cmd$ Declaration: if_then_else_fi: ExprB \rightarrow Cmd \rightarrow CmdDeclaration: while_do_od : ExprB \rightarrow Cmd \rightarrow Cmd	Formalising Partial Correctness — Semantics Types So far, we have been using the dynamic logic notation: $P \Rightarrow [C] Q$ with its partial correctness meaning: If command C is started in a state in which the precondition P holds then it will terminate only in a state in which the postcondition Q holds. What does "state" mean? "starts"? "holds"? "terminates"? • States assign variable to values • here we simply model states as function • of type Var → Value • "P holds in state s": semantics of Boolean expressions: sat : ExprB → set State (s < sat P) iff "condition P is satisfied in state s")
Types for Semantics of Expressions and CommandsWhat does "state" mean? "holds"?Imperative programs, such as Cmd, transform a State that assigns values to variables.Declaration: Var : Type — variablesDeclaration: Var : Type — variablesDeclaration: Value : Type — variablesDeclaration: Value : Type — variablesDeclaration: Value : Type — storable valuesDeclaration: Value : Type — storable valuesDeclaration: State : Type — value expression semanticsDeclaration: eval : State \rightarrow ExprV \rightarrow Value — value expression semanticsDeclaration: eval : State \rightarrow ExprV \rightarrow Value — value expression semanticsDeclaration: eval : State \rightarrow ExprV \rightarrow Value — value expression semanticsDeclaration: eval : ExprB \rightarrow set State — Boolean expression semanticsDeclaration: $_\oplus'_{-}: (A \rightarrow B) \rightarrow (A , B) \rightarrow (A \rightarrow B)$ — state updateAxiom "Definition of function override": $(x = z \Rightarrow (f \oplus' (x, y))z = y)$ $\land (x \neq z \Rightarrow (f \oplus' (x, y))z = fz)$	Semantics of CommandsWhat does "starts" mean? "terminates"?Program execution induces a state transformation relation.Declaration: $[_]$: Cmd \rightarrow (State \leftrightarrow State) $s_1 \in [C] > s_2$ iff "when started in state s_1 , command C can terminate in state s_2 ".Inductive definition of $[_]$ over the structure of Cmd:Axiom "Semantics of := ": $[x := e] = \{s: State \bullet \langle s, s \oplus' \langle x, eval s e \rangle \rangle \}$ Axiom "Semantics of := ": $[C_1; C_2] = [C_1] \ ; [C_2]$ Axiom "Semantics of if ": $[if B$ then C_1 else C_2 fi] = $(sat B \triangleleft [C_1]) \cup (sat B \triangleleft [C_2])$ Axiom "Semantics of `while` ": $[while B$ do C od $]] = (sat B \triangleleft [C]) * \models sat B$
Formalising Partial Correctness So far, we have been using the dynamic logic notation: $P \Rightarrow [C] Q$ with its partial correctness meaning: If command C is started in a state in which the precondition P holds then it will terminate only in a state in which the postcondition Q holds. Declaration: $_\Rightarrow [_]_: Expr \mathbb{B} \to Cmd \to Expr \mathbb{B} \to \mathbb{B}$ Axiom "Partial Correctness": $(P \Rightarrow [C] Q) \equiv [C] (]$ (sat $P]) \subseteq sat Q Theorem "Partial Correctness ": (P \Rightarrow [C] Q) \equiv [C] (] (sat P]) \subseteq sat P \land s_1 \in sat P \land s_1 \in sat Q \land s_2 \Rightarrow s_2 \in sat Q $	Logical Reasoning for Computer Science COMPSCI 2LC3 McMaster University, Fall 2024 Wolfram Kahl 2024-11-21 Relational Semantics: <u>Partial</u> Correctness

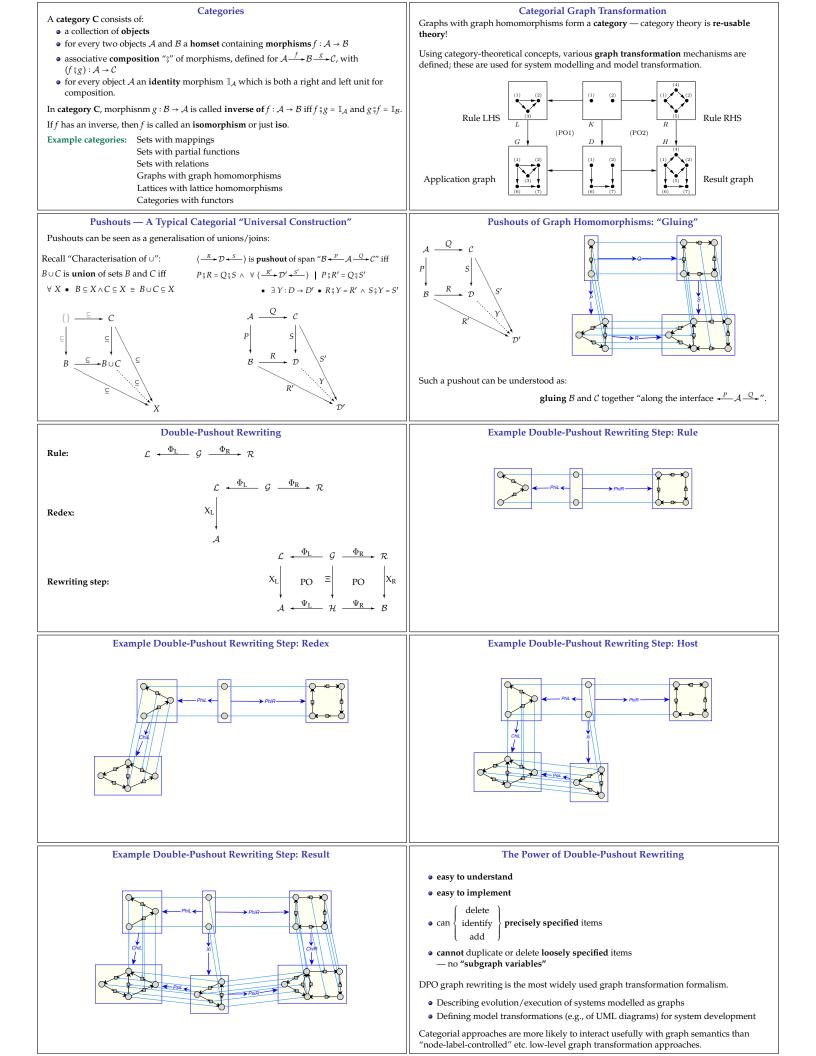

How to Finish this Hoare Logic Proof for Arbitrary Loop Body C?	Separation of Concerns	
	Derived inference rule "while true": `true \Rightarrow [C] true`	
Theorem "while true ": $P \Rightarrow [$ while true do C od $] Q$ Proof:	Proof: $P \Rightarrow [$ while true do C od $] Q^{\sim}$	
<i>P</i> Precondition	Assuming "Inv "`true $\Rightarrow [C]$ true`:	
$\Rightarrow ("Right-zero of \Rightarrow")$ true ••••••Invariant	\Rightarrow ("Right-zero of \Rightarrow ")	
\Rightarrow [while true do C od] ("While" with subproof:	true =====Invariant == f while true do C od] ("While" with subproof: (Or even X == $[C]$ true ?)	
<pre>true ∧ true Loop condition and invariant</pre>	true a true must con cond and inv	
true	$\equiv ("Identity of \land")$	
$\Rightarrow \begin{bmatrix} C \end{bmatrix} (?)$ trueInvariant	true correctness proof rules $\Rightarrow [C] (Assumption "Inv")$ ("Hoare logic")	
)	true ••••••Invariant • Or: Using the definition of	
¬ true ∧ true •••••••Negated loop condition, and invariant \Rightarrow ("Contradiction", "ex falso quodlibet")) \neg true \land true \neg true \neg true \neg true \land true \neg true \land true \land true \land true \land true \neg true \neg true \land true \neg true \land true \neg true \neg true \neg true \land true \neg true true true true true true true true	
Q Postcondition	⇒("Contradiction", "ex falso quodlibet")	
Recall: Types for Semantics of Expressions and Commands	O Postcondition Recall: Semantics of Commands	
What does "state" mean? "holds"?	What does "starts" mean? "terminates"?	
Imperative programs, such as Cmd, transform a State that assigns values to variables.	Program execution induces a state transformation relation.	
Declaration: Var : Type — variables	Declaration: [[_]] : Cmd → (State ↔ State)	
Declaration: Value : Type — storable values	$s_1 \in [C]$ s_2 iff "when started in state s_1 , command C can terminate in state s_2 ".	
Declaration: State : Type	Inductive definition of []_] over the structure of <i>Cmd</i> :	
Axiom "Definition of `State` ": State = Var \rightarrow Value	Axiom "Semantics of := ": $[x := e] = \{s : \text{State } \bullet \langle s, s \oplus' \langle x, \text{evalV} s e \rangle \rangle \}$	
Declaration: evalV : State → ExprV → Value — value expression semantic Declaration: sat : ExprB → set State — Boolean expression semantics	Axiom "Semantics of i ": $[[C_1 i C_2]] = [[C_1]] \ ; [[C_2]]$	
	Axiom "Semantics of `if ": $[if B \text{ then } C_1 \text{ else } C_2 \text{ fi}]] = (\text{sat } B \triangleleft [[C_1]]) \cup (\text{sat } B \triangleleft [[C_2]])$	
Declaration : $_ \oplus'_{-} : (A \to B) \to (A, B) \to (A \to B)$ — state update Axiom "Definition of function override":		
$(x = z \Rightarrow (f \oplus' (x, y)) z = y)$	Axiom "Semantics of `while`": $\ $ while B do C od $\ $ = (sat $B \triangleleft \ C \ $) * \triangleright sat B	
$\wedge (x \neq z \Rightarrow (f \oplus' (x, y)) z = f z)$		
Formalising Partial Correctness	Proving "Postcondition `true`" is now Easy	
So far, we have been using the dynamic logic notation:	Declaration: _⇒[_]_: Expr \mathbb{B} → Cmd → Expr \mathbb{B} → \mathbb{B}	
$P \Rightarrow [C] Q$	Axiom "Partial Correctness": $(P \Rightarrow [C] Q) \equiv [[C]] (sat P) \subseteq sat Q$	
with its partial correctness meaning:		
If command <i>C</i> is started in a state in which the precondition <i>P</i> holds	Theorem "Postcondition `true` " "Right-zero of ⇒[_] ":	
then it will terminate only in a state in which the postcondition <i>Q</i> holds.	$P \Rightarrow [C] true'$ Proof:	
	$P \Rightarrow [C] true'$	
Declaration : $_\Rightarrow[_]_: Expr \mathbb{B} \to Cmd \to Expr \mathbb{B} \to \mathbb{B}$ Axiom "Partial Correctness ":	≡ ("Partial correctness ")	
$(P \Rightarrow [C] Q) \equiv [C] (sat P) \subseteq sat Q$	$\begin{bmatrix} C \end{bmatrix} (\text{ sat } P) \subseteq \text{ sat } true'$ = ("sat true' ")	
Theorem "Partial Correctness":	$[C] (sat P) \subseteq \mathbf{U}$	
$(P \Rightarrow [C] Q) \equiv \forall s_1, s_2 \bullet s_1 \in sat P \land s_1 ([C]) s_2 \Rightarrow s_2 \in sat Q$	— This is "Universal set is greatest "	
Partial Correctness: "Terminate Only in States Satisfying Postcondition" Axiom "Partial Correctness ": $(P \Rightarrow [C] Q) \equiv [C] (\text{sat } P) \subseteq \text{sat } Q$	Soundness of the Inference Rules for Correctness	
	Since partial correctness statements $(P \Rightarrow [C] Q)$ are now defined via the relational semantics, we can prove soundness of the Hoare logic proof rules by deriving them, e.g.:	
Axiom "Semantics of `while` ": $[while B \text{ do } C \text{ od }] = (\text{sat } B \triangleleft [C])^* \triangleright \text{sat } B$	Derived inference rule "Sequence": $P \Rightarrow [C_1] Q$, $Q \Rightarrow [C_2] R$	
Theorem "Partial correctness of `while true` ": $P \Rightarrow [$ while $true' \text{ do } C \text{ od }] Q$ Proof:	$P \Rightarrow C_1; C_2 \neq R$	
$P \Rightarrow [while true' do C od] Q$	Proof: Assuming $(C_1) \stackrel{\circ}{\to} C_1 \stackrel{?}{\to} C_1 ~$	
$\equiv \langle \text{ "Partial correctness"} \rangle$ $[[while true' do C od]] (] sat P]) \subseteq sat Q$	$(C_2) \ Q \Rightarrow [C_2] R$ and using with "Partial correctness":	
≡ ("Semantics of `While`") That is:	$P \Rightarrow \begin{bmatrix} C_1 : C_2 \end{bmatrix} R$ = ("Partial correctness")	
$((sat true' \triangleleft \llbracket C \rrbracket)^* \triangleright sat true') (\exists sat P \rrbracket) \subseteq sat Q$ $\equiv \langle "sat true'" \rangle$ is partially correct	$\begin{bmatrix} C_1 : C_2 \end{bmatrix} (\text{ sat } P) \subseteq \text{ sat } R$ = ("Semantics of ;", "Relational image of ",")	
$((\mathbf{U} \triangleleft [\![C]\!])^* \bowtie \mathbf{U}) (\![sat P]\!]) \subseteq sat Q \qquad \text{with respect to any}$	$[\![C_2]\!] ([\![C_1]\!] (] \operatorname{sat} P)] \subseteq \operatorname{sat} R$	
$ = (" \triangleright U") $ pre-post-condition {} (sat P) \subseteq sat Q specification.	$\leftarrow (\text{ Antitonicity with assumption } (C_1)) \\ \llbracket C_2 \rrbracket (\text{ sat } Q) \subseteq \text{ sat } R $	
$\equiv \langle \text{ "Relational image under } \{ \} \text{ "} \rangle$ $\{ \} \subseteq \text{ sat } Q - \text{ This is "Empty set is least "}$	$\equiv (\text{Assumption}(C_2)) $ true	
Soundness of the Inference Rules for Correctness (ctd.)	"Operational Semantics", "Axiomatic Semantics"	
	For a command $C : Cmd$, we introduced it relational semantics $[C]$: State \leftrightarrow State.	
Derived inference rule "Conditional":	This semantics only captures the terminating behaviours of <i>C</i> , in the shape of an	
$ \stackrel{`B \land' P \Rightarrow [C_1]Q`, \neg'B \land' P \Rightarrow [C_2]Q` }{\vdash \cdots \cdots \cdots } $	"input-output relation".	
$P \Rightarrow [\text{ if } B \text{ then } C_1 \text{ else } C_2 \text{ fi }] Q^{`}$	This is also called "big-step operational semantics ", or "natural semantics ". "Small-step operational semantics " more <i>C</i> to a relation of tupe State (> (State*) State [∞]):	
Derived inference rule "While".	 "Small-step operational semantics" maps C to a relation of type State ↔ (State* ∪ State*): Each start state s₀ is related to all possible execution sequences starting from s₀. 	
Derived inference rule "While": $B \wedge (O \rightarrow F \cap F \cap F)$	 All intermediate states (after each assignment) are recorded. Non-terminating behaviours give rise to infinite state sequences. 	
$ \overset{`B \land' Q \implies [C] Q}{\vdash} C $	• Terminating behaviours give rise to finite sequences s_0, \ldots, s_n , with $s_0 ([C])_{s_n}$	
$Q \Rightarrow [\text{ while } B \text{ do } C \text{ od }] \neg B \land Q^{\sim}$	— this is either a proof obligation, or a way to define $[C]$. "Axiomatic semantics" is the set of correctness statements ($P \Rightarrow [C]$ Q) that can be	
	"Axiomatic semantics" is the set of correctness statements $(P \Rightarrow [C] Q)$ that can be derived about C in a "Hoare logic" inference system of the kind we have used.	
	As seen on the previous slides, such an inference system can (and should!) be justified	
	against the operational semantics. — More in COMPSCI 3MI3!	

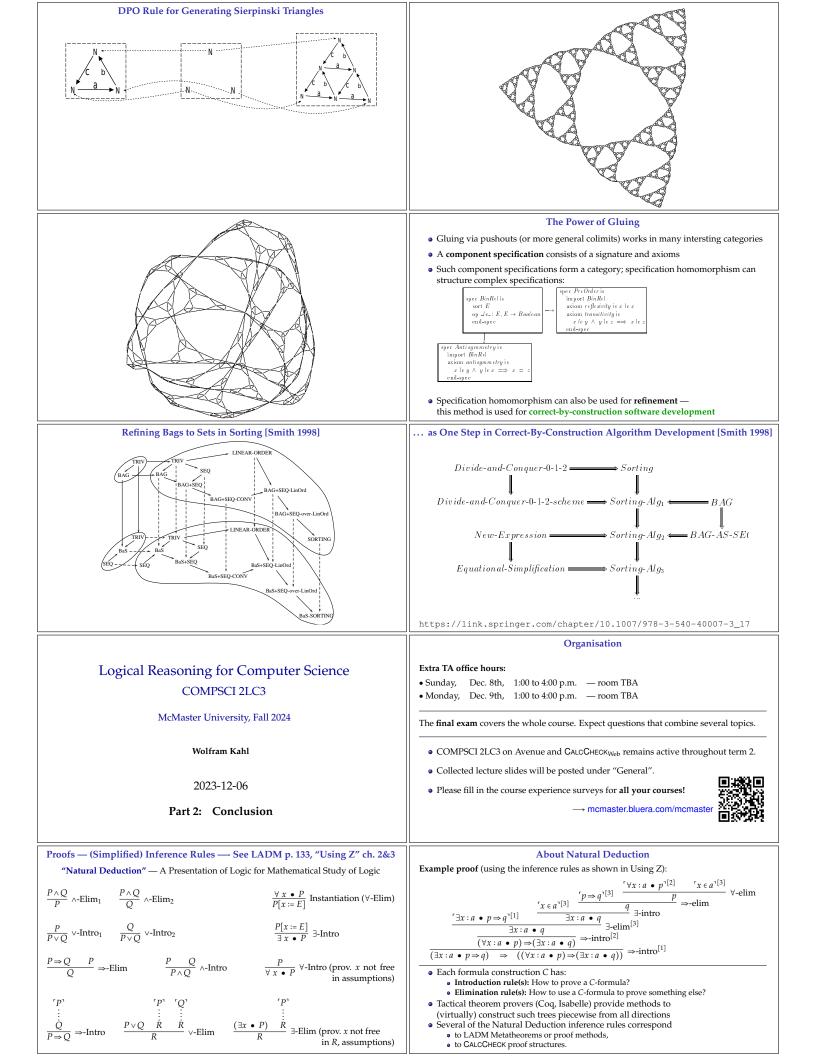
	Precondition-Postcondition Specifications Program correctness statement in LADM (and much current use): "Hoare triple":
Logical Reasoning for Computer Science	$\{P\}C\{Q\}$ Meaning (LADM ch. 10): "Total correctness":
COMPSCI 2LC3	If command <i>C</i> is started in a state in which the precondition <i>P</i> holds then it will terminate in a state in which the postcondition <i>Q</i> holds.
McMaster University, Fall 2024	• So far, we have been using the dynamic logic notation: $P \Rightarrow [C] Q$
Wolfram Kahl	with its partial correctness meaning: If command <i>C</i> is started in a state in which the precondition <i>P</i> holds then it will terminate only in states in which the postcondition <i>Q</i> holds.
2024-11-22	Differences between partial and total correctness: Total correctness forbids commands that do not terminate (properly):
Total Correctness	 Infinite loops Commands that crash — evaluating "undefined" expressions
Undefined Behaviours in C	Homework 3 Lemma 5
 Spatial memory safety violations — int a [5]; int k = a [6]; Temporal memory safety violations — free(p); k = *p; 	In Homework 3, you proved, for variables <i>x</i> and <i>y</i> of type \mathbb{Z} : Lemma (5): $p = p_0 \land q = q_0$
 Integer overflow — k = maxint + 2; m = minint - 3; Strict aliasing violations 	Lemma (5): $p = p_0 \land q = q_0$ $\Rightarrow [p := p + q];$
Alignment violations	q := p - q;
 Unsequenced modifications — printf("%d_%d", a++, a++); Data races 	p := p - q
 Data faces Loops that neither perform I/O nor terminate 	$p = q_0 \wedge q = p_0$
	The proof typically used "Subtraction", "Unary minus", "Identity of +", and (implicitly) "Associativity of +".
What Do These C Program Fragments Do?	Recall: Total Correctness
Let p and q be variables of type int . • int overflow is undefined behaviour!	Program correctness statement in LADM (and much current use): "Hoare triple":
<pre>p = p + q; g = p - q; (Going below minint is still called "integer overflow")</pre>	$\{P\}C\{Q\}$
p = p - q; • this swap "works" only if none	Meaning (LADM ch. 10): " <u>Total correctness</u> ": If command <i>C</i> is started in a state in which the precondition <i>P</i> holds
Let k and n be variables of type unsigned int .	then it will terminate in a state in which the postcondition <i>Q</i> holds.
<pre>unsigned in thas "wrap-around</pre>	Differences between partial and total correctness: Total correctness forbids commands that do not terminate (properly):
$ \begin{array}{c} n = k - n; \\ k = k - n; \end{array} $	• Infinite loops
Let C and d be variables of type double . • "+" at floating-point types is not	Commands that crash — evaluating "undefined" expressions
c = c + d; d = c - d; even associative floating-point arithmetic is hard	What difference does this make for the rules of Hoare logic?
c = c - d; to reason about	
Rules That Work for Both Partial and Total Correctness	Total Correctness Rule for Assignment Assignment ":=": Two characters;
Sequential composition: $P \rightarrow [C_1] Q$, $Q \rightarrow [C_2] R$	Used so far: Dynamic Logic Partial Correctness Assignment Axiom: type ":="
$F \rightarrow [C_1 : C_2] R'$	$Q[x := E] \Rightarrow [x := E] Q$ Substitution ":="": One Unicode character; type "\:=""
Strengthening the precondition:	LADM Total Correctness Assignment Axiom (10.1): $\{ dom' E' \land Q[x := E] \} x := E \{ Q \}$
	For each <i>programming-language</i> expression <i>E</i> , the predicate dom ' <i>E</i> '
$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & $	<i>(dom is a meta-function</i> taking expressions to Boolean conditions.)
Weakening the postcondition:	Examples:
$ \begin{array}{c} & {{}} P \rightarrow [C] Q_1, & {} Q_1 \rightarrow Q_2 \\ + & & {}{} P \rightarrow [C] Q_2 \\ \end{array} $	• dom 'sqrt $(x / y)' \equiv y \neq 0 \land x / y \ge 0$ • dom 'a @ i' $\equiv i \in Dom a$
`P ⇒[C] Q2`	• For int-variables <i>i</i> and <i>j</i> : $dom'i + j' \equiv minint \le to\mathbb{Z} \ i + to\mathbb{Z} \ j \le maxint$
Conditional Rule	"While" Rule
Each evaluation of an expression E needs to be guarded by a precondition <i>dom</i> 'E':	So far for partial correctness: $\begin{array}{c c} & B \land Q \rightarrow [C] & Q' \\ \hline & Q \rightarrow [& while & B & do & C & od \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & \rightarrow [& while & W & do & W \\ \hline & Q & Q & \hline \\ \hline & Q & Q & Q & W \\ \hline & Q & Q & Q & W \\ \hline & Q & Q & Q & W \\ \hline & Q & Q & Q & W \\ \hline & Q & Q & Q & Q \\ \hline & Q & Q & Q & W \\ \hline & Q & Q & Q & Q \\ \hline & Q & Q & Q & Q \\ \hline & Q & Q & Q & Q \\ \hline & Q & Q & Q & Q \\ \hline & Q & Q & Q & Q \\ \hline & $
$\{B \land P\} C_1 \{Q\} \qquad \{\neg B \land P\} C_2 \{Q\}$	Now two additional ingredients (besides <i>B</i> and <i>C</i>):
$\{ dom'B' \land P \}$ if B then C_1 else C_2 fi $\{ Q \}$	 Invariant: Q: B — as before, ensuring functional correctness Variant (or "bound function"): T: Z — ensuring termination
	$\frac{\{B \land Q\} C \{dom'B' \land Q\}}{\{dom'B' \land Q\}} \{B \land Q \land T = t_0\} C \{T < t_0\} \qquad B \land Q \Rightarrow T > 0$
	$\{uom \ b \land Q\}$ write b do C od $\{\neg b \land Q\}$ In each iteration:
	• The invariant <i>Q</i> is preserved.
	 The loop condition <i>B</i> can be evaluated again. The variant <i>T</i> decreases.
	Termination: The relation < on the subset $\{t : \mathbb{Z} \mid t > 0\}$ is well-founded.

"Merged" While Rule	Relation-Algebraic Total and Partial Correctness
Now two additional ingredients: • Invariant : $Q : \mathbb{B}$ — as before, ensuring functional correctness • Variant (or "bound function"): $T : \mathbb{Z}$ — ensuring termination { $B \land Q \land T = t_0$ } C { $dom'B' \land Q \land T < t_0$ } $B \land Q \Rightarrow T > 0$	 Program correctness statement in LADM (and much current use): "Hoare triple": {P}C {Q} Meaning (LADM ch. 10): "<u>Total correctness</u>": If command C is started in a state in which the precondition P holds then it will terminate in a state in which the postcondition Q holds. Axiom "Total Correctness": Correctness ": Correctness ":
$\frac{\{b \land Q \land T = t_0\} C (uom B \land Q \land T < t_0\}}{\{dom 'B' \land Q\}} while B do C od \{\neg B \land Q\}}_{\text{provided }\neg occurs('t_0', 'B, C, Q, T')}$	$(P \Rightarrow [\langle C \rangle] Q) \equiv [[C]] (] \text{ sat } P]) \subseteq \text{ sat } Q \land \text{ sat } P \subseteq \text{Dom } [[C]]$ (So far not modelling "undefined" expressions, only non-termination.)
 In each iteration: The invariant <i>Q</i> is preserved. The loop condition <i>B</i> can be evaluated again. The variant <i>T</i> decreases. 	• So far, we have been using the dynamic logic notation: $P \Rightarrow [C] Q$ with its <u>partial correctness</u> meaning: If command <i>C</i> is started in a state in which the precondition <i>P</i> holds then it will terminate only in a state in which the postcondition <i>Q</i> holds. Axiom "Partial Correctness": $(P \Rightarrow [C] Q) \equiv [C] (\text{ sat } P) \subseteq \text{ sat } Q$
Total and Partial Correctness in Predicate Logic • Program correctness statement in LADM (and much current use): "Hoare triple": { P } C { Q } Meaning (LADM ch. 10): "Total correctness": If command C is started in a state in which the precondition P holds then it will terminate in a state in which the postcondition Q holds.	Logical Reasoning for Computer Science COMPSCI 2LC3
Theorem "Total Correctness ": $(P \Rightarrow [\langle C \rangle] Q)$ $\equiv (\forall s_1, s_2 \bullet s_1 \in \text{sat } P \land s_1 ([C]) s_2 \Rightarrow s_2 \in \text{sat } Q)$ $\land (\forall s_1 \mid s_1 \in \text{sat } P \bullet \exists s_2 \mid s_1 ([C]) s_2 \bullet s_2 \in \text{sat } Q)$	McMaster University, Fall 2024 Wolfram Kahl
 So far, we have been using the dynamic logic notation: P ⇒[C] Q with its partial correctness meaning: If command C is started in a state in which the precondition P holds 	2024-11-26
then it will terminate only in a state in which the postcondition Q holds. Theorem "Partial Correctness": $(P \Rightarrow \begin{bmatrix} C \\ Q \end{bmatrix} Q)$ $\equiv \forall s_1, s_2 \bullet s_1 \in sat P \land s_1 (\llbracket C \rrbracket) s_2 \Rightarrow s_2 \in sat Q$	Temporal Logic: PLTL
Fast Version of Syntax and Semantics of Propositional Logic in Ex11.3 • Given: A set \mathcal{E} of expressions e_1, e_2, \dots (for example: " $x + 5$ ", " $3 \cdot (y + 2)$ " • An atomic proposition in Ex11.3 is an equation " $e_1 = e_2$ ", for example, " $2 \cdot x + 5 = 89$ " • A formula φ, ψ, \dots is (an abstract syntax tree) generated by the following "grammar" (informal): $\varphi := e_1 = e_2 \neg \varphi \varphi \land \psi \varphi \lor \psi$ • A state is a function $\alpha : \mathcal{V} \to \mathbb{Z}$ • The semantics of propositional formula φ is the function $[\![\varphi]\!] : (\mathcal{V} \to \mathbb{Z}) \to \mathbb{B}$ that maps each state α to a truth value, the "value of φ in α ": $[\![e_1 = e_2]\!] \alpha = ([\![e_1]\!] \alpha = [\![e_2]\!] \alpha)$ $[\![\neg \varphi]\!] \alpha = -([\![\varphi]\!] \alpha)$ $[\![\varphi \land \psi]\!] \alpha = [\![\varphi]\!] \alpha \land [\![\psi]\!] \alpha$ • α satisfies φ iff $[\![\varphi]\!] \alpha = true$; this is also written: $\alpha \models \varphi$ • φ is valid iff ($\forall \alpha \bullet [\![\varphi]\!] \alpha = true$); this is also written: $\models \varphi$	Syntax and Semantics of Traditional Propositional Logic • Given: A type \mathcal{P} of proposition symbols p, q, \ldots to be used as atomic propositions • A propositional formula φ, ψ, \ldots is (an abstract syntax tree) generated by the following "grammar" (informal): $\varphi := T F p \neg \varphi \varphi \land \psi \varphi \lor \psi \varphi \Rightarrow \psi$ • A state is a function $\alpha : \mathcal{P} \rightarrow \mathbb{B}$ • The semantics of propositional formula φ is the function $\llbracket \varphi \rrbracket : (\mathcal{P} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$ that maps each state α to a truth value, the "value of φ in α ": $\llbracket T \rrbracket \alpha = true$ $\llbracket \neg \varphi \rrbracket \alpha = - \langle \llbracket \varphi \rrbracket \alpha \land \llbracket \psi \rrbracket \alpha$ • α satisfies φ iff $\llbracket \varphi \rrbracket \alpha = true$; this is also written: $\alpha \vDash \varphi$ • φ is valid iff ($\forall \alpha \bullet \llbracket \varphi \rrbracket \alpha = true$); this is also written: $\vDash \varphi$
Syntax and Semantics of Propositional Logic — Applications • Define a (Haskell) datatype for propositional formule: data PropForm $p =$ • Write functions that takes each formula to its disjunctive/conjunctive normal form $toCNF, toDNF :: PropForm p o PropForm p$ Use CALCCHECK to prove that your implementations are correct • Define the semantics as an evaluation function $evalPropForm :: PropForm p o State p o Bool$ • Define a representation of truth tables • Write a validity checker using truth tables $validPropForm :: PropForm p o Bool$ • Write a satisfiability checker using truth tables $satPropForm :: PropForm p o Maybe (State p)$	Syntax and Semantics of Predicate Logic• Given: A vocabulary/signature Σ consisting of• a countably infinite set \mathcal{V} of variable symbols v, v_1, v_2, \dots • a countable set of function symbols f, g, \dots (with arity information) $-fact, _+_, 42$ • a countable set of predicate symbols p, q, \dots (with arity information) $-dad, _=_, >_$ • A term t, t_1, t_2 is (an abstract syntax tree) generated by the following "grammar": $t := v \mid f(t_1, \dots, t_n)$ - "fact(5)", "42", "x + 2"• A predicate-logic/first-order-logic formula φ, ψ, \dots is (an abstract syntax tree)generated by the following "grammar": $\varphi ::= p(t_1, \dots, t_n) \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \forall \psi \mid \varphi \Rightarrow \psi \mid (\forall v \bullet \varphi) \mid (\exists v \bullet \varphi)$ • An interpretation of Σ , also called a " Σ -structure", \mathcal{A} , consists of• a mapping that maps each <i>n</i> -ary function symbol <i>f</i> to a function $p^{\mathcal{A}} : D^n \rightarrow D$ • a mapping that maps each <i>n</i> -ary predicate symbol <i>p</i> to a function $p^{\mathcal{A}} : D^n \rightarrow \mathbb{B}$ • A variable assignment for \mathcal{A} is a function $\alpha : \mathcal{V} \rightarrow D$ • Semantics of formula: $\ \varphi\ _{\mathcal{A}} : (\mathcal{V} \rightarrow D) \rightarrow \mathbb{B}$; we write " $\mathcal{A}, \alpha \models \varphi$ " for $\ \varphi\ _{\mathcal{A}} \alpha = true$
Look up the DPLL algorithm and write a more efficient satisfiability solver	• \rightarrow RSD chapters 3, 4
Intended Infinite Program Executions • Even simple imperative programming languages have programs that do not terminate — while true do • Not all programs are expected to terminate: • Operating systems • Bank databases • Online shops • Pre-postcondition specifications are useless for programs that are expected to not terminate! • Different patterns of specification are used for such systems: • Each request will generate a response • The ledger is always balanced • Shipping commands are sent to the warehouse only after payment is confirmed • Central concept: Time • System behaviour: Different states at different time points • Plausible abstraction: Discrete time, with time points taken from N • Infinite state sequences: Functions of type N → State	 How to Reason About Infinite State Sequences? Infinite state sequences: Functions of type N → State Specification example sketches in predicate logic: ∀ to, rld, d_{in} request(rld, d_{in}, t₀) ∃ t₁, d_{out} t₀ < t₁ • response(rld, d_{out}, t₁) ∧ appropriate(d_{out}, d_{in}) ∀ t • (∑ a : Account • balance a t) = 0 Lots of quantification about time points! Quantification about time points follows relatively few patterns! Temporal logics "internalise" these time point quantification patterns and allow to express them without bound variables for time points.


Important Temporal Modalities	Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL)
 Quantification about time points follows relatively few patterns! 	• Given: A set <i>A</i> of atomic propositions <i>p</i> , <i>q</i> ,
• Temporal logics "internalise" these time point quantification patterns	• A PLTL formula φ, ψ, \dots is (an abstract syntax tree) generated by the following
and allow to express them without bound variables for time points.	"grammar" (informal):
Consider the following timeline:	$\varphi ::= T \mid F \mid p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \Rightarrow \psi \mid F \varphi \mid G \varphi \mid X \varphi \mid \varphi \mid U \psi$
x=3 x=2 x=1 x=2 x=5 x=3 x=0	• A state associates a truth value with each atom: State = $A \rightarrow \mathbb{B}$
$ \begin{vmatrix} x & z \\ y=5 \end{vmatrix} \xrightarrow{y=5} \begin{vmatrix} x & z \\ y=7 \end{vmatrix} \xrightarrow{y=7} \begin{vmatrix} x & z \\ y=7 \end{vmatrix} \xrightarrow{y=8} \begin{vmatrix} x & z \\ y=8 \end{vmatrix} \xrightarrow{y=8} \begin{vmatrix} x & z \\ y=8 \end{vmatrix} \xrightarrow{y=7} \begin{vmatrix} x & z \\ y=7 \end{vmatrix} \xrightarrow{y=7} \cdots $	• A time line α associates a state with each time point — for simplicity, we use \mathbb{N} for
	time points: $\alpha : \mathbb{N} \to A \to \mathbb{B}$
We have:	• Given an LTL formula φ and a time line α , the semantics of φ in α , written " $[\![\varphi]\!] \alpha$ ",
• $F(y=3 \cdot x+1)$ — "eventually $(y=3 \cdot x+1)$ "; "at some time in the future, $(y=3 \cdot x+1)$ "	is a function that associates with each time point $t : \mathbb{N}$ the truth value " $\llbracket \varphi \rrbracket \alpha t$ ":
• $G(y > x)$ — "always $(y > x)$ ". "at all times in the future, $(y > x)$ "	Declaration: $\llbracket _ \rrbracket$: LTL $A \to (\mathbb{N} \to A \to \mathbb{B}) \to \mathbb{N} \to \mathbb{B}$
• $(x < 4) U(y = 8) \longrightarrow "(x < 4)$ until $(y = 8)"$	
• $X(x = 2)$ —- "in the next state, $(y = 2)$ "	
• $(x = 3)$ — "(in the current state,) $(x = 3)$ "	
Control of Compatible of Despectition of Linear Time Temperat Locie (DLTL) 1	Contra and Computing of Dependentian of Linear Time Temperature (DITI) 0
Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 1	Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 2
$\begin{bmatrix} \varphi \end{bmatrix} \alpha \ t = true \text{iff} \text{LTL formula } \varphi \text{ holds in}$ time line $\alpha : \mathbb{N} \to A \to \mathbb{B}$ at time <i>t</i> : $\boxed{\text{Time} p \ q \ r \ s}$	$\begin{bmatrix} \varphi \end{bmatrix} \alpha t = true \text{iff} \text{LTL formula } \varphi \text{ holds in}$ time line $\alpha : \mathbb{N} \to A \to \mathbb{B}$ at time <i>t</i> : $\boxed{\text{Time} p \mid q \mid r \mid s}$
$\alpha = \frac{0}{1 + \sqrt{1 + 1}}}}}}} } } } } } } } } } } } } } }$	$\alpha = \begin{array}{ c c } 0 & \sqrt{2} & \sqrt{2} \\ \hline \text{Declaration: } [_]: LTL A \rightarrow (\mathbb{N} \rightarrow A \rightarrow \mathbb{B}) \rightarrow \mathbb{N} \rightarrow \mathbb{B} \end{array}$
An atomic proposition <i>p</i> is true at time <i>t</i> iff the time line contains, at time <i>t</i> , a state in which <i>p</i> is $3 \qquad \sqrt{4}$	$F \varphi$ is true at time <i>t</i> if φ is true at some time $t' \ge t$: "Semantics of F ": 4
true: $\frac{4}{5}$	"Semantics of `F ": $\begin{bmatrix} F \varphi \end{bmatrix} \alpha t \equiv \exists t' : \mathbb{N} \mid t \leq t' \bullet \llbracket \varphi \rrbracket \alpha t'$ $4 \qquad \sqrt{4}$ $5 \qquad \sqrt{4}$
"Semantics of LTL atoms": $[p] \alpha t \equiv \alpha t p$	$[6,16,26,\dots]_{\sqrt{2}}$
"Semantics of LTL \neg ": $\llbracket \neg' \varphi \rrbracket \alpha t \equiv \neg \llbracket \varphi \rrbracket \alpha t$ $8, 18, 28, \dots, \sqrt{2}$	$G \varphi \text{ is true at time } t \text{ if } \varphi \text{ is true at all times } t' \ge t.$ $7,17,27,\ldots \forall \forall$ $8,18,28,\ldots \forall \forall$
"Semantics of LTL \wedge ": $\llbracket \varphi \land' \psi \rrbracket \alpha t \equiv \llbracket \varphi \rrbracket \alpha t \land \llbracket \psi \rrbracket \alpha t$ 9,19,29, $\bigvee \bigvee \bigvee$	"Semantics of G ": $9,19,29,\ldots,\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$
"Semantics of LTL \vee ": $\llbracket \varphi \vee' \psi \rrbracket \alpha t \equiv \llbracket \varphi \rrbracket \alpha t \vee \llbracket \psi \rrbracket \alpha t$ "Computing of LTL $=$ "". $\llbracket \varphi \sqcup \psi \rrbracket \alpha t = \llbracket \varphi \rrbracket \alpha t \vee \llbracket \psi \rrbracket \alpha t$ "Computing of LTL $=$ "". $\llbracket \varphi \sqcup \psi \rrbracket \alpha t = \llbracket \varphi \rrbracket \alpha t \vee \llbracket \psi \rrbracket \alpha t$	$\begin{bmatrix} G \varphi \end{bmatrix} \alpha t \equiv \forall r : \mathbb{N} t \leq r \bullet [\varphi] \alpha r \qquad \qquad$
Semantics of LTE \Rightarrow : $[[\psi] \Rightarrow \psi] = [[\psi] = [[\psi] = [[\psi] = \alpha t$ $12, 22, 32, \dots \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$	• $[Gp] \alpha 0 = ?$ • $[Fs] \alpha 7 = ?$
• $\llbracket p \rrbracket \alpha 0 = ?$ • $\llbracket p \land q \rrbracket \alpha 0 = ?$ 13,23,33, $\checkmark \checkmark$	• $[G p]] \alpha 5 = ?$ • $[F \neg p]] \alpha 0 = ?$ 13,23,33, $\sqrt[]{} $
• $[p] \alpha 3 = ?$ • $[p \lor \neg q] \alpha 3 = ?$ 15,25,35, $\checkmark \checkmark \checkmark$	• $\llbracket F q \rrbracket \alpha 0 = ?$ • $\llbracket F \neg p \rrbracket \alpha 100 = ?$ 14,24,34, $\checkmark \checkmark \checkmark$ 15,25,35, $\checkmark \checkmark \checkmark$
• $\llbracket q \rrbracket \alpha 0 = ?$ • $\llbracket q \Rightarrow r \rrbracket \alpha 42 = ?$	
Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 3	Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 4
$\llbracket \varphi \rrbracket \alpha t = true$ iff LTL formula φ holds in	$\llbracket \varphi \rrbracket \alpha t = true$ iff LTL formula φ holds in
time line $\alpha : \mathbb{N} \to A \to \mathbb{B}$ at time t: $\alpha = \boxed{\begin{array}{c} \text{Time} & p \ q \ r \ s} \\ 0 & (q \ q \ q) \end{array}}$	time line $\alpha : \mathbb{N} \to A \to \mathbb{B}$ at time t: $\alpha = \frac{\text{Time}}{0} \frac{p \ q \ r \ s}{q}$
$Declaration: \llbracket_{-} \rrbracket: LTL A \to (\mathbb{N} \to A \to \mathbb{B}) \to \mathbb{N} \to \mathbb{B}$	Declaration: $\llbracket_{-}\rrbracket$: LTL $A \to (\mathbb{N} \to A \to \mathbb{B}) \to \mathbb{N} \to \mathbb{B}$
$X \varphi$ is true at time <i>t</i> iff φ is true at time <i>t</i> + 1:	$\varphi \ U \ \psi$ is true at time <i>t</i> if ψ is true at some time $\frac{2}{3}$
"Semantics of X ": $4 \vee \vee$	$t' \ge t$, and for all times t'' such that $t \le t'' < t'$, φ is 4
$\llbracket X \varphi \rrbracket \alpha t \equiv \llbracket \varphi \rrbracket \alpha (\operatorname{suc} t)$	true. $5 \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
• $\llbracket X p \rrbracket \alpha 0 = ?$ • $\llbracket F(s \land X s) \rrbracket \alpha 0 = ?$ 6,16,26, $\checkmark \checkmark \checkmark$	Axiom "Semantics of `U` ":•••••• "until" $6,16,26,\ldots,\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{$
	$ \begin{bmatrix} \varphi \ U \ \psi \end{bmatrix} \alpha t $ $ = \exists \ t' : \mathbb{N} t \le t' $ $ = \exists \ t' : \mathbb{N} t \le t' $
$ \bullet \begin{bmatrix} X q \end{bmatrix} \alpha \ 0 = ? \\ \bullet \begin{bmatrix} F (s \land X s) \end{bmatrix} \alpha \ 10 = ? \\ \bullet \begin{bmatrix} g \land X r \end{bmatrix} \alpha \ 1 = ? \\ \bullet \begin{bmatrix} G (q \equiv X r) \end{bmatrix} \alpha \ 12 = ? \\ \bullet \begin{bmatrix} G (q \equiv X r) \end{bmatrix} \alpha \ 12 = ? \\ \bullet \begin{bmatrix} 0, 10, 20, 30, \dots & -\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt$	$ \begin{array}{c} = 3t \cdot i \sqrt{ t ^{2} t^{2}} \\ $
• $\llbracket GF(q \land Xr) \rrbracket \alpha 0 = ?$ • $\llbracket GF(q \equiv Xr) \rrbracket \alpha 12 = ?$ 12,2,30, $\lor \lor \lor$	$\wedge \forall t'' : \mathbb{N} t \le t'' < t' [[\varphi]] \alpha t'' \qquad 11, 21, 31, \dots, \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
12,22,32, V V 13,23,33 V V	• $[p U q] \alpha 0 = ?$ • $[p U (q \land r)] \alpha 42 = ?$ 12,22,32, $\sqrt{\sqrt{2}}$
$13,23,35,\ldots,\sqrt{\sqrt{1}}$ 14,24,34,, $\sqrt{1}$	• $[p U q] \alpha 0 = ?$ • $[p U q(q \land r)] \alpha 42 = ?$ • $[p U s] \alpha 0 = ?$ • $[p U (q \land s)] \alpha 42 = ?$ 13,23,33, $\sqrt{\sqrt{\sqrt{1-1}}}$
$15, 25, 35, \ldots$ \checkmark	$\bullet \llbracket p \ a \ s \rrbracket a \ b = 1 \qquad \bullet \llbracket p \ a \ (q \land s) \rrbracket a \ q = 2 = 1 \qquad \qquad \bullet \llbracket p \ a \ (q \land s) \rrbracket a \ q = 2 = 1 \qquad \qquad \bullet \llbracket p \rrbracket a \ (q \land s) \rrbracket a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \rrbracket a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \rrbracket a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \rrbracket a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \rrbracket a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \rrbracket a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \rrbracket a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \rrbracket a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \rrbracket a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \rrbracket a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \amalg a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \amalg a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \amalg a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \amalg a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \amalg a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \amalg a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \amalg a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \amalg a \ q = 2 \qquad \bullet \llbracket p \ a \ (q \land s) \amalg a \ q = 2 \qquad \bullet \blacksquare $
	Temporal Logics for Specification of Reactive and Distributed Systems
	Reactive Systems: No clear input-output relation
Logical Reasoning for Computer Science	Operating systems
COMPSCI 2LC3	Embedded systems
	Network protocols
McMaster University, Fall 2024	*
	 Specification techniques: Temporal logics
Wolfram Kahl	Rich choice of temporal logics — multiple classification criteria
	 Some important logics are (polynomial-time) decidable — Model checking
0004 11 00	Applications: Safety- and liveness properties
2024-11-28	 Safety property: "Something bad will never happen"
More About Temporal Logics, Model Checking	 Liveness property: "Something good will eventually happen"
more mout remporar Logico, mouer enceking	Application area: Concurrent systems, protocols,
Modal Logics	Temporal Logics
Original philosophical motivation: Express different modalities:	• Prior (1955): Tense Logic — notation still customary today
The proposition "Napoleon was victorious at Waterloo"	• instead of $\diamond p$ now temporally: F p — " p will eventually be true"
• is false in this world,	• instead of \Box <i>p</i> now temporally: G <i>p</i> — " <i>p</i> will always be true"
• but could be true in another world.	Dynamic Logic [Pratt 1976 (originally developed for Hoare logic in course notes 1974)]
	• Parameterised box modality: $[A]\varphi$ means "after performing action A, the condition φ will always hold"
Typical modal operators:	 will always hold" Useful for pre-/post-condition correctness statements: P ⇒ ([C]Q)
• "possibly": $\diamond p$ — "it is imaginable that p holds" "diamond p "	
• "necessarily": $\Box p$ — "it is not imaginable that p doesn't hold" "box p "	
, _, _, _, _, _, _, _, _, _, _, _, _, _,	 Pnueli (1977): "The Temporal Logic of Programs": Argues for using temporal logics as tool for exceptification and varification in
, , , , , , , , , , , , , , , , , , , ,	Argues for using temporal logics as tool for specification and verification, in
• Kripke (1963): " possible world semantics " (orig. Kanger 1957)	Argues for using temporal logics as tool for specification and verification, in particular for reactive systems such as operating systems and network protocols
	Argues for using temporal logics as tool for specification and verification, in particular for reactive systems such as operating systems and network protocols Two kinds of applications: Temporal logics are used
	Argues for using temporal logics as tool for specification and verification, in particular for reactive systems such as operating systems and network protocols


Different Treatments of Time	Temporal Operators of Propositional Linear-Time Temporal Logic (PLTL)
 Future Only versus Also Past Philosophiscal approaches: Past at least as important as future Software: Frequently only future Past operators are frequently useful in compositional specifications. 	• $\mathbf{F} p$ — "eventually p " $\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$
 Discrete Time versus Continuous Time Continuous (or dense) time first considered in philosophy Possible application in real time systems Time Points versus Time Intervals 	• G p — "always p " • X p — "in the next state p "
 Some properties are easier to formulate using intervals. The following distinction is mainly semantic, but also reflected in syntax: Linear Time: At any point only one possible future Branching Time: At any point multiple possible futures Both approaches are used in software technology 	
Propositional Linear-Time Temporal Logic — SyntaxDefinition: The set of formulae of propositional linear-time temporal logic is the smallest set generated by the following rules:every atomic proposition $P : AP$ is a formula;every atomic proposition $P : AP$ is a formula;proposition $P : AP = P$ proposition $P : AP = P$ proposition $P : AP = P = P$ proposition $P : AP = P$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \textbf{Semantics of the Temporal Modalities in PLTL} \\ \llbracket \varphi \ \rrbracket \alpha t = true & \text{iff} \text{LTL formula } \varphi \text{ holds in time line} \\ \alpha : \mathbb{N} \to A \to \mathbb{B} \text{at time } t & \alpha \\ \end{array} \\ \hline \textbf{Declaration:} \ \llbracket _ \rrbracket : \text{LTL } A \to (\mathbb{N} \to A \to \mathbb{B}) \to \mathbb{N} \to \mathbb{B} \\ \hline \textbf{Oclaration:} \ \llbracket _ \rrbracket : \text{LTL } A \to (\mathbb{N} \to A \to \mathbb{B}) \to \mathbb{N} \to \mathbb{B} \\ \hline \textbf{Oclaration:} \ \llbracket _ \rrbracket : \text{LTL } A \to (\mathbb{N} \to A \to \mathbb{B}) \to \mathbb{N} \to \mathbb{B} \\ \hline \textbf{Oclaration:} \ \llbracket _ \rrbracket : \text{LTL } A \to (\mathbb{N} \to A \to \mathbb{B}) \to \mathbb{N} \to \mathbb{B} \\ \hline \textbf{Oclaration:} \ \llbracket _ \rrbracket : \text{LTL } A \to (\mathbb{N} \to A \to \mathbb{B}) \to \mathbb{N} \to \mathbb{B} \\ \hline \textbf{Oclaration:} \ \llbracket _ \rrbracket : \text{LTL } A \to (\mathbb{N} \to A \to \mathbb{B}) \to \mathbb{N} \to \mathbb{B} \\ \hline \textbf{Oclaration:} \ \llbracket _ \sqcup \ f \varphi \text{ is true at some time } t' \geq t. \\ \hline \textbf{Oclaration:} \ f \varphi \text{ is true at time } t \text{ if } \varphi \text{ is true at some time } t' \geq t. \\ \hline \textbf{Oclaration:} \ f \varphi \text{ is true at time } t \text{ if } \varphi \text{ is true at time } t = 1. \\ \hline \textbf{Oclaration:} \ \phi U \ \psi \text{ is true at time } t \text{ if } \psi \text{ is true at some time } t' \geq t, \\ \hline \textbf{and for all times } t'' \text{ such that } t \leq t'' < t', \varphi \text{ is true.} \\ \hline \textbf{Oclaration:} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Important Valid Formulae $\models \mathbf{G} \neg p \Leftrightarrow \neg \mathbf{F} p = \mathbf{G}^{\infty} \neg p \Leftrightarrow \neg \mathbf{F}^{\infty} p = \mathbf{X} \neg p \Leftrightarrow \neg \mathbf{X} p$ $\models \mathbf{F} \neg p \Leftrightarrow \neg \mathbf{G} p = \mathbf{F} \mathbf{F}^{\infty} \neg p \Leftrightarrow \neg \mathbf{G}^{\infty} p = ((\neg p) \mathbf{U} q) \Leftrightarrow \neg (p \mathbf{B} q)$ $\frac{\text{Idempotencies}}{\text{Implications}}$ $\models \mathbf{F} \mathbf{F} p \Leftrightarrow \mathbf{F} p = p \Rightarrow \mathbf{F} p = \mathbf{G} p \Rightarrow \mathbf{X} p$ $\models \mathbf{G} \mathbf{G} p \Leftrightarrow \mathbf{G} p = p \Rightarrow \mathbf{F} p = \mathbf{G} p \Rightarrow \mathbf{X} p$ $\models \mathbf{G}^{\infty} \mathbf{G}^{\infty} p \Rightarrow \mathbf{F}^{\infty} p = \mathbf{G} p \Rightarrow \mathbf{F} p = \mathbf{G} p \Rightarrow \mathbf{X} \mathbf{G} p$ $\models \mathbf{G}^{\infty} \mathbf{G}^{\infty} p \Rightarrow \mathbf{G}^{\infty} p = p \mathbf{U} q \Rightarrow \mathbf{F} q = \mathbf{G}^{\infty} q \Rightarrow \mathbf{F}^{\infty} q$ $\models \mathbf{X} \mathbf{F} p \Leftrightarrow \mathbf{F} \mathbf{X} p = \mathbf{X} \mathbf{G} p \Rightarrow \mathbf{G} \mathbf{X} p = ((\mathbf{X} p) \mathbf{U} (\mathbf{X} q)) \Leftrightarrow \mathbf{X} (p \mathbf{U} q))$ $\models \mathbf{F}^{\infty} p \Leftrightarrow \mathbf{X} \mathbf{F}^{\infty} p \Rightarrow \mathbf{F} \mathbf{F}^{\infty} p \Rightarrow \mathbf{G} \mathbf{G}^{\infty} p \Rightarrow \mathbf{F}^{\infty} \mathbf{F}^{\infty} p \Rightarrow \mathbf{G}^{\infty} \mathbf{G}^{\infty} p$ $\models \mathbf{G}^{(p)} q \Rightarrow (\mathbf{X} p \Rightarrow \mathbf{F} q) \Rightarrow \mathbf{G}^{(p)} q \Rightarrow \mathbf{G}^{(p)} q \Rightarrow \mathbf{G}^{(m)} q \Rightarrow \mathbf{G}^{(m$	Interplay between Junctors and Temporal Operators
PastSafetyUntil now, all operators are future-related — explicitly:• $\mathbf{F}^+ p$ — "in the future, eventually p'' • $\mathbf{G}^+ p$ — "in the future, always p'' • $\mathbf{X}^+ p$ — "in the future, eventually q , and until then p'' • $\mathbf{PU}^+ q$ — "in the future, eventually q , and until then p'' Purely future-oriented propositional linear-time temporal logic — Propositional Linear-time Temporal Logic / Future : PLTLFCorresponding past-oriented operators (originally $P, H,$ and S for since): • $\mathbf{F}^- p$ • $\mathbf{F}^- p$ • $\mathbf{F}^- p$ • $\mathbf{G}^- p$ • $\mathbf{U}^- q$ • $\mathbf{D}^- q$ • $\mathbf{PU}^- q$ • $\mathbf{N}^- p \mathbf{U}^-$ in the past at some point q , and since then p'' • $\mathbf{X}^3 p$ • $\mathbf{X}^3 p$ • $\mathbf{PU}^- q$ • $\mathbf{N}^- \mathbf{U}^-$ in the past at some point q , and since then p'' 	




Two Different Model Concepts		Concepts	Reading More about Temporal Logics
	Logic	Toys	• E. Allen Emerson: Temporal and Modal Logic, pages 995–1072 of Jan van Leeuwen
Think:	"implementation satisfies specifica- tion"	"model airplane"	<pre>(ed.): Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, Elsevier Science Publishers B. V., 1990 https://doi.org/10.1016/B978-0-444-88074-1.50021-4</pre>
Context:	a vocabulary / signature / API dec- laration	(air transport) domain knowledge	Thode Library Bookstacks: QA 76 .H279 1990
What is a model of <i>X</i> ?	a structure/implementation that satisfies specification X	some smaller/simpler/more-abstract version of airplane/system X	"Post-print"? linked on Wikipedia: https://profs.info.uaic.ro/~masalagiu/pub/handbook3.pdf
	(useful where an implementation of X is needed)	"looks like X, may or may not fly like X"	 Michael R. A. Huth and Mark D. Ryan: Logic in Computer Science, Modelling and Reasoning about Systems, 2nd edition, Cambridge University Press 2004,
Important derived concepts	Model checking	"Model-driven engineering" (MDE)	Thode Library Bookstacks: QA 76.9 .L63H88 2004
			Frama-C: https://www.frama-c.com/
	Logical Reasoning for C COMPSCI 2	-	Frama-C is an open-source extensible and collaborative platform dedicated to source- code analysis of C software. The Frama-C analyzers assist you in various source-code- related activities, from the navigation through unfamiliar projects up to the certification of critical software.
	McMaster University	7, Fall 2024	Platform with multiple plug-ins
	Wolfram Kah	1	 Plug-in for total correctness proofs: WP Specification language: ACSL "ANSI C Specification Language" Similar to JML Based on first-order predicate logic
	2024-11-29		Not all ACSL features are currently supported by Frama-C and WP
	Part 1: Frama-C a	nd ACSL	 2024 Book: "Guide to Software Verification with Frama-C: Core Components, Usages, and Applications" https://link.springer.com/book/10.1007/978-3-031-55608-1 WP tytorial: https://allan_blanchard_fr/public/frama-a-un-tytorial-op.pdf
	Frama-C and ACSL — https://	www.frama-c.com/	WP tutorial: https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf ACSL Function Contracts
 Frama-C: An industrially-used framework for C code analysis and verification Delegates "simple" proofs to external tools, mostly Satisfiability-Modulo-Theories solvers (e.g., Z3) Practical Program Proof = Verification Condition Generation (VCG) + SMT checking ACSL: ANSI-C Specification Language Similar to the JML — Java Modelling Language But Java is more complex: Statements that can raise exceptions need additional postconditions for those. ACSL allows definition of inductive datatypes — natural abstractions for specification, but rather clumsy in ACSL — From discrete math to C: A big gap to bridge! 		ostly Satisfiability-Modulo-Theories on Generation (VCG) + SMT checking e tional postconditions for those. in C syntax. ther clumsy in ACSL	<pre>Overall program correctness is based on function contracts, mainly:</pre>
	ACSL Loop Anno		all_zeros.c: all_zeros
	astructure for the total-correctness Wh $A Q \wedge T = t_0$ $C \{ dom'B' \wedge Q \wedge T \}$ $\{ dom'B' \wedge Q \}$ while $B \text{ do } C \in C$	$\langle t_0 \rangle \qquad B \land Q \Rightarrow T > 0$	$ \begin{array}{l} /* @ \ requires \ n \ge 0 \ \land \ valid(t + (0 \ n-1)); \\ assigns \ \ \ \ valid(t + (0 \ n-1)); \\ ensures \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
true at lousually	 <i>"loop invariant Q</i>": Property always true in the following loop true at loop entry, at each loop iteration, at loop exit usually contains a generalisation of the post-condition may need to contain additional "sanity" conditions 		<pre>int k=0; /*@ loop invariant 0 ≤ k ≤ n; loop invariant ∀ integer j; 0 ≤ j < k ⇒ t[j] ≡ 0; loop assigns k; loop variant n - k; */</pre>
 <i>"loop assigns footprint"</i>: What may be assigned to within the loop <i>"loop variant T"</i>: To prove termination: Integer metric <i>T</i> that is <i>strictly decreasing</i> at each iteration and <i>bounded</i> by 0 			<pre>while(k < n){ if (t[k] ≠ 0) return 0; k++; } return 1; }</pre>
findMax1.c:		npt 1	findMaxla.c: The findMax Attempt 1a
$ /*@ requires n > 0; requires \valid(a + (0 n - 1)); ensures \for integer i ; 0 \le i < n \Rightarrow \result \ge a[i]; ensures \for integer i ; 0 \le i < n \Rightarrow \result \equiv a[i]; $			$ /*@ requires n > 0; requires \valid(a + (0 n - 1)); ensures \forall integer i ; 0 \le i < n \rightarrow \result \ge a[i]; ensures \forall integer i ; 0 \le i < n \rightarrow \result \equiv a[i]; ensures \forall integer i ; 0 \le i < n \rightarrow \result \equiv a[i]; }$
*/ int findMax(int n, int a []) {			*/ int findMax(int n, int a []) {
int i; $/*@$ loop invariant \forall integer j ; $0 \le j < i \Rightarrow a[j] \equiv 0$; loop invariant $0 \le i \le n$; loop variant $n - i$; */] = 0;	int i; $/*@$ loop invariant \forall integer j ; $0 \le j < i \implies a[j] \equiv 0$; loop invariant $0 \le i \le n$; loop assigns i , $a[0 n - 1]$; loop variant $n - i$;
<pre>for(i = 0; i < n; i++) a[i] = 0; return 0; }</pre>			*/ for(i = 0; i < n; i++) a[i] = 0; return 0;
frama-c -w		-c-gui -wp -wp-rte findMax1.c -c -wp -wp-rte findMax1.c vur)	
L			

Reconsidering the <i>findMax</i> Specification	"ACSL by Example": The max_element Algorithm — Specification
$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	#include "typedefs.h" /*@ requires valid: \valid_read(a + (0n-1)); assigns \nothing; ensures result: 0 ≤ \result ≤ n;
*/ int findMax(int n, int a []);	behavior empty: assumes $n \equiv 0;$
• "requires \valid_read($a + (0 n - 1)$)" is necessary for array access	assigns \nothing; ensures result: \result ≡ 0;
(pointer dereference) "assigns \nothing" documents that <i>findMax</i> must not have memory side-effects 	behavior not_empty: assumes 0 < n; continue:
• What if we wish to replace "requires $n \ge 1$ " with "requires $n \ge 0$ "?	assigns \nothing; ensures result: 0 ≤ \result < n;
"ensures ∃ integer <i>i</i> ; $0 \le i < n \land a[i] ≡ \result$ " would be unsatisfiable for " <i>n</i> ≡ 0"!	ensures upper: \forall integer i ; $0 \le i < n \implies a[i] \le a[\text{vresult}];$ ensures first: \forall integer i ; $0 \le i < \text{vresult} \implies a[i] < a[\text{vresult}];$
A different specification for that case is needed: <i>findMax</i> then has two distict behaviours , that can be specified separately:	<pre>complete behaviors; disjoint behaviors; */ size_type max_element(const value_type* a, size_type n);</pre>
max_element "ACSL by Example": The max_element Algorithm — Implementation	"ACSL By Example" — Conventions
max_element.c: r r r #include 'max_element.h'' r r	SizeValueTypes.h:
<pre>size_type max_element(const value_type* a, size_type n)</pre>	#ifndef SIZEVALUETYPES
{ if (0u < n) { size_type max = 0u;	typedef int value_type; typedef unsigned int size_type;
/*@ loop invariant bound: $0 \le i \le n$; loop invariant max: $0 \le \max < n$;	typedef int bool; #define false 0
loop invariant upper: \forall integer k ; $0 \le k < i \Rightarrow a[k] \le a[max]$; loop invariant first: \forall integer k ; $0 \le k < max \Rightarrow a[k] < a[max]$;	#define true 1
loop assigns max, <i>i</i> ; loop variant <i>n</i> - <i>i</i> ; */	#define SIZEVALUETYPES #endif
for (size_type i = 1u; i < n; i++) { if (a[max] < a[i]) { max = i; }	IsValidRange.h: #ifndef ISVALIDRANGE
} return max;	#inder ISVALIDKANGE #include "SizeValueTypes.h"
} return n;	/*@ predicate IsValidRange(value_type* a, integer n) = $(0 \le n) \land \text{valid}(a+(0. n-1));$
BISLs — See Also "BISL": "Behavioural Interface Specification Language"	
• ACSL — supported by Frama-C	Logical Reasoning for Computer Science
• JML: The Java Modeling Language https://www.cs.ucf.edu/~leavens/JML/ KeY: "The core feature of KeY is a theorem prover for Java Dynamic Logic based on a	COMPSCI 2LC3
 sequent calculus." https://www.key-project.org/ SPARK 2014 — version of Ada with verification support 	McMaster University Fall 2024
http://www.adacore.com/about-spark	McMaster University, Fall 2024
• Dafny: "designed as a verification-aware programming language, requiring verification along with code development. [] The general proof framework is that of Hoare logic." https://dafny.org/	Wolfram Kahl
 Eiffel: First programming language supporting "Design by Contract" (1986) LiquidHaskell: "refines Haskell's types with logical predicates that let you enforce 	2024-12-03
important properties at compile time."	Part 1. Lean Veringta (Jaman (actual in ACCI)
<pre>http://ucsd-progsys.github.io/liquidhaskell/ • Deal: "A Python library for design by contract"</pre>	Part 1: Loop Variants (demonstrated in ACSL)
https://deal.readthedocs.io/basic/verification.html	
ACSL Loop Annotations Recall the total correctness While rule:	$Loop Variants 1$ $\{B \land Q\} C \{dom'B' \land Q\} \{B \land Q \land T = t_0\} C \{T < t_0\} B \land Q \Rightarrow T \ge 0$
$ \{ B \land Q \} C \{ dom'B' \land Q \} \{ B \land Q \land T = t_0 \} C \{ T < t_0 \} B \land Q \Rightarrow T \ge 0 $	$\frac{(B \land Q) (Q \land M \land B \land Q)}{\{dom'B' \land Q\}} \text{ while } B \text{ do } C \text{ od } \{\neg B \land Q\}$
$\{ dom'B' \land Q \} \text{ while } B \text{ do } C \text{ od } \{ \neg B \land Q \}$	
 <i>"loop invariant Q"</i>: Property "always" true in the following loop: true at loop entry, at each loop iteration, at loop exit 	<pre>//@assigns \nothing; void f () {</pre>
• usually contains a generalisation of the post-condition	int $i = 10;$ /*@ loop assigns $i;$
 may need to contain additional "sanity" conditions "loop assigns <i>footprint</i>": What may be assigned to within the loop 	loop variant i; //`T */
"loop variant <i>T</i> ": To prove termination:	while $(i > 0)$
• Integer metric <i>T</i> that is strictly decreasing at each iteration and bounded by 0	i;
 Conceptually, this establishes a well-founded relation on the states encountered at start and end of loop body executions. 	}
$s_1 \succeq s_2 \equiv [T] s_1 > [T] s_2$ — (using [_] also for expression semantics evalV) • Any expression <i>T</i> for which the premises can be proven is acceptable.	• <i>T</i> needs to be some upper bound for the "number of iterations still remaining"
• Some expressions <i>T</i> may make these proofs easier than others	· · · · · · · · · · · · · · · · · · ·
Loop Variants 2	Loop Variants 3
$\frac{\{B \land Q\} C \{dom'B' \land Q\}}{(I \land Q)} = \{B \land Q \land T = t_0\} C \{T < t_0\} B \land Q \Rightarrow T \ge 0$	$\frac{\{B \land Q\} C \{dom'B' \land Q\}}{\{B \land Q \land T = t_0\} C \{T < t_0\} B \land Q \Rightarrow T \ge 0}$
$\{ dom'B' \land Q \} \text{ while } B \text{ do } C \text{ od } \{ \neg B \land Q \}$	$\{ dom'B' \land Q \} \text{ while } B \text{ do } C \text{ od } \{ \neg B \land Q \}$
//@ assigns \nothing;	
void f () {	<pre>//@assigns \nothing; yoid f () {</pre>
int $i = 10;$ /*@loop assigns $i;$	void f () { int $i = 10;$
int $i = 10;$	void f () {
<pre>int i = 10; /*@loop assigns i; loop variant i; //`T</pre>	<pre>void f () { int i = 10; /*@loop assigns i;</pre>
<pre>int i = 10; /*@loop assigns i; loop variant i; //`T */</pre>	<pre>void f () { int i = 10; /*@loop assigns i; loop variant i; //`T */</pre>
<pre>int i = 10; /*@loop assigns i; loop variant i; // `T */ while (i ≥ 0) {</pre>	void f () { int $i = 10;$ /*@ loop assigns $i;$ loop variant $i;$ //`T` */ while ($i \ge -1$) {
<pre>int i = 10; /*@loop assigns i; loop variant i; //`T */ while (i ≥ 0) {</pre>	void f () { int $i = 10;$ /*@ loop assigns $i;$ loop variant $i;$ //`T */ while ($i \ge -1$) {

 Writing Proofs Natural deduction was designed as a variant of sequent calculus that closely corresponds to the "natural" way of reasoning used in traditional mathematics. As such, natural deduction rules constitute building blocks of proof strategies. Natural deduction inference trees are <u>not</u> normally used for proof presentation. CALCCHECK structured proofs are readable formalisations of conventional informal proof presentation patterns. If you wish to write prose proofs, you still need to get the right proof structure first — think CALCCHECK! For proofs, informality as such is not a value. Rigorous (informal) proofs (e.g. in LADM) strive to "make the eventual formalisation effort minimal". There is value to readable proofs, no matter whether formal or informal. There is value to formal, machine-checkable proofs, especially in the software context, where the world of mathematics is not watching. Strive for readable formal proofs! 	 Proofs for Software Partial correctness: Verifying essential functionality Total correctness: Verifying also termination Absence of run-time errors imposes additional preconditions on commands Termination is typically dealt with separately; it requires a well-founded "termination order". These are supported by tools like Frama-C, VeriFast, Key,: Hoare calculus inference rules are turned into Verification Condition Generation Many simple verification conditions can be proved using SMT solvers (Satisfiability Modulo Theories) — Z3, veriT, More complex properties may need human assitance: Proof assistants: Isabelle, Coq, PVS, Agda, Pointer structures require an extension of Hoare logic: Separation Logic Industry has more and more formal methods jobs! Legacy C/C++ code needs to be analysed for issues Legacy C/C++ code bases are still growing
 Mathematical Programming Languages Software is a mathematical artefact Functional programming languages and logic programming languages aim to make expression in mathematical manner easier Among reasonably-widespread programming languages. Haskell is "the most mathematical" Dependently-typed logics (e.g., Coq, Lean, PVS, Agda) make it possible to express mathematics in a more natural way than in first-order predicate logic: For a matrix M : R^{3×4}, the element access M_{5.6} raises a type error A simple graph (V, E) can consist of a type V and a relation E : V ↔ V. Dependently-typed programming languages (e.g., Agda, Idris) contain dependently-typed logics — "proofs are programs, too" make it possible to express functional specifications via the type system — "formulae as types": Curry-Howard correspondence A program that has not been proven correct wrt. the stated specification does not even compile. 	 Continued Use of Logical Reasoning COMPSCI 2AC3 Automata and Computability formal languages, grammars, finite automata, transition relations, Kleene algebra! acceptance predicates, COMPSCI 2SD3 Concurrent Systems Design correctness of concurrent programs, may use temporal logic COMPSCI 2DB3 Databases n-ary relations, relational algebra; functional dependencies COMPSCI 3MI3 Principles of Programming Languages Programming paradigms, including functional programming; mathematical understanding of prog. language constructs, semantics COMPSCI SEAS Software and System Correctness CoMPSCI 3EA3 Software and System Correctness Formal specifications, validation, verification COMPSCI 4FP3 Advanced Functional Programming
Concluding Remarks How do I find proofs? — There is no general recipe Proving is somewhat like doing puzzles — practice helps Proofs are especially important for software — and much care is needed! Be aware of types, both in programming, and in mathematics Be aware of variable binding — in quantification, local variables, formal parameters Strive to use abstraction to avoid variable binding — e.g., using relation algebra instead of predicate logic When designing data representations, think mathematics: Subsets, relations, functions, injectivity, … Thinking mathematics in programming is easiest in functional languages, e.g., Haskell, OCaml Specify formally! — Design for provability! When doing software, think logics and discrete mathematics! 	