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What is This Course About?
Calendar description:

Introduction to logic and proof techniques for practical reasoning:
propositional logic, predicate logic, structural induction; rigorous
proofs in discrete mathematics and programming.

Discrete Mathematics is
the math of data— whether complex or big
the math of reasoning— logic
the math of some kinds of AI— machine reasoning
the math of specifying software

Logical Reasoning is used for
exploring the theoretical limits of computability
proving sophisaticated algorithms correct
justifying software designs
proving software implementations correct

Goals and Rough Outline
Understand the mechanics of mathematical expressions and proof
— starting in a familiar area: Reasoning about integers
Develop skill in propositional calculus

“propositional”: statements that can be true or false, not numbers
“calculus”: formalised reasoning, calculation — B, ¬, ∧, ∨,⇒, . . .

Develop skill in predicate calculus
“predicate”: statement about some subjects. — ∀, ∃

Develop skill in using basic theories of “data mathematics”
Sets, Functions, Relations, Sequences, Trees, Graphs, . . .

Develop skill in correctness reasoning about (imperative) programs
. . . skill development takes time and effort . . .

All along:
Encounter computer support for logical reasoning, mechanised discrete mathematics
Introduction to mechanised software correctness tools
— Formal Methods: increasingly important in industry

Textbook: “LADM”

“This is a rather extraordinary book, and deserves to
be read by everyone involved in computer science
and — perhaps more importantly — software engi-
neering. I recommend it highly [. . .]. If the book is
taken seriously, the rigor that it unfolds and the clarity
of its concepts could have a significant impact on the
way in which software is conceived and developed.”

— Peter G. Neumann
(Founder of ACM SIGSOFT)

The Importance of Proof in CS
ACM’s Computer Science Curricula recognize proofs as one of several areas of
mathematics that are integral to a wide variety of sub-fields of computer science:

. . . an ability to create and understand a proof — either a formal symbolic proof or a less
formal but still mathematically rigorous argument — is important in virtually every
area of computer science, including (to name just a few) formal specification, verification,
databases, and cryptography.

ACM/IEEE: Computer Science Curricula 2013, p. 79

“Mathematically rigorous” — “if I really needed to formalise it, I could.”
Rigorous (informal) proofs (e.g. in LADM)
strive to “make the eventual formalisation effort minimal”.
There is value to readable proofs, no matter whether formal or informal.
There is value to formal, machine-checkable proofs,
especially in the software context,
where the world of mathematics is not watching.

Strive for readable formal proofs!

2023 COMPSCI 1DM3 Final 1(a) — Calculational Proof Presentation

Lemma∶ (¬ q ∧ (p ⇒ q)) ⇒ ¬ p

Proof:

(¬ q ∧ (p ⇒ q)) ⇒ ¬ p≡ ⟨ “Material implication ” ⟩¬ (¬ q ∧ (¬ p ∨ q)) ∨ ¬ p≡ ⟨ “De Morgan ” ⟩¬ ¬ q ∨ (¬ ¬ p ∧ ¬ q) ∨ ¬ p≡ ⟨ “Double negation ” ⟩
q ∨ (p ∧ ¬ q) ∨ ¬ p≡ ⟨ “Distributivity of ∨ over ∧ ” ⟩(q ∨ p ∨ ¬ p) ∧ (q ∨ ¬ q ∨ ¬ p)≡ ⟨ “Excluded middle ” ⟩(q ∨ true) ∧ (true ∨ ¬ p)≡ ⟨ “Zero of ∨ ” ⟩
true ∧ true≡ ⟨ “Idempotency of ∧ ” ⟩
true

Lemma “F1(a)”∶ (¬ q ∧ (p ⇒ q)) ⇒ ¬ p

Proof:

(¬ q ∧ (p ⇒ q)) ⇒ ¬ p≡ ⟨ “Material implication ” ⟩(¬ q ∧ (¬ p ∨ q)) ⇒ ¬ p≡ ⟨ “Absorption ” ⟩(¬ q ∧ ¬ p) ⇒ ¬ p≡ ⟨ “De Morgan ” ⟩¬ (q ∨ p) ⇒ ¬ p≡ ⟨ “Contrapositive ” ⟩
p ⇒ q ∨ p≡ ⟨ “Weakening ” ⟩
true

2023 COMPSCI 1DM3 Final 1(b) — Calculational Proof Presentation

Lemma “F1(b) ”∶ (∃ x ● P ⇒ Q) ≡ (∀ x ● P) ⇒ (∃ x ● Q)
Proof:

(∃ x ● P ⇒ Q)
≡ ⟨ “Material implication ” ⟩
(∃ x ● ¬ P ∨ Q)

≡ ⟨ “Distributivity of ∃ over ∨ ” ⟩
(∃ x ● ¬ P) ∨ (∃ x ● Q)

≡ ⟨ “Generalised De Morgan ” ⟩
¬ (∀ x ● P) ∨ (∃ x ● Q)

≡ ⟨ “Material implication ” ⟩
(∀ x ● P) ⇒ (∃ x ● Q)

First Tool: CALCCHECK

CALCCHECK: A proof checker for the textbook logic

CALCCHECK analyses textbook-style presentations of proofs

CALCCHECKWeb: A notebook-style web-app interface to CALCCHECK

You can check your proofs before handing them in!

Will be used in exams!

— initially with proof checking turned off. . .
. . . but syntax checking left on

Will be used in exams
— as far as possible. . .
You need to be able to do both:

Write formalisations and proofs using CALCCHECK

Write formalisations and proofs by hand on paper

(Firefox and Chrome can be expected to work with CALCCHECKWeb.
Safari, Edge, IE not necessarily.)

From the LADM Instructor’s Manual
Emphasis on skill acquisition:

“a course taught from this text will give students a solid understanding of what
constitutes a proof and a skill in developing, presenting, and reading proof.”
“We believe that teaching a skill in formal manipulation makes learning the other
material easier.”
“Logic as a tool is so important to later work in computer science and mathematics
that students must understand the use of logic and be sure in that understanding.”
“One benefit of our new approach to teaching logic, we believe is that students
become more effective in communicating and thinking in other scientific and
engineering disciplines.”
“Frequent but shorter homeworks ensure that students get practice”

Consciously departing from existing mechanised logics:
“Our equational logic is a “People Logic”, instead of a

“Machine Logic”.” CALCCHECK mechanises this “People Logic”

CALCCHECK: A Recognisable Version of the Textbook Proof Language
(11.5) S = {x x ∈ S ∶ x} .
According to axiom Extensionality (11.4), it suffices to prove that v ∈ S ≡ v ∈ {x x ∈ S ∶ x},
for arbitrary v. We have,

v ∈ {x x ∈ S ∶ x}
= ⟨ Definition of membership (11.3) ⟩(∃x x ∈ S ∶ v = x)
= ⟨ Trading (9.19), twice ⟩(∃x x = v ∶ x ∈ S)
= ⟨ One-point rule (8.14) ⟩

v ∈ S
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Note:
1. The calculation part is transliterated into Unicode plain text

(only minimal notation changes).
2. The prose top-level of the proof is formalised

into Using and For any structures in the spirit of LADM



From the LADM Instructor’s Manual: “Some Hints on Mechanics”

“We have been successful (in a class of 70 students) with occasionally writing a few
problems on the board and walking around the class as the students work on them.”

COMPSCI&SFWRENG 2DM3: ≈240 students in 2016, 360 in 2020

COMPSCI 2LC3: Over 180 students in 2021; over 200 in 2023

Tutorials normally have 20–40 students and use this approach, with
students working on their computers
— this still worked with online course delivery

“Frequent short homework assignments are much more effective than longer but
less frequent ones. Handing out a short problem set that is due
the next lecture forces the students to practice the material
immediately, instead of waiting a week or two.”

Since 2018, giving homework up to three times per week

Only feasible due to online submission and autograding

Clear improvement in course results

From the LADM Instructor’s Manual: “Some Hints on Mechanics” (ctd.)

“There is no substitute for practice accompanied by ample and timely feedback”

Most “timely feedback” is provided by interaction with CALCCHECKWeb

Autograding for homework and assignments produces some additional feedback

CALCCHECK is intentionally a proof checker, not a proof assistant

Providing ample TA office hours (and now a “Course Help” channel) helps
students overcome roadblocks.

“We tell the students that they are all capable of mastering the material (for they are).”

. . . and CALCCHECK homework makes more of them
actually master the material.

Organisation
Schedule

Grading

Exams

Avenue

Course Page: http://www.cas.mcmaster.ca/~kahl/CS2LC3/2024/

— check in case of Avenue and MSTeams outage!

— See the Outline (on course page and on Avenue)

— Read the Outline!

Schedule
Mon Tue Wed Thu Fri

10:30–11:20 T1–4
11:30–12:20 Lecture T1–4 Lecture Lecture
12:30–

–14:20
T5

Office hour
14:30–

–16:20 T7

16:30–
–18:20

T6

Lectures: attend!, take notes!
2-hour Tutorials — starting tomorrow, Wednesday, September 4

– discuss student approaches to “Exercise” questions.
TA office hours: TBA
Studying and Homework: — Reading the textbook

— Writing proofs in CALCCHECKWeb

Grading

Homework, from one lecture to the next — in total: 10%
(Not Thursday to Friday)
Homework will be more frequent in the first part of the term
The weakest 2 or 3 homeworks are dropped (see outline)
MSAFs for homework are not processed

Roughly-biweekly assignments — in total: 10%
Assignments will be less frequent in the first part of the term
The weakest 1 or 2 assignments are dropped (see outline)
MSAFs for assignments are not processed

2 Midterm Tests, closed book, on CALCCHECKWeb / on paper, each:
10% if not better than your final
20% if better than your final

— in total at least: 20%
— in total up to: 40%

Final (closed book, 2.5 hours, on CALCCHECKWeb / on paper) 40% to 60%

= 100%

Exams
Exercise questions, assignment questions, and the questions on midterm tests, and
on the final —

— will be somewhat similar. . .

All tests and exams are closed-book.
– The main difference to open-book lies in how you prepare. . .
– Knowledge is important:

Without the right knowledge, you would not even know what to look up where!

You need to be able and prepared to do both:
Write formalisations and proofs using CALCCHECK
Write formalisations and proofs by hand on paper

Know your stuff!
— . . . and not only in the exams . . .

— . . . and not only for this term . . .

— . . . similar to learning a new language

The Language of Logical Reasoning

The mathematical foundations of Computing Science involve language skills and
knowledge:

Vocabulary: Commonly known concepts and technical terms

Syntax/Grammar: How to produce complex statements and arguments

Semantics: How to relate complex statements with their meaning

Pragmatics: How people actually use the features of the language

Conscious and fluent use of the
language of logical reasoning

is the foundation for
precise specification and rigorous argumentation
in Computer Science and Software Engineering.
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Part 2: Expressions and Calculations

The Answer
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7 ⋅ 8= ⟨ Fact `8 = 7 + 1` ⟩
7 ⋅ (7 + 1)= ⟨ Fact `7 = 10 − 3` ⟩(10 − 3) ⋅ (7 + 1)= ⟨ “Distributivity of ⋅ over + ” ⟩(10 − 3) ⋅ 7 + (10 − 3) ⋅ 1= ⟨ “Distributivity of ⋅ over − ” ⟩
10 ⋅ 7 − 3 ⋅ 7 + 10 ⋅ 1 − 3 ⋅ 1= ⟨ “Identity of ⋅ ” — twice ⟩
10 ⋅ 7 − 3 ⋅ 7 + 10 − 3= ⟨ Fact `3 ⋅ 7 = 21` ⟩
10 ⋅ 7 − 21 + 10 − 3= ⟨ Fact `10 ⋅ 7 = 70` ⟩
70 − 21 + 10 − 3= ⟨ Fact `10 − 3 = 7` ⟩
70 − 21 + 7= ⟨ Fact `21 + 7 = 28` ⟩
70 − 28= ⟨ Fact `70 − 28 = 42` ⟩
42

Calculational Proof Format

E0= ⟨ Explanation of why E0 = E1 ⟩
E1= ⟨ Explanation of why E1 = E2 ⟩
E2= ⟨ Explanation of why E2 = E3 ⟩
E3

This is a proof for:
E0 = E3



Calculational Proof Format

E0= ⟨ Explanation of why E0 = E1 ⟩
E1= ⟨ Explanation of why E1 = E2 ⟩
E2= ⟨ Explanation of why E2 = E3 ⟩
E3

The calculational presentation as such is conjunctional: This reads as:

E0 = E1 ∧ E1 = E2 ∧ E2 = E3

Because = is transitive, this justifies:

E0 = E3

Syntax of Conventional Mathematical Expressions
LADM 1.1, p. 7

A constant (e.g., 231) or variable (e.g., x) is an expression

If E is an expression, then (E) is an expression

If ○ is a unary prefix operator and E is an expression, then ○E is an expression, with
operand E.

For example, the negation symbol − is used as a unary prefix operator, so − 5 is an
expression.

If ⊗ is a binary infix operator and D and E are expressions,
then D⊗ E is an expression, with operands D and E.

For example, the symbols + and ⋅ are binary infix operators,
so 1 + 2 and (− 5) ⋅ (3 + x) are expressions.

Syntax of Conventional Mathematical Expressions

A constant (e.g., 231) or variable (e.g., x) is an expression
If E is an expression, then (E) is an expression
If ○ is a unary prefix operator and E is an expression, then ○E is an expression, with
operand E.
If ⊗ is a binary infix operator and D and E are expressions, then D⊗ E is an
expression, with operands D and E.

The intention of this is that each expression is at least one of the following alternatives:
either some constant
or some variable
or some simpler expression in parentheses
or the application of some unary prefix operator

to some simpler expression
or the application of some binary infix operator

to two simpler expressions

Why is this an expression?

2 ⋅ 3 + 4
If ⊗ is a binary infix operator and D and E are expressions, then D⊗ E is an
expression, with operands D and E.

or the application of some binary infix operator to two simpler expressions

Which expression is it?
+

4⋅
32

⋅
+

43

2

Why?

Ô⇒ The multiplication operator ⋅ has
higher precedence than the addition operator +.

Table of Precedences[x ∶= e] (textual substitution) (highest precedence)
. (function application)
unary prefix operators +, −, ¬, #, ∼, P∗∗⋅ / ÷ mod gcd+ − ∪ ∩ × ○ ●↓ ↑
#◁ ▷ ˆ= < > ∈ ⊂ ⊆ ⊃ ⊇ ∣ (conjunctional)∨ ∧⇒ ⇐≡ (lowest precedence)

All non-associative binary infix operators associate to the left,
except ∗∗, ◁,⇒, →, which associate to the right.

Why are these expressions? Which expressions are these?
1 n − k − 1 −

1−
kn

−
−

1k

n

2 5 − 6 + 7 +
7−

65

−
+

76

5

3 a + b − c −
c+

ba

+
−

cb

a

The operators + and − associate to the left, also mutually.

Associativity versus Association
If we write a + b + c, there appears to be no need to discuss whether we mean(a + b) + c or a + (b + c), because they evaluate to the same values:

(a + b) + c = a + (b + c) “+” is associative

If we write a − b − c, we mean (a − b) − c:

“−” associates to the left 9 − (5 − 2) ≠ (9 − 5) − 2

If we write abc
, we mean a(bc):

exponentiation associates to the right 2(32) ≠ (23)2
If we write a ∗∗ b ∗∗ c, we mean a ∗∗ (b ∗∗ c):

“∗∗” associates to the right

If we write a⇒ b ⇒ c, we mean a ⇒ (b ⇒ c):
“⇒” associates to the right (false⇒(true⇒ false)) ≠ ((false⇒ true)⇒ false)

An Equational Theory of Integers — Axioms (LADM Ch. 15)

(15.1) Axiom, Associativity: (a + b) + c = a + (b + c)(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
(15.2) Axiom, Symmetry: a + b = b + a

a ⋅ b = b ⋅ a
(15.3) Axiom, Additive identity: 0 + a = a

a + 0 = a

(15.4) Axiom, Multiplicative identity: 1 ⋅ a = a
a ⋅ 1 = a

(15.5) Axiom, Distributivity: a ⋅ (b + c) = a ⋅ b + a ⋅ c(b + c) ⋅ a = b ⋅ a + c ⋅ a
(15.13) Axiom, Unary minus: a + (−a) = 0

(15.14) Axiom, Subtraction: a − b = a + (−b)

An Equational Theory of Integers — Axioms (CALCCHECK)

Ex
1.

2
St

ar
ti

ng
Po

in
t

Declaration∶ Z ∶ Type
Declaration∶ + ∶ Z → Z → Z
Declaration∶ ⋅ ∶ Z → Z → Z
Axiom (15.1) (15.1a) “Associativity of + ”∶ (a + b) + c = a + (b + c)
Axiom (15.1) (15.1b) “Associativity of ⋅ ”∶ (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
Axiom (15.2) (15.2a) “Symmetry of + ”∶ a + b = b + a
Axiom (15.2) (15.2b) “Symmetry of ⋅ ”∶ a ⋅ b = b ⋅ a
Axiom (15.3) “Additive identity ” “Identity of + ”∶ 0 + a = a
Axiom (15.4) “Multiplicative identity ” “Identity of ⋅ ”∶ 1 ⋅ a = a
Axiom (15.5) “Distributivity of ⋅ over + ”∶ a ⋅ (b + c) = a ⋅ b + a ⋅ c
Axiom (15.9) “Zero of ⋅ ”∶ a ⋅ 0 = 0
Declaration∶ − ∶ Z → Z
Declaration∶ − ∶ Z → Z → Z
Axiom (15.13) “Unary minus ”∶ a + (− a) = 0
Axiom (15.14) “Subtraction ”∶ a − b = a + (− b)

Calculational Proofs of Theorems — (15.17) −(−a) = a

(15.3) Identity of + 0 + a = a (15.13) Unary minus a + (−a) = 0

LADM:

Theorem (15.17): −(−a) = a

Proof: −(−a)
= ⟨ Identity of + (15.3) ⟩

0 + −(−a)
= ⟨ Unary minus (15.13) ⟩

a + (−a) + −(−a)
= ⟨ Unary minus (15.13) ⟩

a + 0

= ⟨ Identity of + (15.3) ⟩
a

CALCCHECK:
Theorem (15.17) “Self-inverse of unary minus ”∶

− (− a) = a

Proof:

− (− a)= ⟨ “Identity of + ” ⟩
0 + − (− a)= ⟨ “Unary minus ” ⟩
a + (− a) + − (− a)= ⟨ “Unary minus ” ⟩
a + 0= ⟨ “Identity of + ” ⟩
a

in
Ex1

.2



Get Started with CALCCHECK Now!
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7 ⋅ 8= ⟨ Fact `8 = 7 + 1` ⟩
7 ⋅ (7 + 1)= ⟨ Fact `7 = 10 − 3` ⟩(10 − 3) ⋅ (7 + 1)= ⟨ “Distributivity of ⋅ over + ” ⟩(10 − 3) ⋅ 7 + (10 − 3) ⋅ 1= ⟨ “Distributivity of ⋅ over − ” ⟩
10 ⋅ 7 − 3 ⋅ 7 + 10 ⋅ 1 − 3 ⋅ 1= ⟨ “Identity of ⋅ ” — twice ⟩
10 ⋅ 7 − 3 ⋅ 7 + 10 − 3= ⟨ Fact `3 ⋅ 7 = 21` ⟩
10 ⋅ 7 − 21 + 10 − 3= ⟨ Fact `10 ⋅ 7 = 70` ⟩
70 − 21 + 10 − 3= ⟨ Fact `10 − 3 = 7` ⟩
70 − 21 + 7= ⟨ Fact `21 + 7 = 28` ⟩
70 − 28= ⟨ Fact `70 − 28 = 42` ⟩
42

Tutorials start tomorrow, Wednesday,
Sept. 4!

Work through Homework 1 before your
tutorial!

Get started working on Exercises 1.*

Go to your tutorial to continue working
on Ex1 — bring your laptop!

Submit H1 by 23:59 on Friday, Sept. 6

Logical Reasoning for Computer Science
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Expressions and Substitution — LADM Chapter 1
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Part 1: Syntax of Mathematical Expressions (ctd.)

Term Tree Presentation of Mathematical Expression

(Using linear notation x ∗∗ y for exponentiation xy)
b2 ≤ n ≤ (b + 1)2

b2 ≤ n ∧ n ≤ (b + 1)2
∧

≤
**

2+

1b

n

≤
n**

2b

We write strings, but we think trees.

All the rules we have for implicit parentheses
only serve to encode the tree structure.

(These term trees are the essence of the abstract syntax trees (ASTs) used centrally in compilers.)

Recall: Syntax of Conventional Mathematical Expressions
Textbook 1.1, p. 7

A constant (e.g., 231) or variable (e.g., x) is an expression

If E is an expression, then (E) is an expression

If ○ is a unary prefix operator and E is an expression, then ○E is an expression, with
operand E.

For example, the negation symbol − is used as a unary prefix operator, so −5 is an
expression.

If ⊗ is a binary infix operator and D and E are expressions,
then D⊗ E is an expression, with operands D and E.

For example, the symbols + and ⋅ are binary infix operators,
so 1 + 2 and (−5) ⋅ (3 + x) are expressions.

Recall: Syntax of Conventional Mathematical Expressions

A constant (e.g., 231) or variable (e.g., x) is an expression
If E is an expression, then (E) is an expression
If ○ is a unary prefix operator and E is an expression, then ○E is an expression, with
operand E.
If ⊗ is a binary infix operator and D and E are expressions, then D⊗ E is an
expression, with operands D and E.

The intention of this is that each expression is at least one of the following alternatives:
either some constant
or some variable
or some simpler expression in parentheses
or the application of some unary prefix operator

to some simpler expression
or the application of some binary infix operator

to two simpler expressions

Precedences and Association — We write strings, but we think trees

All the rules we have for implicit parentheses only serve to encode the tree structure.

(We use underscores to denote operator argument positions.
So ⊗ is a binary infix operator, and ⊟ is a unary prefix operator.)

⊗ has higher precedence than ⊙ means
a⊗ b⊙ c = (a⊗ b)⊙ c
a⊙ b⊗ c = a⊙ (b⊗ c)

⊗ has higher precedence than ⊟ means ⊟ a⊗ b = ⊟ (a⊗ b)
⊟ has higher precedence than ⊗ means ⊟ a⊗ b = (⊟ a)⊗ b

⊗ associates to the left means a⊗ b⊗ c = (a⊗ b)⊗ c

⊗ associates to the right means a⊗ b⊗ c = a⊗ (b⊗ c)⊗ mutually associates to the left
with (same prec.) ⊙ means a⊗ b⊙ c = (a⊗ b)⊙ c

⊗ mutually associates to the right
with (same prec.) ⊙ means a⊗ b⊙ c = a⊗ (b⊙ c)

Associativity versus Association
If we write a + b + c, there appears to be no need to discuss whether we mean(a + b) + c or a + (b + c), because they evaluate to the same values:

(a + b) + c = a + (b + c) “+” is associative

If we write a − b − c, we mean (a − b) − c:

“−” associates to the left 9 − (5 − 2) ≠ (9 − 5) − 2

If we write abc
, we mean a(bc):

exponentiation associates to the right 2(32) ≠ (23)2
If we write a ∗∗ b ∗∗ c, we mean a ∗∗ (b ∗∗ c):

“∗∗” associates to the right

If we write a⇒ b ⇒ c, we mean a ⇒ (b ⇒ c):
“⇒” associates to the right F⇒(T⇒F) ≠ (F⇒T)⇒F

Conjunctional Operators

Chains can involve different conjunctional operators:

1 < i ≤ j < 5 = k

≡ ⟨ “Reflexivity of =” `x = x` — conjunctional operators ⟩
1 < i ∧ i ≤ j ∧ j < 5 ∧ 5 = k

≡ ⟨ “Reflexivity of =” — ∧ has lower precedence ⟩
(1 < i) ∧ (i ≤ j) ∧ (j < 5) ∧ (5 = k)
x < 5 ∈ S ⊆ T

≡ ⟨ “Reflexivity of =” — conjunctional operators ⟩
x < 5 ∧ 5 ∈ S ∧ S ⊆ T

≡ ⟨ “Reflexivity of =” — ∧ has lower precedence ⟩
(x < 5) ∧ (5 ∈ S) ∧ (S ⊆ T)

Remember this!!
!

Mathematical Expressions, Terms, Formulae . . .

“Expression” is not the only word used for this kind of concept.

Related terminology:
Both “term” and “expression” are frequently used names
for the same kind of concept.
The textbook’s “expression” subsumes both “term” and “formula” of conventional
first-order predicate logic.

Remember:
Expressions are understood as tree-structures

— “abstract syntax”
Expressions are written as strings

— “concrete syntax”
Parentheses, precedences, and association rules
only serve to disambiguate the encoding of trees in strings.
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Part 2: Substitution

Plan for Part 2
Substitution as such: Replaces variables with expressions in expressions, e.g.,

(x + 2 ⋅ y)[x,y ∶= 3 ⋅ a, b + 5]
= ⟨ Substitution ⟩

3 ⋅ a + 2 ⋅ (b + 5)
Applying substitution instances of theorems and making the substitution explicit:

2 ⋅ y + − (2 ⋅ y)
= ⟨ “Unary minus” `a + − a = 0` with `a ∶= 2 ⋅ y` ⟩

0

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of x replaced by (R).
Example 1:

(x + y)[x ∶= z + 2]
= ⟨ Substitution — performing substitution ⟩
((z + 2) + y)

= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩
z + 2 + y

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of x replaced by (R).
Example 2:

(x ⋅ y)[x ∶= z + 2]
= ⟨ Substitution ⟩
((z + 2) ⋅ y)

= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩
(z + 2) ⋅ y

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of x replaced by (R).
Example 3:

(0 + a)[a ∶= − (− a)]
= ⟨ Substitution ⟩
(0 + (− (− a)))

= ⟨ “Reflexivity of =” — removing (some) unnecessary parenth. ⟩
0 + − (− a)

Textual Substitution
Let E and R be expressions and let x be a variable. We write:

E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of x replaced by (R).
Example 4:

x + y[x ∶= z + 2]
= ⟨ “Reflexivity of =” — adding parentheses for clarity ⟩

x + (y[x ∶= z + 2])
= ⟨ Substitution ⟩

x + (y)
= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩

x + y

Note: Substitution [x ∶= R] is a highest precedence postfix operator

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of x replaced by (R).
Examples:

Expression Result

Unnecessary
parentheses
removed

x[x ∶= z + 2] (z + 2) z + 2(x + y)[x ∶= z + 2] ((z + 2) + y) z + 2 + y(x ⋅ y)[x ∶= z + 2] ((z + 2) ⋅ y) (z + 2) ⋅ y
x + y[x ∶= z + 2] x + y x + y

Note: Substitution [x ∶= R] is a highest precedence postfix operator

Sequential Substitution

(x + y)[x ∶= y − 3][y ∶= z + 2]
= ⟨ “Reflexivity of =” — adding parentheses for clarity ⟩
((x + y)[x ∶= y − 3])[y ∶= z + 2]

= ⟨ Substitution — performing inner substitution ⟩
(((y − 3) + y))[y ∶= z + 2]

= ⟨ Substitution — performing outer substitution ⟩
((((z + 2) − 3) + (z + 2)))

= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩
z + 2 − 3 + z + 2

Simultaneous Textual Substitution

If R is a list R1, . . . ,Rn of expressions
and x is a list x1, . . . ,xn of distinct variables, we write:

E[x ∶= R]
to denote the simultaneous replacement of the variables of x
by the corresponding expressions of R,
each expression being enclosed in parentheses.

Example:(x + y)[x,y ∶= y − 3, z + 2]
= ⟨ Substitution — performing substitution ⟩
((y − 3) + (z + 2))

= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩
y − 3 + z + 2

Simultaneous Textual Substitution

If R is a list R1, . . . ,Rn of expressions
and x is a list x1, . . . ,xn of distinct variables, we write:

E[x ∶= R]
to denote the simultaneous replacement of the variables of x
by the corresponding expressions of R,
each expression being enclosed in parentheses.

Examples:

Expression Result

Unnecessary
parentheses
removed

x[x,y ∶= y − 3, z + 2] (y − 3) y − 3(y + x)[x,y ∶= y − 3, z + 2] ((z + 2) + (y − 3)) z + 2 + y − 3(x + y)[x,y ∶= y − 3, z + 2] ((y − 3) + (z + 2)) y − 3 + z + 2
x + y[x,y ∶= y − 3, z + 2] x + (z + 2) x + z + 2



Simultaneous Substitution:(x + y)[x,y ∶= y − 3, z + 2]= ⟨ Substitution — performing substitution ⟩((y − 3) + (z + 2))= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩
y − 3 + z + 2

Sequential Substitution:(x + y)[x ∶= y − 3][y ∶= z + 2]= ⟨ “Reflexivity of =” — adding parentheses for clarity ⟩((x + y)[x ∶= y − 3])[y ∶= z + 2]= ⟨ Substitution — performing inner substitution ⟩(((y − 3) + y))[y ∶= z + 2]= ⟨ Substitution — performing outer substitution ⟩((((z + 2) − 3) + (z + 2)))= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩
z + 2 − 3 + z + 2

Recall: An Equational Theory of Integers — Axioms (LADM Ch. 15)

(15.1) Axiom, Associativity: (a + b) + c = a + (b + c)(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
(15.2) Axiom, Symmetry: a + b = b + a

a ⋅ b = b ⋅ a
(15.3) Axiom, Additive identity: 0 + a = a

a + 0 = a

(15.4) Axiom, Multiplicative identity: 1 ⋅ a = a
a ⋅ 1 = a

(15.5) Axiom, Distributivity: a ⋅ (b + c) = a ⋅ b + a ⋅ c(b + c) ⋅ a = b ⋅ a + c ⋅ a
(15.13) Axiom, Unary minus: a + (− a) = 0

(15.14) Axiom, Subtraction: a − b = a + (− b)

Calculational Proofs of Theorems — (15.17) − (− a) = a

(15.3) Identity of + 0 + a = a (15.13) Unary minus a + (− a) = 0

Theorem (15.17) “Self-inverse of unary minus”: − (− a) = a
Proof:

− (− a)
= ⟨ Identity of + (15.3) ⟩

0 + − (− a)
= ⟨ Unary minus (15.13) ⟩

a + (− a) + − (− a)
= ⟨ Unary minus (15.13) ⟩

a + 0

= ⟨ Identity of + (15.3) ⟩
a

Three diff
erent varia

bles named “a”!

Calculational Proofs of Theorems — (15.17) — Renamed Theorem Variables

(15.3x) Identity of + 0 + x = x (15.13y) Unary minus y + (− y) = 0

Theorem (15.17) “Self-inverse of unary minus”: − (− a) = a
Proof:

− (− a)
= ⟨ Identity of + (15.3x) ⟩

0 + − (− a)
= ⟨ Unary minus (15.13y) ⟩

a + (− a) + − (− a)
= ⟨ Unary minus (15.13y) ⟩

a + 0

= ⟨ Identity of + (15.3x) ⟩
a

Three diff
erent varia

bles “x”, “y”, “a”.

Details of Applying Theorems — (15.17) with Explicit Substitutions I

(15.3x) Identity of + 0 + x = x (15.13y) Unary minus y + (− y) = 0

Theorem (15.17) “Self-inverse of unary minus”: − (− a) = a
Proof:− (− a)
= ⟨ Identity of + (15.3x) with x ∶= − (− a) ⟩

0 + − (− a)
= ⟨ Unary minus (15.13y) with y ∶= a ⟩

a + (− a) + − (− a)
= ⟨ Unary minus (15.13y) with y ∶= − a ⟩

a + 0

= ⟨ Identity of + (15.3x) with x ∶= a ⟩
a

(0 + x = x)[x ∶= − (− a)] = (0 + − (− a) = − (− a))
(y + (− y) = 0)[y ∶= a] = (a + (− a) = 0)
(y + (− y) = 0)[y ∶= − a] = (− a + (− (− a)) = 0)

(0 + x = x)[x ∶= a)] = (0 + a = a

Details of Applying Theorems — (15.17) with Explicit Substitutions II

(15.3) Identity of + 0 + a = a (15.13) Unary minus a + (− a) = 0

Theorem (15.17) “Self-inverse of unary minus”: − (− a) = a
Proof: − (− a)

= ⟨ Identity of + (15.3) with a ∶= − (− a) ⟩
0 + − (− a)

= ⟨ Unary minus (15.13) with a ∶= a ⟩
a + (− a) + − (− a)

= ⟨ Unary minus (15.13) with a ∶= − a ⟩
a + 0

= ⟨ Identity of + (15.3) with a ∶= a ⟩
a Three

diff
ere

nt vari
ab

les
nam

ed
“a

”!

Specifying Substitutions for Theorem Application in CALCCHECK

Theorem (15.19) “Distributivity of unary minus over + ”∶ − (a + b) = (− a) + (− b)
Proof:− (a + b)= ⟨ (15.20)with `a ∶= a + b` ⟩(− 1) ⋅ (a + b)= ⟨ “Distributivity of ⋅ over + ” with `a, b, c ∶= − 1, a, b` ⟩(− 1) ⋅ a + (− 1) ⋅ b= ⟨ (15.20)with `a ∶= b` ⟩(− 1) ⋅ a + − b= ⟨ (15.20)with `a ∶= a` ⟩(− a) + (− b)

Theorem (15.20)∶
− a = (− 1) ⋅ a

Backquotes enclose math embedded in English. (Markdown convention)
Substitution notation as in LADM: variables ∶= expressions
“∶=” reads “becomes” or “is/are replaced with”
“∶=” is entered by typing “/:=” or “/becomes”!
The variable list has the same length as the expression list.
No variable occurs twice in the variable list.
CALCCHECKWeb notebooks “with rigid matching” require all theorem variables to be substituted.
“Rigid matching” means: The theorems you specify need to match without substitution.
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Applying Equations, Boolean Expressions, Propositional Calculus

Plan for Today
Anatomy of calculation based on Substitution (LADM 1.3–1.5):

Inference rule Substitution: Justifies applying instances of theorems:

2 ⋅ y + − (2 ⋅ y)
= ⟨ “Unary minus” a + − a = 0 with ‘a ∶= 2 ⋅ y‘ ⟩

0
Inference rule Leibniz: Justifies applying (instances of) equational theorems deeper
inside expressions:

2 ⋅ x + 3 ⋅ (y − 5 ⋅ (4 ⋅ x + 7))
= ⟨ “Subtraction” a − b = a + − b with ‘a, b ∶= y,5 ⋅ (4 ⋅ x + 7)‘ ⟩

2 ⋅ x + 3 ⋅ (y + − (5 ⋅ (4 ⋅ x + 7)))
LADM Chapter 2: Boolean Expressions

Meaning of Boolean Operators
Equality versus Equivalence
Satisfiability and Validity
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Part 1: Foundations of Applying Equations in Context



What is an Inference Rule?

premise1 . . . premisen

conclusion

If all the premises are theorems,

then the conclusion is a theorem.

A theorem is a “proved truth”
— either an axiom,
— or the result of an inference rule application.

Inference rules are the building blocks of proofs.

The premises are also called hypotheses.

The conclusion and each premise all have to be Boolean.

Axioms are inference rules with zero premises

Inference Rule: Substitution

(1.1) Substitution:
E

E[x ∶= R] “If E is a theorem,
then E[x ∶= R] is a theorem as well”

Example:

If a + 0 = a is a theorem, “Identity of +”

then 3 ⋅ q + 0 = 3 ⋅ q is also a theorem. “Identity of +” with ‘a ∶= 3 ⋅ q‘

a + 0 = a(a + 0 = a)[a ∶= 3 ⋅ q] a + 0 = a
3 ⋅ q + 0 = 3 ⋅ q

Inference Rule Scheme: Substitution

(1.1) Substitution:
E

E[x ∶= R] “If E is a theorem,
then E[x ∶= R] is a theorem as well”

Really an inference rule scheme:
works for every (well-typed) combination of

expression E,
variable x, and
expression R.

Example:
a + 0 = a

3 ⋅ q + 0 = 3 ⋅ qIf a + 0 = a is a theorem,
then 3 ⋅ q + 0 = 3 ⋅ q is also a theorem.

expression E is a + 0 = a
the variable x substituted into is a
the substituted expression R is 3 ⋅ q

Inference Rule Scheme: Substitution — Also for Simultaneous Substitution

(1.1) Substitution:
E

E[x ∶= R]
Really an inference rule scheme:
works for every (well-typed) combination of

expression E,
variable list x, and
corresponding expression list R.

Example:
a + b = b + a

2 ⋅ y + 3 = 3 + 2 ⋅ yIf a + b = b + a is a theorem,
then 2 ⋅ y + 3 = 3 + 2 ⋅ y is also a theorem.

expression E is a + b = b + a
variable list x is a, b
corresponding expression list R is 2 ⋅ y,3

Logical Definition of Equality

Two axioms (i.e., postulated as theorems):
(1.2) Reflexivity of =: x = x

(1.3) Symmetry of =: (x = y) = (y = x)
Two inference rule schemes:

(1.4) Transitivity of =: X = Y Y = Z
X = Z

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y]
— the rule of “replacing equals for equals”

Using Leibniz’ Rule in (15.21)

X = Y
E[z ∶= X] = E[z ∶= Y]Given: (15.20) − a = (− 1) ⋅ a

Proving (15.21) (− a) ⋅ b = a ⋅ (− b):
(− a) ⋅ b

= ⟨ (15.20) — via Leibniz (1.5) with E chosen as z ⋅ b ⟩
((− 1) ⋅ a) ⋅ b

= ⟨ Associativity (15.1) and Symmetry (15.2) of ⋅ ⟩
a ⋅ ((− 1) ⋅ b)

= ⟨ (15.20) ⟩
a ⋅ (− b)

Using Leibniz together with Substitution in (15.21)

X = Y
E[z ∶= X] = E[z ∶= Y]Given: (15.20) − a = (− 1) ⋅ a

Proving (15.21) (− a) ⋅ b = a ⋅ (− b):
(− a) ⋅ b

= ⟨ (15.20) — via Leibniz (1.5) with E chosen as z ⋅ b ⟩
((− 1) ⋅ a) ⋅ b

= ⟨ Associativity (15.1) and Symmetry (15.2) of ⋅ ⟩
a ⋅ ((− 1) ⋅ b)

= ⟨ (15.20) with a ∶= b — via Leibniz (1.5) with E chosen as a ⋅ z ⟩
a ⋅ (− b)

Using Leibniz together with Substitution in (15.21)

Theorem (15.21)∶ (− a) ⋅ b = a ⋅ (− b)
Proof:(− a) ⋅ b= ⟨ Substitution ⟩(z ⋅ b)[z ∶= − a]= ⟨ (15.20) — via “Leibniz” with z ⋅ b as E ⟩(z ⋅ b)[z ∶= (− 1) ⋅ a]= ⟨ Substitution ⟩(− 1) ⋅ a ⋅ b= ⟨ “Symmetry of ⋅ ” ⟩

a ⋅ (− 1) ⋅ b= ⟨ Substitution ⟩(a ⋅ z)[z ∶= (− 1) ⋅ b]= ⟨ (15.20)with `a ∶= b` — via “Leibniz” with a ⋅ z as E ⟩(a ⋅ z)[z ∶= − b]= ⟨ Substitution ⟩
a ⋅ (− b)

“Leibniz”:
X = Y

E[z ∶= X] = E[z ∶= Y]

(15.20) − a = (− 1) ⋅ a

Combining Leibniz’ Rule with Substitution

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y] (15.20) − a = (− 1) ⋅ a
(1.1) Substitution:

F
F[v ∶= R]

Using Leibniz:

E[z ∶= X]
= ⟨ X = Y ⟩

E[z ∶= Y]

Using them together:

E[z ∶= X[v ∶= R]]
= ⟨ X = Y ⟩

E[z ∶= Y[v ∶= R]]

Example:

a ⋅ ((− 1) ⋅ b)
= ⟨ (15.20) with a ∶= b — E is a ⋅ z ⟩

a ⋅ (− b)
Justification:

X = Y
X[v ∶= R] = Y[v ∶= R] Substitution (1.1)

E[z ∶= X[v ∶= R]] = E[z ∶= Y[v ∶= R]] Leibniz (1.5)

Automatic Application of Associativity and Symmetry Laws

Axiom (15.1) (15.1a) “Associativity of + ”∶ (a + b) + c = a + (b + c)
Axiom (15.1) (15.1b) “Associativity of ⋅ ”∶ (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
Axiom (15.2) (15.2a) “Symmetry of + ”∶ a + b = b + a
Axiom (15.2) (15.2b) “Symmetry of ⋅ ”∶ a ⋅ b = b ⋅ a

You have been trained to reason “up to symmetry and associativity”

Making symmetry and associativity steps explicit is
always allowed
sometimes very useful for readability

CALCCHECK allows selective activation of symmetry and associativity laws

Ô⇒ “Exercise . . . / Assignment . . . : [. . . ] without automatic associativity and
symmetry”

Ô⇒ Having to make symmetry and associativity steps explicit can be tedious. . .



(15.17) with Explicit Associativity and Symmetry Steps

(15.3) Identity of + 0 + a = a (15.13) Unary minus a + (− a) = 0

Proving (15.17) − (− a) = a:

− (− a)= ⟨ Identity of + (15.3) ⟩
0 + − (− a)= ⟨ Unary minus (15.13) ⟩(a + (− a)) + − (− a)= ⟨ Associativity of + (15.1) ⟩
a + ((− a) + − (− a))= ⟨ Unary minus (15.13) ⟩
a + 0= ⟨ Symmetry of + (15.2) ⟩
0 + a= ⟨ Identity of + (15.3) ⟩
a

Some Property Names

Let ⊙ and ⊕ be binary operators and ◻ be a constant.
(⊙ and ⊕ and ◻ are metavariables for operators respectively constants.)

“⊙ is symmetric”: x⊙ y = y⊙ x
“⊙ is associative”: (x⊙ y)⊙ z = x⊙ (y⊙ z)
“⊙ is mutually associative with ⊕ (from the left)”:(x⊙ y)⊕ z = x⊙ (y⊕ z)
For example:+ is mutually associative with −: (x + y) − z = x + (y − z)

− is not mutually associative with +: (5 − 2) + 3 ≠ 5 − (2 + 3)

Some Property Names (ctd.)
Let ⊙ and ⊕ be binary operators and ◻ be a constant.

(⊙ and ⊕ and ◻ are metavariables for operators respectively constants.)

“⊙ is idempotent”: x⊙ x = x
“◻ is a left-identity (or left-unit) of ⊙”: ◻⊙ x = x
“◻ is a right-identity (or right-unit) of ⊙”: x⊙◻ = x
“◻ is a identity (or unit) of ⊙”: ◻⊙ x = x = x⊙◻
“◻ is a left-zero of ⊙”: ◻⊙ x = ◻
“◻ is a right-zero of ⊙”: x⊙◻ = ◻
“◻ is a zero of ⊙”: ◻⊙ x = ◻ = x⊙◻
“⊙ distributes over ⊕ from the left”: x⊙ (y⊕ z) = (x⊙ y)⊕ (x⊙ z)
“⊙ distributes over ⊕ from the right”: (y⊕ z)⊙ x = (y⊙ x)⊕ (z⊙ x)
“⊙ distributes over ⊕”: ⊙ distributes over ⊕ from the left and⊙ distributes over ⊕ from the right
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Part 2: Boolean Expression

Truth Values

Boolean constants/values: false, true

The type of Boolean values: B

— This is the type of propositions, for example: (x = 1) ∶ B
— For any type t, equality = can be used on expressions of that type: = ∶ t→ t→ B

Boolean operators:¬ ∶ B→ B — negation, complement, “logical not”, /lnot∧ ∶ B→ B→ B — conjunction, “logical and”, /land∨ ∶ B→ B→ B — disjunction, “logical or”, “inclusive or”, /lor⇒ ∶ B→ B→ B — implication, “implies”, “if . . . then . . . ”, /=>, /implies≡ ∶ B→ B→ B — equivalence, “if and only if”, “iff”, /==, /equiv/≡ ∶ B→ B→ B — inequivalence, “exclusive or”, /nequiv

Table of Precedences[x ∶= e] (textual substitution) (highest precedence)
. (function application)
unary prefix operators +, −, ¬, #, ∼, P∗∗⋅ / ÷ mod gcd+ − ∪ ∩ × ○ ●↓ ↑
#◁ ▷ ˆ= ≠ < > ∈ ⊂ ⊆ ⊃ ⊇ ∣ (conjunctional)∨ ∧⇒ /⇒ ⇐ /⇐≡ /≡ (lowest precedence)

All non-associative binary infix operators associate to the left,
except ∗∗, ◁,⇒, →, which associate to the right.

Binary Boolean Operators: Conjunction

Args. ∧
F F F The moon is green, and 2 + 2 = 7.
F T F The moon is green, and 1 + 1 = 2.
T F F 1 + 1 = 2, and the moon is green.
T T T 1 + 1 = 2, and the sun is a star.

Binary Boolean Operators: Disjunction

Args. ∨
F F F The moon is green, or 2 + 2 = 7.
F T T The moon is green, or 1 + 1 = 2.
T F T 1 + 1 = 2, or the moon is green.
T T T 1 + 1 = 2, or the sun is a star.

This is known as “inclusive or” — see textbook p.34.

Binary Boolean Operators: Implication

Args. ⇒
F F T If the moon is green, then 2 + 2 = 7.
F T T If the moon is green, then 1 + 1 = 2.
T F F If 1 + 1 = 2, then the moon is green.
T T T If 1 + 1 = 2, then the sun is a star.

p⇒ q ≡ ¬p∨ q¬p⇒ q ≡ ¬¬p∨ q¬p⇒ q ≡ p∨ q

If you don’t eat your spinach,
I’ll spank you. ≡ You eat your spinach,

or I’ll spank you.

Binary Boolean Operators: Consequence

Args. ⇐
F F T The moon is green if 2 + 2 = 7.
F T F The moon is green if 1 + 1 = 2.
T F T 1 + 1 = 2 if the moon is green.
T T T 1 + 1 = 2 if the sun is a star.

p⇐ q ≡ p∨¬q



Binary Boolean Operators: Equivalence

Equality of Boolean values is also called equivalence and written ≡
(In some other places: ⇔)

p ≡ q can be read as: p is equivalent to q
or: p exactly when q
or: p if-and-only-if q
or: p iff q

p q p ≡ q
false false true The moon is green iff 2 + 2 = 7.
false true false The moon is green iff 1 + 1 = 2.
true false false 1 + 1 = 2 iff the moon is green.
true true true 1 + 1 = 2 iff the sun is a star.

Binary Boolean Operators: Inequivalence (“exclusive or”)

Args. /≡
F F F Either the moon is green, or 2 + 2 = 7.
F T T Either the moon is green, or 1 + 1 = 2.
T F T Either 1 + 1 = 2, or the moon is green.
T T F Either 1 + 1 = 2, or the sun is a star.

Table of Precedences[x ∶= e] (textual substitution) (highest precedence)
. (function application)
unary prefix operators +, −, ¬, #, ∼, P∗∗⋅ / ÷ mod gcd+ − ∪ ∩ × ○ ●↓ ↑
#◁ ▷ ˆ= ≠ < > ∈ ⊂ ⊆ ⊃ ⊇ ∣ (conjunctional)∨ ∧⇒ /⇒ ⇐ /⇐≡ /≡ (lowest precedence)

All non-associative binary infix operators associate to the left,
except ∗∗, ◁,⇒, →, which associate to the right.

Expression Evaluation (LADM 1.1 end)
2 ⋅ 3 + 4

2 ⋅ (3 + 4)
2 ⋅ y + 4

A state is a “list of variables with associated values”. E.g.:

s1 = [ (x,5), (y,6) ] — (using Haskell notation for informal lists)

Evaluating an expression in a state:
“Replace variables with their values; then evaluate”:

x − y + 2 in state s1Ð→ 5 − 6 + 2 Ð→ (5 − 6) + 2 Ð→ (−1) + 2 Ð→ 1

x ⋅ 2 + y

x ⋅ (2 + y)
x ⋅ (z + y)

Evaluation of Boolean Expressions

Example: Using the state ⟨(p, false), (q, true), (r, false)⟩:
p∨(q∧¬r)

= ⟨ replace variables with state values ⟩
false∨(true∧¬false)

= ⟨ ¬false = true ⟩
false∨(true∧ true)

= ⟨ true∧ true = true ⟩
false∨ true

= ⟨ false∨ true = true ⟩
true

∧ ≠ ∨ no
r = ⇐ ⇒ na
nd

F F F F F F F F F F T T T T T T T T
F T F F F F T T T T F F F F T T T T
T F F F T T F F T T F F T T F F T T
T T F T F T F T F T F T F T F T F T

Evaluation of Boolean Expressions Using Truth Tables

p q ¬p q∧¬p p∨(q∧¬p)
F F T F F

F T T T T

T F F F T

T T F F T

Identify variables
Identify subexpressions
Enumerate possible states (of the variables)
Evaluate (sub-)expressions in all states

Validity and Satisfiability
p q ¬p q∧¬p p∨(q∧¬p)
F F T F F
F T T T T
T F F F T
T T F F T

A boolean expression is satisfied in state s
iff it evaluates to true in state s.

A boolean expression is satisfiable
iff there is a state in which it is satisfied.

A boolean expression is valid
iff it is satisfied in every state.

A valid boolean expression is called a tautology.

A boolean expression is called a contradiction
iff it evaluates to false in every state.

Two boolean expressions are called logically equivalent
iff they evaluate to the same truth value in every state.

These definitions rely on states / truth tables: Semantic concepts

Modeling English Propositions 1

Henry VIII had one son and Cleopatra had two.

Henry VIII had one son and Cleopatra had two sons.

Declarations:

h ∶≡ Henry VIII had one son

c ∶≡ Cleopatra had two sons

Formalisation:

h∧ c

Modeling English Propositions — Recipe

Transform into shape with clear subpropositions

Introduce Boolean variables to denote subpropositions

Replace these subpropositions by their corresponding Boolean variables

Translate the result into a Boolean expression, using (no perfect translation rules are
possible!) for example:

and, but becomes ∧
or becomes ∨
not becomes ¬
it is not the case that becomes ¬
if p then q becomes p⇒ q

Ladies or Tigers
Raymond Smullyan provides, in The Lady or the Tiger?, the following context for a
number of puzzles to follow:

[...] the king explained to the prisoner that each of the two rooms contained
either a lady or a tiger, but it could be that there were tigers in both rooms, or
ladies in both rooms, or then again, maybe one room contained a lady and the
other room a tiger.

In the first case, the following signs are on the doors of the rooms:

1
In this room there is a lady,
and in the other room there is
a tiger.

2
In one of these rooms there is a
lady, and in one of these rooms
there is a tiger.

We are told that one of the signs is true, and the other one is false.

“Which door would you open (assuming, of course,
that you preferred the lady to the tiger)?”



Ladies or Tigers — The First Case — Starting Formalisation
Raymond Smullyan provides, in The Lady or the Tiger?, the following context for a
number of puzzles to follow:

[...] the king explained to the prisoner that each of the two rooms contained either a lady
or a tiger, but it could be that there were tigers in both rooms, or ladies in both rooms, or
then again, maybe one room contained a lady and the other room a tiger.

R1L ∶= There is a lady in room 1

R1T ∶= There is a tiger in room 1

R2L ∶= There is a lady in room 2

R2T ∶= There is a tiger in room 2

[...] We are told that one of the signs is true, and the other one is false.

S1 ∶= Sign 1 is true

S2 ∶= Sign 2 is true

Equality “=” versus Equivalence “≡”
The operators = (as Boolean operator) and ≡

have the same meaning (represent the same function),

but are used with different notational conventions:

different precedences (≡ has lowest)

different chaining behaviour:

≡ is associative:

(p ≡ q ≡ r) = ((p ≡ q) ≡ r) = (p ≡ (q ≡ r))
= is conjunctional:

(x = y = z) = ((x = y) ∧ (y = z))
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Command Correctness, Propositional Calculus

Plan for Today

Reasoning about Assignment Commands in Imperative Programs (≈ LADM 1.6):
Correctness of programs with respect to pre-/post-condition specifications
Reasoning using “Hoare logic”

Ô⇒ Homework 3 – due Friday, 8:30

Propositional Calculus (LADM Chapter 3)
Equivalence
Negation, Inequivalence
Disjunction
Conjunction

Ô⇒ Exercises 2.4–2.7

Ô⇒Work through at least Exercise 2.4 before your tutorial!
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Part 1: Correctness of Assignment Commands

States as Program States

LADM 1.1: A state is a “list of variables with associated values”. E.g.:

s1 = [ (x,5), (y,6) ] — (using Haskell notation for informal lists)

Evaluating an expression in a state:
“Replace variables with their values; then evaluate”

In logic, “states” are usually called “variable assignments”
States can serve as a mathematical model of program states
Execution of imperative programs induces state transformation:

[ (x,5), (y,6) ]
↝ ⟨ x : = x + y ⟩
[ (x,11), (y,6) ]

↝ ⟨ y : = x − y ⟩
[ (x,11), (y,5) ]

State Predicates

Execution of imperative programs induces state transformation:

[ (x,5), (y,6) ] `x < y` holds

↝ ⟨ x : = x + y ⟩
[ (x,11), (y,6) ] `x < y` does not hold

↝ ⟨ y : = x − y ⟩
[ (x,11), (y,5) ] `x < y` does not hold

Boolean expressions containing variables can be used as state predicates:

P “holds in state s” iff P evaluates to true in state s

Precondition-Postcondition Specifications
Program correctness statement in LADM (and much current use):

{ P } C { Q }
This is called a “Hoare triple”.

Meaning: If command C is started in a state in which the precondition P holds,
then it will terminate only in a state in which the postcondition Q holds.

Hoare’s original notation:

P { C } Q

Dynamic logic notation (will be used in CALCCHECK):

P ⇒[ C ] Q

Correctness of Assignment Commands
Recall: Hoare triple: { P } C { Q }
Dynamic logic notation (will be used in CALCCHECK): P ⇒[ C ] Q
Meaning: If command C is started in a state in which the precondition P holds, then
it will terminate only in a state in which the postcondition Q holds.

Assignment Axiom: { Q[x ∶= E] } x : = E { Q } Q[x ∶= E] ⇒[ x : = E ] Q
Example:(x = 5)[x ∶= x + 1] ⇒[ x : = x + 1 ] x = 5(x + 1 = 5) ⇒[ x : = x + 1 ] x = 5

x + 1 = 5≡ ⟨ Substitution ⟩(x = 5)[x ∶= x + 1]⇒[ x : = x + 1 ] ⟨ Assignment ⟩
x = 5

Substitution “∶=”:
One Unicode character;
type “/:=”

Assignment “ : = ”:
Two characters;
type “:=”

Correctness of Assignment Commands — Longer Example
Recall: Hoare triple: { P } C { Q }
Dynamic logic notation (will be used in CALCCHECK):

P ⇒[ C ] Q
Meaning: If command C is started in a state in which the precondition P holds, then
it will terminate only in a state in which the postcondition Q holds.

Assignment Axiom: { Q[x ∶= E] } x : = E { Q } Q[x ∶= E] ⇒[ x : = E ] Q
Longer example (these proofs are developed from the bottom to the top!):

true≡ ⟨ Zero of ∨ ⟩
1 = 0∨ true≡ ⟨ Reflexivity of = ⟩
1 = 0∨1 = 1≡ ⟨ Substitution ⟩(x = 0∨x = 1)[x ∶= 1]⇒[ x : = 1 ] ⟨ Assignment ⟩
x = 0∨x = 1



Example Proof for a
Sequence of Assignments

Lemma (4)∶ x = 5⇒ y ∶ = x + 1 ;
x ∶ = y + y

x = 12

Read and write
such “ ⇒ ” proofs
from the bottom to the top!

Proof:
x = 5≡ ⟨ “Cancellation of + ” ⟩
x + 1 = 5 + 1≡ ⟨ Fact `5 + 1 = 6` ⟩
x + 1 = 6≡ ⟨ Substitution ⟩(y = 6)[y ∶= x + 1]⇒ y ∶ = x + 1 ⟨ “Assignment ” ⟩
y = 6≡ ⟨ “Cancellation of ⋅ ” with Fact `2 ≠ 0` ⟩
2 ⋅ y = 2 ⋅ 6≡ ⟨ Evaluation ⟩(1 + 1) ⋅ y = 12≡ ⟨ “Distributivity of ⋅ over + ” ⟩
1 ⋅ y + 1 ⋅ y = 12≡ ⟨ “Identity of ⋅ ” ⟩
y + y = 12≡ ⟨ Substitution ⟩(x = 12)[x ∶= y + y]⇒ x ∶ = y + y ⟨ “Assignment ” ⟩
x = 12

Sequential Composition of Commands

Primitive inference rule “SEQ ”∶
`{ P } C1 { Q }` , `{ Q } C2 { R }`⊢¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

`{ P } C1 ; C2 { R }`

Primitive inference rule “Sequence ”∶
`P ⇒ C1 Q` , `Q ⇒ C2 R`⊢¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

`P ⇒ C1 ; C2 R`

Activated as transitivity rule
Therefore used implicitly in calculations, e.g., proving P ⇒[ C1 ; C2 ] R by:

P

⇒[ C1 ] ⟨ . . . ⟩
Q

⇒[ C2 ] ⟨ . . . ⟩
R

No need to refer to this rule explicitly.

Specification Pattern: “Auxiliary Variables”

Lemma: x = x0 ⇒[ x : = x + 1 ] x = x0 + 1

Proof: x = x0≡ ⟨ Cancellation of + ⟩
x + 1 = x0 + 1

≡ ⟨ Substitution ⟩(x = x0 + 1)[x ∶= x + 1]
⇒[ x : = x + 1 ] ⟨ Assignment ⟩

x = x0 + 1

Variable x0

is not assigned in the program
“remembers” the value of x in the start state for referencing it in the postcondition

Such variables are called “auxiliary variables” in the context of pre-/post-condition
specification.

What Does this C Program Fragment Do?

Let x and y be variables of type int.

x = x + y;

y = x − y;

x = x − y;

(There is a similar-looking program in H3. . . )
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Part 2: LADM Propositional Calculus: ≡, ¬, /≡, ∨, ∧

Propositional Calculus
Calculus: method of reasoning by calculation with symbols
Propositional Calculus: calculating

with Boolean expressions
containing propositional variables

The Textbook’s Propositional Calculus: Equational Logic E:
a set of axioms defining operator properties
four inference rules:

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y] We can apply equalities
inside expressions.

(1.4) Transitivity:
X = Y Y = Z

X = Z
We can chain equalities.

(1.1) Substitution:
E

E[x ∶= R] We can can use substitution
instances of theorems.

Equanimity:
X = Y X

Y — This is . . .

Theorems — Remember!
A theorem is

either an axiom
or the conclusion of an inference rule where the premises are theorems
or a Boolean expression proved (using the inference rules) equal to an axiom or a
previously proved theorem. (“— This is . . . ”)

Such proofs will be presented in the calculational style.

Note:
The theorem definition does not use evaluation/validity

But: All theorems in E are valid

All valid Boolean expressions are theorems in E
Important:

We will prove theorems without using validity!
This trains an essential mathematical skill!

Equivalence Axioms

(3.1) Axiom, Associativity of ≡ : ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡ : p ≡ q ≡ q ≡ p
Can be used as:(p ≡ q) = (q ≡ p)

p = (q ≡ q ≡ p)(p ≡ q ≡ q) = p
Example theorem — shown differently in the textbook:

Proving p ≡ p ≡ q ≡ q:

p ≡ p ≡ q ≡ q

= ⟨ (3.2) Symmetry of ≡, with p, q ∶= p, q ≡ q ⟩
p ≡ q ≡ q ≡ p — This is (3.2) Symmetry of ≡

Equivalence Axioms — Example Proof with Parentheses

(3.1) Axiom, Associativity of ≡ : ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡ : p ≡ q ≡ q ≡ p
Can be used as:(p ≡ q) = (q ≡ p)

p = (q ≡ q ≡ p)(p ≡ q ≡ q) = p
Example theorem — shown differently in the textbook:

Proving p ≡ p ≡ q ≡ q:

p ≡ (p ≡ (q ≡ q))
≡ ⟨ (3.2) Symmetry of ≡, with p, q ∶= p, (q ≡ q) — via Leibniz with p ≡ z as E ⟩

p ≡ ((q ≡ q) ≡ p) — This is (3.2) Symmetry of ≡

Equivalence Axioms — Introducing true

(3.1) Axiom, Associativity of ≡ : ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡ : p ≡ q ≡ q ≡ p
Can be used as:(p ≡ q) = (q ≡ p)

p = (q ≡ q ≡ p)(p ≡ q ≡ q) = p

(3.3) Axiom, Identity of ≡ : true ≡ q ≡ q
Can be used as:(true ≡ q) = q

true = (q ≡ q)



Equivalence Axioms, and Theorem (3.4)

(3.1) Axiom, Associativity of ≡ : ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡ : p ≡ q ≡ q ≡ p

(3.3) Axiom, Identity of ≡ : true ≡ q ≡ q
Can be used as: true = (q ≡ q)
The least interesting theorem:

Proving (3.4) true:

true

= ⟨ Identity of ≡ (3.3), with q ∶= true ⟩
true ≡ true

= ⟨ Identity of ≡ (3.3), with q ∶= q — via Leibniz with true ≡ z as E ⟩
true ≡ q ≡ q — This is Identity of ≡ (3.3)

Equivalence Axioms and Theorems

(3.1) Axiom, Associativity of ≡: ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡: p ≡ q ≡ q ≡ p — Can be used as:(p ≡ q) = (q ≡ p)

p = (q ≡ q ≡ p)(p ≡ q ≡ q) = p

(3.3) Axiom, Identity of ≡: true ≡ q ≡ q

Theorems and Metatheorems:

(3.4) true

(3.5) Reflexivity of ≡: p ≡ p

(3.6) Proof Method: To prove that P ≡ Q is a theorem,
transform P to Q or Q to P using Leibniz.

(3.7) Metatheorem: Any two theorems are equivalent.

Proof Method Equanimity: To prove P, prove P ≡ Q
where Q is a theorem. (Document via “– This is . . . ”.)

Special case: To prove P, prove P ≡ true.

Negation Axioms

(3.8) Axiom, Definition of false: false ≡ ¬true

(3.9) Axiom, Commutativity of ¬ with ≡: ¬(p ≡ q) ≡ ¬p ≡ q

(LADM: “Distributivity of ¬ over ≡”)

Can be used as:¬(p ≡ q) = (¬p ≡ q)
(¬(p ≡ q) ≡ ¬p) = q

(¬(p ≡ q) ≡ q) = ¬p

(3.10) Axiom, Definition of /≡: (p /≡ q) ≡ ¬(p ≡ q)

Negation Axioms and Theorems
(3.8) Axiom, Definition of false: false ≡ ¬true

(3.9) Axiom, Commutativity of ¬ with ≡: ¬(p ≡ q) ≡ ¬p ≡ q

(3.10) Axiom, Definition of /≡: (p /≡ q) ≡ ¬(p ≡ q)
Theorems:

(3.11) ¬p ≡ q ≡ p ≡ ¬q

— can be used as “¬ connection”: (¬p ≡ q) ≡ (p ≡ ¬q)
— can be used as “Cancellation of ¬”: (¬p ≡ ¬q) ≡ (p ≡ q)

(3.12) Double negation: ¬¬p ≡ p

(3.13) Negation of false: ¬false ≡ true

(3.14) (p /≡ q) ≡ ¬p ≡ q

(3.15) Definition of ¬ via ≡: ¬p ≡ p ≡ false

Inequivalence Theorems

(3.16) Symmetry of /≡: (p /≡ q) ≡ (q /≡ p)
(3.17) Associativity of /≡: ((p /≡ q) /≡ r) ≡ (p /≡ (q /≡ r))
(3.18) Mutual associativity: ((p /≡ q) ≡ r) ≡ (p /≡ (q ≡ r))
(3.19) Mutual interchangeability: p /≡ q ≡ r ≡ p ≡ q /≡ r

Note: Mutual associativity is not (yet. . . ) automated!

(But omission of parentheses is implemented, similar to
k −m + n
k +m − n
k −m − n

— None of these has m − n as subexpression!
— But the second one is equal to k + (m − n) . . . )

(3.23) Heuristic of Definition Elimination

To prove a theorem concerning an operator ○ that is defined in terms of another,
say ●, expand the definition of ○ to arrive at a formula that contains ●; exploit
properties of ● to manipulate the formula, and then (possibly) reintroduce ○ us-
ing its definition.

Textbook, p. 48

“Unfold-Fold strategy”

Inequivalence Theorems: Symmetry

(3.16) Symmetry of /≡: (p /≡ q) ≡ (q /≡ p)
Proving (3.16) Symmetry of /≡:

p /≡ q

= ⟨ (3.10) Definition of /≡ Unfold⟩
¬(p ≡ q)

= ⟨ (3.2) Symmetry of ≡ ⟩
¬(q ≡ p)

= ⟨ (3.10) Definition of /≡ Fold⟩
q /≡ p
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Propositional Calculus: ¬, /≡, ∨, ∧
Equivalence Axioms

LADM p. 42 Footnote 2: “Remember that = and ≡ are interchangeable in formulas,
without special mention (subject to the caveats mentioned in Sec. 2.2).”
Note: In CALCCHECK, “without special mention” is replaced with:
“Definition of ≡”: (p ≡ q) = (p = q) (only for Boolean p and q)

(3.1) Axiom, Associativity of ≡ : ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡ : p ≡ q ≡ q ≡ p

By associativity, can be read as:(p ≡ q) ≡ (q ≡ p)
p ≡ (q ≡ q ≡ p)(p ≡ q ≡ q) ≡ p

Therefore can be used for Leibniz as:(p ≡ q) = (q ≡ p)
p = (q ≡ q ≡ p)(p ≡ q ≡ q) = p

(3.3) Axiom, Identity of ≡ : true ≡ q ≡ q Can be used as:(true ≡ q) = q
true = (q ≡ q)

Equivalence Axioms, and Theorem (3.4)

(3.1) Axiom, Associativity of ≡ : ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡ : p ≡ q ≡ q ≡ p

(3.3) Axiom, Identity of ≡ : true ≡ q ≡ q
Can be used as: true = (q ≡ q)
The least interesting theorem:

Proving (3.4) true:

true

= ⟨ Identity of ≡ (3.3), with q ∶= true ⟩
true ≡ true

= ⟨ Identity of ≡ (3.3), with q ∶= q — via Leibniz with true ≡ z as E ⟩
true ≡ q ≡ q — This is Identity of ≡ (3.3)



Equivalence Axioms and Theorems

(3.1) Axiom, Associativity of ≡: ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡: p ≡ q ≡ q ≡ p — Can be used as:(p ≡ q) = (q ≡ p)

p = (q ≡ q ≡ p)(p ≡ q ≡ q) = p

(3.3) Axiom, Identity of ≡: true ≡ q ≡ q

Theorems and Metatheorems:

(3.4) true

(3.5) Reflexivity of ≡: p ≡ p

(3.6) Proof Method: To prove that P ≡ Q is a theorem,
transform P to Q or Q to P using Leibniz.

(3.7) Metatheorem: Any two theorems are equivalent.

Proof Method Equanimity: To prove P, prove P ≡ Q
where Q is a theorem. (Document via “– This is . . . ”.)

Special case: To prove P, prove P ≡ true.

Negation Axioms

(3.8) Axiom, Definition of false: false ≡ ¬true

(3.9) Axiom, Commutativity of ¬ with ≡: ¬(p ≡ q) ≡ ¬p ≡ q

(LADM: “Distributivity of ¬ over ≡”)

Can be used as:¬(p ≡ q) = (¬p ≡ q)
(¬(p ≡ q) ≡ ¬p) = q

(¬(p ≡ q) ≡ q) = ¬p

(3.10) Axiom, Definition of /≡: (p /≡ q) ≡ ¬(p ≡ q)

Negation Axioms and Theorems
(3.8) Axiom, Definition of false: false ≡ ¬true

(3.9) Axiom, Commutativity of ¬ with ≡: ¬(p ≡ q) ≡ ¬p ≡ q

(3.10) Axiom, Definition of /≡: (p /≡ q) ≡ ¬(p ≡ q)
Theorems:

(3.11) ¬p ≡ q ≡ p ≡ ¬q

— can be used as “¬ connection”: (¬p ≡ q) ≡ (p ≡ ¬q)
— can be used as “Cancellation of ¬”: (¬p ≡ ¬q) ≡ (p ≡ q)

(3.12) Double negation: ¬¬p ≡ p

(3.13) Negation of false: ¬false ≡ true

(3.14) (p /≡ q) ≡ ¬p ≡ q

(3.15) Definition of ¬ via ≡: ¬p ≡ p ≡ false

Inequivalence Theorems

(3.16) Symmetry of /≡: (p /≡ q) ≡ (q /≡ p)
(3.17) Associativity of /≡: ((p /≡ q) /≡ r) ≡ (p /≡ (q /≡ r))
(3.18) Mutual associativity: ((p /≡ q) ≡ r) ≡ (p /≡ (q ≡ r))
(3.19) Mutual interchangeability: p /≡ q ≡ r ≡ p ≡ q /≡ r

Note: Mutual associativity is not (yet. . . ) automated!

(But omission of parentheses is implemented, similar to
k −m + n
k +m − n
k −m − n

— None of these has m − n as subexpression!
— But the second one is equal to k + (m − n) . . . )

(3.23) Heuristic of Definition Elimination

To prove a theorem concerning an operator ○ that is defined in terms of another,
say ●, expand the definition of ○ to arrive at a formula that contains ●; exploit
properties of ● to manipulate the formula, and then (possibly) reintroduce ○ us-
ing its definition.

Textbook, p. 48

“Unfold-Fold strategy”

Inequivalence Theorems: Symmetry

(3.16) Symmetry of /≡: (p /≡ q) ≡ (q /≡ p)
Proving (3.16) Symmetry of /≡:

p /≡ q

= ⟨ (3.10) Definition of /≡ Unfold⟩
¬(p ≡ q)

= ⟨ (3.2) Symmetry of ≡ ⟩
¬(q ≡ p)

= ⟨ (3.10) Definition of /≡ Fold⟩
q /≡ p

Disjunction Axioms

(3.24) Axiom, Symmetry of ∨: p∨ q ≡ q∨p

(3.25) Axiom, Associativity of ∨: (p∨ q)∨ r ≡ p∨(q∨ r)
(3.26) Axiom, Idempotency of ∨: p∨p ≡ p

(3.27) Axiom, Distributivity of ∨ over ≡:
p∨(q ≡ r) ≡ p∨ q ≡ p∨ r

(3.28) Axiom, Excluded middle: p∨¬p

The Law of the Excluded Middle (LEM)
Aristotle:

. . . there cannot be an intermediate between contradictories, but of one subject we
must either affirm or deny any one predicate. . .

Bertrand Russell in “The Problems of Philosophy”:

Three “Laws of Thought”:
1. Law of identity: “Whatever is, is.”
2. Law of noncontradiction: “Nothing can both be and not be.”
3. Law of excluded middle: “Everything must either be or not be.”

These three laws are samples of self-evident logical principles. . .

(3.28) Axiom, Excluded Middle: p∨¬p

— this will often be used as: p∨¬p ≡ true

Disjunction Axioms and Theorems

(3.24) Axiom, Symmetry of ∨: p∨ q ≡ q∨p

(3.25) Axiom, Associativity of ∨: (p∨ q)∨ r ≡ p∨(q∨ r)
(3.26) Axiom, Idempotency of ∨: p∨p ≡ p

(3.27) Axiom, Distr. of ∨ over ≡: p∨(q ≡ r) ≡ p∨ q ≡ p∨ r

(3.28) Axiom, Excluded Middle: p∨¬p

Theorems:
(3.29) Zero of ∨: p∨ true ≡ true

(3.30) Identity of ∨: p∨ false ≡ p

(3.31) Distrib. of ∨ over ∨: p∨(q∨ r) ≡ (p∨ q)∨(p∨ r)
(3.32) (3.32) p∨ q ≡ p∨¬q ≡ p

Heuristics of Directing Calculations

(3.33) Heuristic: To prove P ≡ Q, transform the expression with the most structure
(either P or Q) into the other.

Proving (3.29) p∨ true ≡ true:
p∨ true

≡ ⟨ Identity of ≡ (3.3) ⟩
p∨(q ≡ q)

≡ ⟨ Distr. of ∨ over ≡ (3.27) ⟩
p∨ q ≡ p∨ q

≡ ⟨ Identity of ≡ (3.3) ⟩
true

Proving (3.29) p∨ true ≡ true:
true

≡ ⟨ Identity of ≡ (3.3) ⟩
p∨p ≡ p∨p

≡ ⟨ Distr. of ∨ over ≡ (3.27) ⟩
p∨(p ≡ p)

≡ ⟨ Identity of ≡ (3.3) ⟩
p∨ true

?

(3.34) Principle: Structure proofs to minimize the number of rabbits pulled out of a hat
— make each step seem obvious, based on the structure of the expression and
the goal of the manipulation.



The Conjunction Axiom: The “Golden Rule”

(3.35) Axiom, Golden rule: p∧ q ≡ p ≡ q ≡ p∨ q

Can be used as:
p∧ q = (p ≡ q ≡ p∨ q) — Definition of ∧(p ≡ q) = (p∧ q ≡ p∨ q)
. . .

Theorems:

(3.36) Symmetry of ∧: p∧ q ≡ q∧p

(3.37) Associativity of ∧: (p∧ q)∧ r ≡ p∧(q∧ r)
(3.38) Idempotency of ∧: p∧p ≡ p

(3.39) Identity of ∧: p∧ true ≡ p

(3.40) Zero of ∧: p∧ false ≡ false

(3.41) Distributivity of ∧ over ∧: p∧(q∧ r) ≡ (p∧ q)∧(p∧ r)
(3.42) Contradiction: p∧¬p ≡ false

Conjunction Theorems: Symmetry

(3.36) Symmetry of ∧: (p∧ q) ≡ (q∧p)
Proving (3.36) Symmetry of ∧:

p∧ q

≡ ⟨ (3.35) Definition of ∧ (Golden rule) — Unfold⟩
p ≡ q ≡ p∨ q

≡ ⟨ (3.2) Symmetry of ≡, (3.24) Symmetry of ∨ ⟩
q ≡ p ≡ q∨p

≡ ⟨ (3.35) Definition of ∧ (Golden rule) — Fold⟩
q∧p

Theorems Relating ∧ and ∨
(3.43) Absorption: p∧(p∨ q) ≡ p

p∨(p∧ q) ≡ p

(3.44) Absorption: p∧(¬p∨ q) ≡ p∧ q
p∨(¬p∧ q) ≡ p∨ q

(3.45) Distributivity of ∨ over ∧: p∨(q∧ r) ≡ (p∨ q)∧(p∨ r)
(3.46) Distributivity of ∧ over ∨: p∧(q∨ r) ≡ (p∧ q)∨(p∧ r)
(3.47) De Morgan: ¬(p∧ q) ≡ ¬p∨¬q¬(p∨ q) ≡ ¬p∧¬q

Boolean Lattice Duality
A Boolean-lattice expression is

either a variable,
or true or false
or an application of ¬ to a Boolean-lattice expression
or an application of ∧ or ∨ to two Boolean-lattice expressions.

The dual of a Boolean-lattice expressions is obtained by
replacing true with false and vice versa,
replacing ∧ with ∨ and vice versa.

The dual of a Boolean-lattice equation (equivalence) is the equation
between the duals of the LHS and the RHS.

Metatheorem “Boolean lattice duality”:
Every Boolean-lattice equation is valid iff its dual is valid.

Metatheorem “Boolean lattice duality”:
Every Boolean-lattice equation is a theorem iff its dual is a theorem.

Theorems Relating ∧ and ≡
(3.48) (3.48) p∧ q ≡ p∧¬q ≡ ¬p

(3.49) Semi-distributivity of ∧ over ≡ p∧(q ≡ r) ≡ p∧ q ≡ p∧ r ≡ p

(3.50) Strong modus ponens for ≡ p∧(q ≡ p) ≡ p∧ q

(3.51) Replacement: (p ≡ q)∧(r ≡ p) ≡ (p ≡ q)∧(r ≡ q)

Alternative Definitions of ≡ and /≡
(3.52) Alternative definition of ≡: p ≡ q ≡ (p∧ q)∨(¬p∧¬q)
(3.53) Alternative definition of /≡: p /≡ q ≡ (¬p∧ q)∨(p∧¬q)

(3.21) Heuristic

Identify applicable theorems by matching the structure of expressions or subex-
pressions. The operators that appear in a boolean expression and the shape of its
subexpressions can focus the choice of theorems to be used in manipulating it.

Obviously, the more theorems you know by heart and the more practice you have in
pattern matching, the easier it will be to develop proofs.

Textbook, p. 47

What is a natural number?

How is the set N of all natural numbers defined?

(Without referring to the integers)

(From first principles. . . )
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● Natural Numbers, Natural Induction

● Propositional Calculus: Implication⇒

Natural Numbers — N

The set of all natural numbers is written N.

In Computing, zero “0” is a natural number.

If n is a natural number, then its successor “suc n” is a natural number, too.

We write
“1” for “suc 0”
“2” for “suc 1”
“3” for “suc 2”
“4” for “suc 3”
. . .

In Haskell (data constructors start with upper-case letters):

data Nat = Zero | Suc Nat



Natural Numbers — Rigorous Definition

The set of all natural numbers is written N.

Zero “0” is a natural number.

If n is a natural number, then its successor “suc n” is a natural number, too.

Nothing else is a natural number.

Two natural numbers are equal if and only if they are constructed in the same way.
Example: suc suc suc 0 ≠ suc suc suc suc 0

This is an inductive definition.
(Like the definition of expressions. . . )

Every inductive definition gives rise to an induction principle
— a way to prove statements about the inductively defined elements

Factorial — Inductive Definition
The set of all natural numbers is written N.
zero “0” is a natural number.
If n is a natural number, then its successor “suc n” is a natural number, too.
Nothing else is a natural number.
Two natural numbers are only equal if constructed in the same way.

N is an inductively-defined set.

The factorial operator “ !” on N can be defined as follows:
The factorial of a natural number is a natural number again:
! ∶ N→ N

0 ! = 1
For every n ∶ N, we have: (suc n) ! = (suc n) ⋅ (n !)

! is an inductively-defined function.

Natural Number Addition — Inductive Definition

The set of all natural numbers is written N.
zero “0” is a natural number.
If n is a natural number, then its successor “suc n” is a natural number, too.
Nothing else is a natural number.
Two natural numbers are only equal if constructed in the same way.

N is an inductively-defined set.

Addition on N can be defined as follows:
The (infix) addition operator “+”, when applied to two natural numbers, produces
again a natural number+ ∶ N→ N→ N
For every q ∶ N, we have:

0 + q = q
For every n ∶ N we have: (suc n) + q = suc (n + q)

+ is an inductively-defined function.

Natural Numbers — Induction Principle

The set of all natural numbers is written N.
Zero “0” is a natural number.
If n is a natural number, then its successor “suc n” is a natural number, too.

Proving properties of inductively-defined functions on N
frequently requires use of the induction principle for N.

Induction principle for the natural numbers:

if P(0) If P holds for 0

and if P(m) implies P(suc m),
and whenever P holds for m, it also holds for suc m ,

then for all m ∶ N we have P(m).
then P holds for all natural numbers.

Natural Numbers — Induction Proofs
Induction principle for the natural numbers:

if P[m ∶= 0] If P holds for 0

and if we can obtain P[m ∶= suc m] from P,
and whenever P holds for m, it also holds for suc m ,

then P holds. then P holds for all natural numbers.

An induction proof using this looks as follows:

Theorem: P
Proof:

By induction on m ∶ N:
Base case:

Proof for P[m ∶= 0]
Induction step:

Proof for P[m ∶= suc m]
using Induction hypothesis P

P[m ∶= 0]
⌜P⌝....

P[m ∶= suc m]
P

Proving “Right-Identity of +”
Theorem “Right-identity of + ”∶ m + 0 = m
Proof:

By induction on `m ∶ N`∶
Base case∶

0 + 0= ⟨ “Definition of + for 0 ” ⟩
0

Induction step∶
suc m + 0= ⟨ “Definition of + for `suc` ” ⟩
suc (m + 0)= ⟨ Induction hypothesis ⟩
suc m

An induction proof looks as follows:

Theorem: P

Proof:

By induction on m ∶ N:

Base case:

Proof for P[m ∶= 0]
Induction step:

Proof for P[m ∶= suc m]
using Induction hypothesis P

Proving “Right-Identity of +” — With Details

Theorem “Right-identity of + ”∶ m + 0 = m
Proof:

By induction on `m ∶ N`∶
Base case `0 + 0 = 0`∶

0 + 0= ⟨ “Definition of + for 0 ” ⟩
0

Induction step `suc m + 0 = suc m`∶
suc m + 0= ⟨ “Definition of + for `suc` ” ⟩
suc (m + 0)= ⟨ Induction hypothesis `m + 0 = m` ⟩
suc m

An induction proof looks as follows:

Theorem: P

Proof:

By induction on m ∶ N:

Base case:

Proof for P[m ∶= 0]
Induction step:

Proof for P[m ∶= suc m]
using Induction hypothesis P

Proving “Right-Identity of +” — Indentation!

7KHRUHP�'5LJKW�LGHQWLW\�RI��(��P����� �P�
3URRI��
VV%\�LQGXFWLRQ�RQ�CP����C��
VVVV%DVH�FDVH��
VVVVVVVV������
VVVVVV ��''HILQLWLRQ�RI���IRU��(���
VVVVVVVV��
VVVV,QGXFWLRQ�VWHS��
VVVVVVVVVXF�P�����
VVVVVV ��''HILQLWLRQ�RI���IRU�CVXFC(���
VVVVVVVVVXF��P������
VVVVVV ��,QGXFWLRQ�K\SRWKHVLV���
VVVVVVVVVXF�P

Press “Ctrl-Shift-v” to toggle “visible spaces”.

Read Parse Error Messages!

�������m��6XEVWLWXWLRQ���
����������\� ����>\� �]���\@�
�������î?�\�� �]���\�@�����'$VVLJQPHQW(��

Ô⇒

Submitting parse errors is unprofessional!

Carefully Check Indentation: Each Level ≥ 2 Spaces!

�������m��6XEVWLWXWLRQ���
����������\� �]���\�>\�`�]���\@�
���������î?�\�� �]���\�@�����'$VVLJQPHQW(���
����������\� ���

Ô⇒

Hint item where the parser expects an expression —

calculation operators need to be aligned
two spaces to the left of calculation expressions!



You need to solve the Homeworks yourself!

Assuming that you can pass this course without actually acquiring the expected
reasoning skills is most likely unrealistic.

You acquire the skills by doing Homeworks and Assignments yourself!

If you provide your solutions to others,

that constitutes academic dishonesty as well!

If you provide your solutions to others,

that actually reduces their chances of acquiring the skills and passing the course!

Large/many clusters of extremely similar submissions strongly suggest that large
numbers of students are not getting the expected learning: Ô⇒ I need to act!

If homeworks were to be done with pen and paper, you would submit imperfect
solutions without hesitation. . .
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Part 2: Propositional Calculus: Implication⇒

Implication

(3.57) Axiom, Definition of implication,
Definition of⇒ from ∨: p⇒ q ≡ p∨ q ≡ q

(3.58) Axiom, Consequence: p⇐ q ≡ q⇒p

Rewriting Implication:

(3.59) Material implication,
(Alternative) Definition of implication: p⇒ q ≡ ¬p∨ q

(3.60) (Dual) Definition of implication,
Definition of⇒ from ∧: p⇒ q ≡ p∧ q ≡ p

(3.61) Contrapositive: p⇒ q ≡ ¬q⇒¬p

All Propositional Axioms of the Equational Logic E

1 (3.1) Axiom, Associativity of ≡
2 (3.2) Axiom, Symmetry of ≡
3 (3.3) Axiom, Identity of ≡
4 (3.8) Axiom, Definition of false
5 (3.9) Axiom, Commutativity of ¬ with ≡
6 (3.10) Axiom, Definition of /≡
7 (3.24) Axiom, Symmetry of ∨
8 (3.25) Axiom, Associativity of ∨
9 (3.26) Axiom, Idempotency of ∨

10 (3.27) Axiom, Distributivity of ∨ over ≡
11 (3.28) Axiom, Excluded middle
12 (3.35) Axiom, Golden rule
13 (3.57) Axiom, Definition of implication
14 (3.58) Axiom, Definition of consequence

The “Golden Rule” and Implication

(3.35) Axiom, Golden rule: p∧ q ≡ p ≡ q ≡ p∨ q

Can be used as:
p∧ q = (p ≡ q ≡ p∨ q)(p ≡ q) = (p∧ q ≡ p∨ q)
. . .(p∧ q ≡ p) ≡ (q ≡ p∨ q)

(3.57) Axiom, Definition of implication: p⇒ q ≡ p∨ q ≡ q

(3.60) (Dual) Definition of implication: p⇒ q ≡ p∧ q ≡ p

Some Implication Theorems

(3.62) p⇒(q ≡ r) ≡ p∧ q ≡ p∧ r

(3.63) Distributivity of⇒ over ≡: p⇒(q ≡ r) ≡ p⇒ q ≡ p⇒ r

(3.64) Self-distributivity of⇒: p⇒(q⇒ r) ≡ (p⇒ q)⇒(p⇒ r)
(3.65) Shunting: p∧ q ⇒ r ≡ p⇒(q⇒ r)
How do start to prove the following? (For example, . . . )

(3.66) p∧(p⇒ q) ≡ p∧ q ⟨. . . p∧ q ≡ p⟩
(3.67) p∧(q⇒p) ≡ p ⟨. . . p∧ q ≡ p⟩
(3.68) p∨(p⇒ q) ≡ true ⟨. . . ¬p∨ q⟩
(3.69) p∨(q⇒p) ≡ q⇒p ⟨. . . p∨ q ≡ q⟩
(3.70) p∨ q ⇒ p∧ q ≡ p ≡ q ⟨. . . Golden Rule . . .⟩

Additional Important Implication Theorems

(3.71) Reflexivity of⇒: p⇒p ≡ true

(3.72) Right-zero of⇒: p⇒ true ≡ true

(3.73) Left-identity of⇒: true⇒p ≡ p

(3.74) Definition of ¬ from⇒: p⇒ false ≡ ¬p

(3.15) Definition of ¬ from ≡: ¬p ≡ p ≡ false

(3.75) ex falso quodlibet: false⇒p ≡ true

(3.65) Shunting: p∧ q ⇒ r ≡ p⇒(q⇒ r)
(3.77) Modus ponens: p ∧ (p⇒ q) ⇒ q

(3.78) Case analysis: (p⇒ r)∧(q⇒ r) ≡ (p∨ q⇒ r)
(3.79) Case analysis: (p⇒ r)∧(¬p⇒ r) ≡ r

Weakening/Strengthening Theorems

“p⇒ q” can be read “p is stronger-than-or-equivalent-to q”

“p⇒ q” can be read “p is at least as strong as q”

(3.76a) Weakening/Strengthening: p ⇒p∨ q

(3.76b) Weakening/Strengthening: p∧ q ⇒p

(3.76c) Weakening/Strengthening: p∧ q ⇒p∨ q

(3.76d) Weakening/Strengthening: p∨(q∧ r) ⇒p∨ q

(3.76e) Weakening/Strengthening: p∧ q ⇒p∧(q∨ r)

Implication as Order on Propositions
“p⇒ q” can be read “p is stronger-than-or-equivalent-to q”

— similar to “x ≤ y” as “x is less-or-equal y”
— similar to “x ≥ y” as “x is greater-or-equal y”

“p⇒ q” can be read “p is at least as strong as q”
— similar to “x ≤ y” as “x is at most y”
— similar to “x ≥ y” as “x is at least y”

(3.57) Axiom, Definition of⇒ from disjunction: p⇒ q ≡ p∨ q ≡ q
— defines the order from maximum: p⇒ q ≡ ((p∨ q) = q)

— analogous to: x ≤ y ≡ ((x ↑ y) = y)
— analogous to: k ∣ n ≡ ((lcm(k,n) = n)

(3.60) (Dual) Definition of⇒ from conjunction: p⇒ q ≡ p∧ q ≡ p
— defines the order from minimum: p⇒ q ≡ ((p∧ q) = p)

— analogous to: x ≤ y ≡ ((x ↓ y) = x)
— analogous to: k ∣ n ≡ ((gcd(k,n) = k)
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Implication as Order, Replacement, Monotonicity



Plan for Today

Continuing Propositional Calculus (LADM chapter 3)
Implication as order, order relations
Leibniz as axiom, and “Replacement” theorems

Transitivity Calculations, Monotonicity (LADM section 4.1)

(Coming up: LADM chapter 4, and then chapters 8 and 9.)
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Part 1: Nested (Induction) Proofs

Recall: Simple Natural Induction Proofs

Addition+ ∶ N→ N→ N
is defined by induction over the first
argument:

Axiom “Definition of + for 0 ”

“Left-identity of + ”∶
0 + n = n

Axiom “Definition of + for `suc` ”∶
(suc m) + n = suc (m + n)

Many properties of + can be proven
by induction over one of the first argu-
ments to + :

Theorem “Right-identity of + ”∶ m + 0 = m
Proof:

By induction on `m ∶ N`∶
Base case∶

0 + 0= ⟨ “Definition of + for 0 ” ⟩
0

Induction step∶
suc m + 0= ⟨ “Definition of + for `suc` ” ⟩
suc (m + 0)= ⟨ Induction hypothesis ⟩
suc m

Defining (Monus) Subtraction Inductively

Axiom “Subtraction from zero ”∶ 0 − n = 0
Axiom “Subtraction of zero from successor ”∶ (suc m) − 0 = suc m
Axiom “Subtraction of successor from successor ”∶ (suc m) − (suc n) = m − n

Note: In the natural numbers N, we have: 2 − 5 = 0

Why does this define − for all possible arguments?

Because:− takes two arguments of type N
Each of these arguments is always either 0, or suc k for some smaller k ∶ N
Of the four possible combinations, two are covered by “Subtraction from zero”
The remaining two clauses cover one of the remaining cases each.
The third clause “builds up” the domain of definition of −

from smaller to larger m and n.

Using Subtraction Defined Inductively Using Three Clauses

Axiom “Subtraction from zero ”∶ 0 − n = 0
Axiom “Subtraction of zero from successor ”∶ (suc m) − 0 = suc m
Axiom “Subtraction of successor from successor ”∶ (suc m) − (suc n) = m − n

Ô⇒ Some properties of subtraction need nested induction proofs!

. . . Syntactically, where one kind of proof can go, any kind of proof can be used . . .

Ô⇒ Inside nested induction steps, used induction hypotheses must be made explicit!

. . . see Exercise 3.3.

Nested Induction Proofs For Subtraction Defined Inductively Using Three Clauses
Axiom “Subtraction from zero ”∶ 0 − n = 0
Axiom “Subtraction of zero from successor ”∶ (suc m) − 0 = suc m
Axiom “Subtraction of successor from successor ”∶ (suc m) − (suc n) = m − n

. . . see Ex3.3, e.g.: Theorem “Subtraction after addition ”∶ (m + n) − n = m
Proof:

By induction on `m ∶ N`∶
Base case∶(0 + n) − n= ⟨ ? ⟩

0
Induction step `(suc m + n) − n = suc m`∶

By induction on `n ∶ N`∶
Base case∶(suc m + 0) − 0= ⟨ ? ⟩

suc m
Induction step∶(suc m + suc n) − suc n= ⟨ ? ⟩(suc m + n) − n= ⟨ Induction hypothesis `(suc m + n) − n = suc m` ⟩

suc m

. . . Syntactically,
where one kind of proof can go,
any kind of proof can be used . . .
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Part 2: Implication as Order, Order Relations

Recall: Weakening/Strengthening Theorems

“p⇒ q” can be read “p is stronger-than-or-equivalent-to q”

“p⇒ q” can be read “p is at least as strong as q”

(3.76a) p ⇒ p∨ q

(3.76b) p∧ q ⇒ p

(3.76c) p∧ q ⇒ p∨ q

(3.76d) p∨(q∧ r) ⇒ p∨ q

(3.76e) p∧ q ⇒ p∧(q∨ r)

Implication as Order on Propositions
“p⇒ q” can be read “p is stronger-than-or-equivalent-to q”

— similar to “x ≤ y” as “x is less-or-equal y”
— similar to “x ≥ y” as “x is greater-or-equal y”

“p⇒ q” can be read “p is at least as strong as q”
— similar to “x ≤ y” as “x is at most y”
— similar to “x ≥ y” as “x is at least y”

(3.57) Axiom, Definition of⇒ from disjunction: p⇒ q ≡ p∨ q ≡ q
— defines the order from maximum: p⇒ q ≡ ((p∨ q) = q)

— analogous to: x ≤ y ≡ ((x ↑ y) = y)
— analogous to: k ∣ n ≡ ((lcm(k,n) = n)

(3.60) (Dual) Definition of⇒ from conjunction: p⇒ q ≡ p∧ q ≡ p
— defines the order from minimum: p⇒ q ≡ ((p∧ q) = p)

— analogous to: x ≤ y ≡ ((x ↓ y) = x)
— analogous to: k ∣ n ≡ ((gcd(k,n) = k)

One View of Relations

Let T1 and T2 be two types.

A function of type T1 → T2 → B can be considered as one view of a relation from T1 to T2
We will see a different view of relations later . . .
. . . and the way to switch between these views.
With such a way of switching, the two views “are the same” in colloquial mathematics
Therefore we will occasionally just use the term “relation” also for functions of types
T1 → T2 → B

A function of type T → T → B may then be called a relation on T.

Some relations you are familar with: = ∶ T → T → B= ∶ Z → Z → B≠ ∶ N → N → B< ∶ N → N → B/≡ ∶ B → B → B∈ ∶ T → set T → B



Order Relations
Let T be a type.

A relation ≤ on T is called:
reflexive iff x ≤ x is valid
transitive iff x ≤ y ∧ y ≤ z ⇒ x ≤ z is valid
antisymmetric iff x ≤ y ∧ y ≤ x ⇒ x = y is valid
an order (or ordering) iff it is reflexive, transitive, and antisymmetric

Orders you are familiar with: = ∶ T → T → B≤ ∶ Z → Z → B≥ ∶ Z → Z → B≤ ∶ N → N → B≥ ∶ N → N → B∣ ∶ N → N → B≡ ∶ B → B → B⇒ ∶ B → B → B⊆ ∶ set T → set T → B

Order Properties of Implication in LADM Chapter 3

(3.71) Reflexivity of⇒: p⇒p

(3.80.1) Reflexivity of⇒ wrt. ≡: (p ≡ q)⇒(p⇒ q)
(3.80) Mutual implication: (p⇒ q)∧(q⇒p) ≡ p ≡ q

(3.81) Antisymmetry: (p⇒ q)∧(q⇒p) ⇒ (p ≡ q)
(3.82a) Transitivity: (p⇒ q)∧(q⇒ r) ⇒ (p⇒ r)
(3.82b) Transitivity: (p ≡ q)∧(q⇒ r) ⇒ (p⇒ r)
(3.82c) Transitivity: (p⇒ q)∧(q ≡ r) ⇒ (p⇒ r)

Monotonicity, Isotonicity, Antitonicity

Let ≤ be an order on T

Let f ∶ T → T be a function on T

Then f is called
monotonic iff x ≤ y ⇒ f x ≤ f y is a theorem
isotonic iff x ≤ y ≡ f x ≤ f y is a theorem
antitonic iff x ≤ y ⇒ f y ≤ f x is a theorem

Examples:
suc ∶ N→ N is isotonic
pred ∶ N→ N is monotonic, but not isotonic+ ∶ N→ N→ N is isotonic in the first argument:
x ≤ y ≡ x + z ≤ y + z is a theorem+ ∶ N→ N→ N is isotonic in the second argument:
x ≤ y ≡ z + x ≤ z + y is a theorem− ∶ N→ N→ N is monotonic in the first argument:
x ≤ y ⇒ x − z ≤ y − z is a theorem− ∶ N→ N→ N is antitonic in the second argument:
x ≤ y ⇒ z − y ≤ z − x is a theorem

Monotonicity and Antitonicity Theorems for⇒
(4.2) Left-monotonicity of ∨: (p⇒ q) ⇒ (p∨ r⇒ q∨ r)
(4.3) Left-monotonicity of ∧: (p⇒ q) ⇒ p∧ r ⇒ q∧ r

— You can prove these already in the context of chapter 3!
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Part 3: Leibniz as Axiom, Replacement Theorems

(LADM pp. 60–61, end of chapter 3)

Leibniz’s Rule as an Axiom
Recall the inference rule (scheme):

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y]
Axiom scheme (E can be any expression, and z any variable):

(3.83) Axiom, Leibniz: (e = f )⇒(E[z ∶= e] = E[z ∶= f ])
What is the difference?

Given a theorem X = Y and an expression E,
the inference rule (1.5) produces a new theorem E[z ∶= X] = E[z ∶= Y]
(3.83) is a theorem((e = f )⇒(E[z ∶= e] = E[z ∶= f ])) = true

Can be used deep inside nested expressions
— making use of local assumptions (that are typically not theorems)

Leibniz’s Rule as an Axiom — Examples

Recall the inference rule (scheme):

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y]
Axiom scheme (E can be any expression, and z any variable):

(3.83) Axiom, Leibniz: (e = f )⇒(E[z ∶= e] = E[z ∶= f ])
Examples

n = k + 1⇒n ⋅ (k − 1) = (k + 1) ⋅ (k − 1)
n = k + 1⇒ (z ⋅ (k − 1))[z ∶= n] = (z ⋅ (k − 1))[z ∶= k + 1]

(n = k + 1⇒n ⋅ (k − 1) = k2 − 1) = true⇒ (n > 5⇒(n = k + 1⇒n ⋅ (k − 1) = k2 − 1))= (n > 5⇒ true)

Leibniz’s Rule Axiom, and Further Replacement Rules

Axiom scheme (E can be any expression; z, e, f ∶ t can be of any type t):

(3.83) Axiom, Leibniz: (e = f ) ⇒ (E[z ∶= e] = E[z ∶= f ])
— Axiom (3.83) is rarely useful directly!

— Almost all applications are via derived “Replacement” theorems

Replacement rules: (P can be any expression of type B)

(3.84a) “Replacement”: (e = f )∧P[z ∶= e] ≡ (e = f )∧P[z ∶= f ]
(3.84b) “Replacement”: (e = f )⇒P[z ∶= e] ≡ (e = f )⇒P[z ∶= f ]
(3.84c) “Replacement”: q∧(e = f )⇒P[z ∶= e] ≡ q∧(e = f )⇒P[z ∶= f ]

Using a Replacement (LADM: “Substitution”) Rule

Replacement rule: (P can be any expression of type B)

(3.84a) “Replacement”: (e = f )∧P[z ∶= e] ≡ (e = f )∧P[z ∶= f ]
Textbook-style application:

k = n + 1 ∧ k ⋅ (n − 1) = n2 − 1= ⟨ (3.84a) “Replacement” ⟩
k = n + 1 ∧ (n + 1) ⋅ (n − 1) = n2 − 1

Not so fast! — CALCCHECK cannot do second-order matching (yet)

k = n + 1 ∧ k ⋅ (n − 1) = n ⋅ n − 1= ⟨ Substitution ⟩
k = n + 1 ∧ (z ⋅ (n − 1) = n ⋅ n − 1)[z ∶= k]= ⟨ (3.84a) “Replacement” ⟩
k = n + 1 ∧ (z ⋅ (n − 1) = n ⋅ n − 1)[z ∶= n + 1]= ⟨ Substitution ⟩
k = n + 1 ∧ (n + 1) ⋅ (n − 1) = n ⋅ n − 1

Some Replacements

((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ≡ (x > f 5))
≡ ⟨ ? ⟩
((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ≡ (y < g 7))
((f 5) = (g y)) ∧ ((f x ≤ g y) ≡ x > (f 5))

≡ ⟨ ? ⟩
((f 5) = (g y)) ∧ ((f x ≤ g y) ≡ x > g y))
((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ⇒ p(x − 1)∨ (x > f 5))

≡ ⟨ ? ⟩
((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ⇒ p(x − 1)∨ (y < g 7))



Replacements 1 & 2

((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ≡ (x > f 5))
≡ ⟨ (3.51) “Replacement” (p ≡ q)∧(r ≡ p) ≡ (p ≡ q)∧(r ≡ q) ⟩
((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ≡ (y < g 7))

((f 5) = (g y)) ∧ ((f x ≤ g y) ≡ x > (f 5))
≡ ⟨ Substitution ⟩
((f 5) = (g y)) ∧ ((f x ≤ g y) ≡ x > z)[z ∶= (f 5)]

≡ ⟨ (3.84a) “Replacement”(e = f )∧P[z ∶= e] ≡ (e = f )∧P[z ∶= f ],
Substitution

⟩
((f 5) = (g y)) ∧ ((f x ≤ g y) ≡ x > g y))

Replacement 3

((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ⇒ p(x − 1)∨ (x > f 5))
≡ ⟨ Substitution ⟩
((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ⇒ p(x − 1)∨ z)[z ∶= (x > f 5)]

≡ ⟨ (3.84a) “Replacement”(e = f )∧P[z ∶= e] ≡ (e = f )∧P[z ∶= f ],
“Definition of ≡” (p ≡ q) = (p = q), Substitution

⟩
((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ⇒ p(x − 1)∨ (y < g 7))

In CALCCHECK, ≡ does not match =!
Explicit conversions using “Definition of ≡” are necessary.

Replacing Variables by Boolean Constants
In each of the following, P can be any expression of type B:

(3.85a) Replace by true: p⇒P[z ∶= p] ≡ p⇒P[z ∶= true]
(3.85b) q∧p⇒P[z ∶= p] ≡ q∧p⇒P[z ∶= true]
(3.86a) Replace by false: P[z ∶= p]⇒p ≡ P[z ∶= false]⇒p
(3.86b) P[z ∶= p]⇒p∨ q ≡ P[z ∶= false]⇒p∨ q

(3.87) Replace by true: p∧P[z ∶= p] ≡ p∧P[z ∶= true]
(3.88) Replace by false: p∨P[z ∶= p] ≡ p∨P[z ∶= false]
(3.89) Shannon: P[z ∶= p] ≡ (p∧P[z ∶= true])∨(¬p∧P[z ∶= false])
Note: Using Shannon on all propositional variables in sequence

is equivalent to producing a truth table.
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Part 4: Transitivity Calculations, Monotonicity

?

7 ⋅ 8
= ⟨ Evaluation ⟩
(10 − 3) ⋅ (12 − 4)

≤ ⟨ Fact: 3 ≤ 4 ⟩
(10 − 4) ⋅ (12 − 4)

≤ ⟨ Fact: 4 ≤ 5 ⟩
(10 − 4) ⋅ (12 − 5)

= ⟨ Evaluation ⟩
6 ⋅ 7

= ⟨ Evaluation ⟩
42

This proves: 7 ⋅ 8 ≤ 42

Recall: Calculational Proof Format

E0= ⟨ Explanation of why E0 = E1 ⟩
E1= ⟨ Explanation of why E1 = E2 — with comment ⟩
E2= ⟨ Explanation of why E2 = E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

E0 = E1 ∧ E1 = E2 ∧ E2 = E3

Because = is transitive, this justifies:

E0 = E3

Extended Calculational Proof Format (1)

E0≤ ⟨ Explanation of why E0 ≤ E1 ⟩
E1≤ ⟨ Explanation of why E1 ≤ E2 — with comment ⟩
E2≤ ⟨ Explanation of why E2 ≤ E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

E0 ≤ E1 ∧ E1 ≤ E2 ∧ E2 ≤ E3

Because ≤ is transitive, this justifies:

E0 ≤ E3

Extended Calculational Proof Format (2)

E0≤ ⟨ Explanation of why E0 ≤ E1 ⟩
E1= ⟨ Explanation of why E1 = E2 — with comment ⟩
E2≤ ⟨ Explanation of why E2 ≤ E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

E0 ≤ E1 ∧ E1 = E2 ∧ E2 ≤ E3

Because ≤ is reflexive and transitive, this justifies:

E0 ≤ E3

Extended Calculational Proof Format (3)

E0⇒ ⟨ Explanation of why E0⇒E1 ⟩
E1≡ ⟨ Explanation of why E1 ≡ E2 — with comment ⟩
E2⇒ ⟨ Explanation of why E2⇒E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

(E0⇒E1) ∧ (E1 ≡ E2) ∧ (E2⇒E3)
Because ⇒ is reflexive and transitive, this justifies:

E0⇒E3

Extended Calculational Proof Format (4)

E0≤ ⟨ Explanation of why E0 ≤ E1 ⟩
E1= ⟨ Explanation of why E1 = E2 — with comment ⟩
E2< ⟨ Explanation of why E2 < E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

E0 ≤ E1 ∧ E1 = E2 ∧ E2 < E3

Because < is transitive, and because ≤ is the reflexive closure of <, this justifies:

E0 < E3



Calculational Non-Proofs

E0≤ ⟨ Explanation of why E0 ≤ E1 ⟩
E1= ⟨ Explanation of why E1 = E2 — with comment ⟩
E2≥ ⟨ Explanation of why E2 ≥ E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

E0 ≤ E1 ∧ E1 = E2 ∧ E2 ≥ E3

This justifies nothing about the relation between E0 and E3 !

Leibniz is Special to Equality

How about the following?

x − 3

≤ ⟨ Fact: 3 ≤ 4 ⟩
x − 4

Remember:

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y]
Leibniz is available only for equality

Example Application of “Monotonicity of −”

− ∶ N→ N→ N is monotonic in the first argument:
x ≤ y ⇒ x − z ≤ y − z is a theorem

Theorem “Monotonicity of − ”∶ a ≤ b ⇒ a − c ≤ b − c

&DOFXODWLRQ��
���������Q�
��p��'0RQRWRQLFLW\�RI��(�ZLWK�)DFW�C���p���C���
���������Q

This step can be justified without “with” as follows:

&DOFXODWLRQ��
���������Q��p�������Q�
��m��'/HIW�LGHQWLW\�RI�î(���
����WUXH��î��������Q��p�������Q��
��m��)DFW�C���p���C���
��������p������î��������Q��p�������Q��
����7KLV�LV�'0RQRWRQLFLW\�RI��(

Modus Pones via with2

Modus ponens theorem: (3.77) Modus ponens: p∧(p⇒ q)⇒ q

Modus ponens inference rule:

(“Implication elimination” rule)
P⇒Q P

Q ⇒-Elim
f ∶ A→ B x ∶ A(f x) ∶ B

Fct. app.

Applying implication theorems:

Q1⊑ ⟨ “Theorem 1” `P⇒(Q1 ⊑ Q2)` with “Theorem 2” `P` ⟩
Q2

A proof for P⇒Q can be used as a recipe
for turning a proof for P into a proof for Q.

Theorem “Monotonicity of − ”∶ a ≤ b ⇒ a − c ≤ b − c

&DOFXODWLRQ��
���������Q�
��p��'0RQRWRQLFLW\�RI��(�ZLWK�)DFW�C���p���C���
���������Q

Example Application of “Antitonicity of −”

− ∶ N→ N→ N is antitonic in the second argument:
x ≤ y ⇒ z − y ≤ z − x is a theorem

Theorem “Antitonicity of − ”∶ b ≤ c ⇒ a − c ≤ a − b

&DOFXODWLRQ��
����P�����
��p��'$QWLWRQLFLW\�RI��(�ZLWK�)DFW�C��p��C���
����P����

Multiplication on N is Monotonic. . .
Calculation∶

42= ⟨ Evaluation ⟩
6 ⋅ 7= ⟨ Evaluation ⟩(10 − 4) ⋅ (12 − 5)≤ ⟨ “Monotonicity of ⋅ ” with

“Antitonicity of − ” with Fact `3 ≤ 4`⟩(10 − 3) ⋅ (12 − 5)≤ ⟨ “Monotonicity of ⋅ ” with
“Antitonicity of − ” with Fact `4 ≤ 5`⟩(10 − 3) ⋅ (12 − 4)= ⟨ Evaluation ⟩

7 ⋅ 8

with2 Works Also With ≡— Example Using “Isotonicity of +”

+ ∶ N→ N→ N is isotonic in the first argument:
x ≤ y ≡ x + z ≤ y + z is a theorem

&DOFXODWLRQ��
��������Q�
��p��',VRWRQLFLW\�RI��(�ZLWK�)DFW�C��p��C���
��������Q

This step can be justified without “with” as follows:

&DOFXODWLRQ��
��������Q�p�����Q�
��m��',GHQWLW\�RI�m(���
����WUXH��m������Q�p�����Q�
��m��)DFW�C��p��C���
������p����m������Q�p�����Q�
��������7KLV�LV�',VRWRQLFLW\�RI��(
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LADM Chapter 4: “Relaxing the Proof Style” — New Proof Structures

Plan for Today

LADM Chapter 4: “Relaxing the Proof Style” — New Proof Structures

Transitivity calculations with implication⇒ or consequence⇐
Proving implications: Assuming the antecedent

Proving By cases

Using theorems as proof methods
Proof by Contrapositive
Proof by Mutual Implication

Coming up: LADM chapters 8 and 9.
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Part 1: Subproofs, Abbreviated Proofs for Implications



CALCCHECK: Subproof Hint Items
You have used the following kinds of hint items:

Theorem name references “Identity of ≡”
Theorem number references (3.32)
Certain key words and key phrases: Substitution, Evaluation, Induction hypothesis
Fact `Expression`
Composed hint items: “Identity of +” with `Substitution`

“Monotonicity of +” with HintItem

A new kind of hint item: Subproof for `Expression`:
Proof

For example, Fact `3 = 2 + 1` is really syntactic sugar for a subproof:

3 ⋅ x= ⟨ Subproof for `3 = 2 + 1`∶
By evaluation ⟩(2 + 1) ⋅ x

Abbreviated Proofs for Implications

This:

p

≡ ⟨Why p ≡ q ⟩
q

⇒ ⟨Why q⇒ r ⟩
r

proves: p⇒ r

Because:

(p ≡ q)∧(q⇒ r)
⇒ ⟨ (3.82b) Transitivity of⇒ ⟩

p⇒ r

This proof style will not be allowed in questions “belonging” to LADM Chapter 3!

(4.1) — Creating the Proof “Bottom-up”
Proving (4.1) p⇒(q⇒p):

p⇒ ⟨ (3.76a) Weakening p⇒p∨ q Rabbit!⟩¬q∨p≡ ⟨ (3.59) Material implication ⟩
q⇒p

We have: Axiom (3.58) Consequence: p⇐ q ≡ q⇒p

This means that the⇐ relation is the converse of the⇒ relation.

Theorem: The converse of a transitive relation is transitive again,
and the converse of an order is an order again.

CALCCHECK supports activation of converse properties, enabling reversed presentations
following mathematical habits of transitivity calculations such as the above.

— “ . . . propositional logic following LADM chapters 3 and 4 . . . ”

(4.1) Using “Consequence” Implicitly
Theorem (4.1)∶ p ⇒ (q ⇒ p)
Proof:

q ⇒ p≡ ⟨ “Material implication ” ⟩¬ q ∨ p⇐⟨ “Strengthening ” (3.76a)— used as p ∨ q ⇐ p ⟩
p

In CALCCHECK, this requires that

Axiom (3.58) “Consequence” “Definition of⇐”: p ⇐ q ≡ q ⇒ p

is activated as converse property.

(4.1) Using “Consequence” Explicitly — “Proof for this:”
In CALCCHECK, if “Consequence” is not activated as converse property, then⇐ is a separate
operator requiring explicit conversion:

Theorem (4.1)∶ p ⇒ (q ⇒ p)
Proof:

p ⇒ (q ⇒ p)≡ ⟨ “Consequence ” ⟩(q ⇒ p) ⇐ p
Proof for this∶

q ⇒ p≡ ⟨ “Material implication ” ⟩¬ q ∨ p⇐⟨ “Strengthening ” (3.76a),
“Consequence ” ⟩

p

Theorem (4.1)∶ p ⇒ (q ⇒ p)
Proof:

p ⇒ (q ⇒ p)≡ ⟨ “Consequence ” ⟩(q ⇒ p) ⇐ p≡ ⟨ Subproof for `(q ⇒ p) ⇐ p`∶
q ⇒ p≡ ⟨ “Material implication ” ⟩¬ q ∨ p⇐⟨ “Strengthening ” (3.76a),

“Consequence ” ⟩
p⟩

true(“Proof for this:” is shorthand for the subproof to the right.
It implements the frequent proof presentation pattern
of transforming the goal, and then using a different kind
of proof for the transformed goal.)

(4.2) Left-Monotonicity of ∨: (p⇒ q) ⇒ (p∨ r⇒ q∨ r)
Start from the right because there is more structure — therefore aim for “⇐” at the end:

p∨ r⇒ q∨ r

≡ ⟨ (3.57) Definition of⇒ p⇒ q ≡ p∨ q ≡ q ⟩
p∨ r∨ q∨ r ≡ q∨ r

≡ ⟨ (3.26) Idempotency of ∨ ⟩
p∨ q∨ r ≡ q∨ r

≡ ⟨ (3.27) Distributivity of ∨ over ≡ ⟩
(p∨ q ≡ q)∨ r

≡ ⟨ (3.57) Definition of⇒ p⇒ q ≡ p∨ q ≡ q ⟩
(p⇒ q)∨ r

⇐ ⟨ (3.76a) Strengthening p⇒p∨ q ⟩
p⇒ q

(4.3) Left-Monotonicity of ∧: (p⇒ q) ⇒ p∧ r ⇒ q∧ r

(⇒ associates to the right. . . )p∧ r ⇒ q∧ r
≡ ⟨ (3.60) Definition of⇒ ⟩

p∧ r∧ q∧ r ≡ p∧ r
≡ ⟨ (3.38) Idempotency of ∧ ⟩(p∧ q)∧ r ≡ p∧ r
≡ ⟨ (3.49) Semi-distributivity of ∧ ⟩((p∧ q) ≡ p)∧ r ≡ r
≡ ⟨ (3.60) Definition of⇒ ⟩(p⇒ q)∧ r ≡ r
≡ ⟨ (3.60) Definition of⇒ ⟩

r⇒(p⇒ q)
⇐ ⟨ (4.1) p⇒(q⇒p) ⟩

p⇒ q
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Part 2: Assuming the Antecedent

Proving Implications...
How to prove the following?

“=-Congruence of +”: b = c ⇒ a + b = a + c

“Leibniz as Axiom” can help:
Lemma “=-congruence of + ”∶ b = c ⇒ a + b = a + c
Proof:

b = c ⇒ a + b = a + c≡ ⟨ Substitution ⟩
b = c ⇒ (a + z)[z ∶= b] = (a + z)[z ∶= c]

— This is “Leibniz ”

It may be nicer to turn this into a situation where the inference rule Leibniz (1.5) can be used again. . .

Lemma “=-congruence of + ”∶ b = c ⇒ a + b = a + c
Proof:

Assuming `b = c`∶ Assuming the Antecedent
a + b= ⟨ Assumption `b = c` ⟩
a + c

Assuming the Antecedent
To prove an implication p⇒ q
we can prove its conclusion q using p as assumption:

Assuming `p`:

Proof of q
possibly using: Assumption `p`

Justification:
(4.4) (Extended) Deduction Theorem: Suppose adding P1, . . . ,Pn as axioms to proposi-

tional logic E, with the free variables of the Pi considered to be constants, allows
Q to be proved.

Then P1 ∧ . . .∧Pn⇒Q is a theorem.
That is:

Assumptions cannot be used with substitutions (with ‘a, b ∶= e, f ‘)
— just like induction hypotheses.

“Assuming the Antecedent” is not allowed in questions “belonging to” LADM chapt. 3!



Inference Rule for Proving Implications: ⇒-Introduction

One way to prove P⇒Q:

Assuming `P`:

Proof of Q
possibly using: Assumption `P`

(And Assuming `P`: . . . can only prove theorems of shape P⇒⋯.)

This directly corresponds to an application of the inference rule “⇒-Introduction”
(which is missing in the Rosen book used in COMPSCI 1DM3):

⌜P⌝....
Q

P⇒Q ⇒-Intro

⌜x ∶ A⌝....
e ∶ B(λx ∶ A ● e) ∶ A→ B λ-Abstraction

Proving and Using Implication Theorems: Assuming and with2

Using “Cancellation of ⋅”: z ≠ 0 ⇒ (z ⋅ x = z ⋅ y ≡ x = y)
Theorem “Non-zero multiplication ”∶ a ≠ 0 ⇒ b ≠ 0 ⇒ a ⋅ b ≠ 0
Proof:

Assuming `a ≠ 0`, `b ≠ 0`∶
a ⋅ b ≠ 0≡ ⟨ “Definition of ≠ ” ⟩¬ (a ⋅ b = 0)≡ ⟨ “Zero of ⋅ ” ⟩¬ (a ⋅ b = a ⋅ 0)≡ ⟨ “Cancellation of ⋅ ” with assumption `a ≠ 0` ⟩¬ (b = 0)≡ ⟨ “Definition of ≠ ”, Assumption `b ≠ 0` ⟩
true

HintItem1 with HintItem2 and HintItem3, HintItem4 parses as
(HintItem1 with (HintItem2 and HintItem3)), HintItem4

(4.3) Left-Monotonicity of ∧ (shorter proof, LADM-style)

(4.3) (p⇒ q) ⇒ ((p∧ r) ⇒ (q∧ r))
PROOF:

Assume p⇒ q (which is equivalent to p∧ q ≡ p)

p∧ r

≡ ⟨ Assumption p∧ q ≡ p ⟩
p∧ q∧ r

⇒ ⟨ (3.76b) Weakening ⟩
q∧ r

How to do “which is equivalent to” in CALCCHECK?
Transform before assuming
or transform the assumption when using it
or “Assuming . . . and using with . . . ”

Transform Before Assuming — Proof for this:
Theorem (4.3) “Left-monotonicity of ∧ ” “Monotonicity of ∧ ”∶

(p ⇒ q) ⇒ ((p ∧ r) ⇒ (q ∧ r))
Proof:

(p ⇒ q) ⇒ ((p ∧ r) ⇒ (q ∧ r))
≡ ⟨ “Definition of⇒ from ∧ ” ⟩
(p ∧ q ≡ p) ⇒ ((p ∧ r) ⇒ (q ∧ r))

Proof for this∶
Assuming `p ∧ q ≡ p`∶

p ∧ r

≡ ⟨ Assumption `p ∧ q ≡ p` ⟩
p ∧ q ∧ r

⇒⟨ “Weakening ” ⟩
q ∧ r

Transform Assumption When Used — with3
(4.3) (p⇒ q) ⇒ ((p∧ r) ⇒ (q∧ r)) — LADM
PROOF:

Assume p⇒ q (which is equivalent to p∧ q ≡ p)
p∧ r≡ ⟨ Assumption p∧ q ≡ p ⟩
p∧ q∧ r⇒ ⟨ (3.76b) Weakening ⟩
q∧ r

Theorem (4.3) “Left-monotonicity of ∧ ” “Monotonicity of ∧ ”∶ —CALCCHECK(p ⇒ q) ⇒ ((p ∧ r) ⇒ (q ∧ r))
Proof:

Assuming `p ⇒ q`∶
p ∧ r≡ ⟨ Assumption `p ⇒ q` with “Implication via ∧ ” ⟩
p ∧ q ∧ r⇒⟨ “Weakening ” ⟩
q ∧ r

Assuming . . . and using with . . .
(4.3) (p⇒ q) ⇒ ((p∧ r) ⇒ (q∧ r)) — LADM
PROOF:

Assume p⇒ q (which is equivalent to p∧ q ≡ p)
p∧ r≡ ⟨ Assumption p∧ q ≡ p ⟩
p∧ q∧ r⇒ ⟨ (3.76b) Weakening ⟩
q∧ r

Theorem (4.3) “Left-monotonicity of ∧ ” “Monotonicity of ∧ ”∶ — CALCCHECK(p ⇒ q) ⇒ ((p ∧ r) ⇒ (q ∧ r))
Proof:

Assuming `p ⇒ q` and using with “Implication via ∧ ”∶
p ∧ r≡ ⟨ Assumption `p ⇒ q` ⟩
p ∧ q ∧ r⇒⟨ “Weakening ” ⟩
q ∧ r
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● Proof Structures (LADM ch. 4)● Introduction to Quantification (LADM ch. 8)
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Part 1: Case Analysis and Other Structured Proofs

LADM General Case Analysis

(4.6) (p∨ q∨ r)∧(p⇒ s)∧(q⇒ s)∧(r⇒ s) ⇒ s

Proof pattern for general case analysis:

Prove: S
By cases: P, Q, R

(proof of P∨Q∨R — omitted if obvious)
Case P : ( proof of P⇒S )
Case Q : ( proof of Q⇒S )
Case R : ( proof of R⇒S )

Case Analysis Example (4.2) (p⇒ q) ⇒ p∨ r ⇒ q∨ r — LADM vs. CALCCHECK

Assume p⇒ q
Assume p∨ r

Prove: q∨ r
By Cases: p, r

— p∨ r holds by assumption
Case p :

p⇒ ⟨ Assumption p⇒ q ⟩
q⇒ ⟨Weakening (3.76a) ⟩
q∨ r

Case r :
r⇒ ⟨Weakening (3.76a) ⟩
q∨ r

Theorem “Monotonicity of ∨ ”∶(p ⇒ q) ⇒ (p ∨ r) ⇒ (q ∨ r)
Proof:

Assuming `p ⇒ q`, `p ∨ r`∶
By cases∶ `p`, `r`

Completeness: By assumption `p ∨ r`
Case `p`∶

p — This is assumption `p`⇒⟨ Assumption `p ⇒ q` ⟩
q⇒⟨ “Weakening ” ⟩
q ∨ r

Case `r`∶
r — This is assumption `r`⇒⟨ “Weakening ” ⟩
q ∨ r



“By cases:” with Calculation for “Completeness:” . . .

In By cases∶ `P1`, `P2`, . . . , `Pn` ,

after “Completeness:”, a proof for P1 ∨P2 ∨⋯∨Pn is needed

This can be any kind of proof.

Inside the Case `p`: block, you may use Assumption `p` .

Theorem (15.34) “Positivity of squares ”∶ b ≠ 0 ⇒ pos (b ⋅ b)
Proof:

Assuming `b ≠ 0`∶
By cases∶ `pos b`, `¬ pos b`

Completeness:
pos b ∨ ¬ pos b≡ ⟨ “Excluded middle ” ⟩
true

Case `pos b`∶
pos (b ⋅ b)⇐⟨ (15.31) ⟩
pos b ∧ pos b≡ ⟨ Assumption `pos b` ⟩
true ∧ true≡ ⟨ “Idempotency of ∧ ” ⟩
true

Case `¬ pos b`∶¬ pos b — This is assumption `¬ pos b`≡ ⟨ (15.33b)with Assumption `b ≠ 0` ⟩
pos (− b)≡ ⟨ “Idempotency of ∧ ” ⟩
pos (− b) ∧ pos (− b)⇒⟨ “Positivity under ⋅ ” ⟩
pos ((− b) ⋅ (− b))≡ ⟨ (15.23) ⟩
pos (b ⋅ b)

The Predecessor Function pred on N
The “predecessor function” pred is total; since zero has no predecessor, it maps 0 to 0.

Declaration∶ pred ∶ N → N
Axiom “Predecessor of zero ”∶ pred 0 = 0
Axiom “Predecessor of successor ”∶ pred (suc n) = n

We then have:
Theorem “Zero or successor of predecessor”: n = 0 ∨ n = suc (pred n)

This is useful for case analysis proofs of properties that so far you have shown “By
induction” without using the induction hypothesis:

Theorem “Right-identity of subtraction ”∶ m − 0 = m
Proof:

By cases∶ `m = 0`, `m = suc (pred m)`
Completeness: By “Zero or successor of predecessor ”
Case `m = 0`∶

?

Case `m = suc (pred m)`∶
?

Proof by Contrapositive

(3.61) Contrapositive: p⇒ q ≡ ¬q⇒¬p

(4.12) Proof method: Prove P ⇒ Q by proving its contrapositive ¬ Q ⇒ ¬ P

Proving x + y ≥ 2 ⇒ x ≥ 1∨y ≥ 1:

¬(x ≥ 1∨y ≥ 1)≡ ⟨ De Morgan (3.47) ⟩¬(x ≥ 1) ∧ ¬(y ≥ 1)≡ ⟨ Def. ≥ (15.39) with Trichotomy (15.44) ⟩
x < 1 ∧ y < 1⇒ ⟨Monotonicity of + (15.42) ⟩
x + y < 1 + 1≡ ⟨ Def. 2 ⟩
x + y < 2≡ ⟨ Def. ≥ (15.39) with Trichotomy (15.44) ⟩¬(x + y ≥ 2)

Proof by Contrapositive in CALCCHECK — Using
“Using HintItem1 : subproof1 subproof2”
is processed as “By HintItem1 with subproof1 and subproof2”

If you get the subproof goals wrong, the with heuristic has no chance to succeed. . .

Theorem “Example for use of `Contrapositive′` ”∶
x + y ≥ 2 ⇒ x ≥ 1 ∨ y ≥ 1

Proof:
Using “Contrapositive ”∶

Subproof for `¬ (x ≥ 1 ∨ y ≥ 1) ⇒ ¬ (x + y ≥ 2)`∶¬ (x ≥ 1 ∨ y ≥ 1)≡ ⟨ “De Morgan ” ⟩¬ (x ≥ 1) ∧ ¬ (y ≥ 1)≡ ⟨ “Complement of < ” with (3.14) ⟩
x < 1 ∧ y < 1⇒⟨ “<-Monotonicity of + ” ⟩
x + y < 1 + 1≡ ⟨ Evaluation ⟩
x + y < 2≡ ⟨ “Complement of < ” with (3.14) ⟩¬ (x + y ≥ 2)

Proof by Contradiction

(3.74) p⇒ false ≡ ¬p

(4.9) Proof by contradiction: ¬p⇒ false ≡ p

Theorem “Reflexivity of ≡ ”∶ b ≡ b
Proof:

Using “Proof by contradiction ”∶
Subproof for `¬ (b ≡ b) ⇒ false`∶¬ (b ≡ b)≡ ⟨ “Commutativity of ¬ with ≡ ” ⟩¬ b ≡ b≡ ⟨ “Definition of ¬ from ≡ ” ⟩

falseUse short proof via (3.3)!

“This proof method is overused”

If you intuitively try to do a proof by contradiction:
Formalise your proof
This may already contain a direct proof!
So check whether contradiction is still necessary
. . ., or whether your proof can be transformed into one that does not use
contradiction.

Proof by Mutual Implication — Using
(3.80) Mutual implication: (p⇒ q)∧(q⇒p) ≡ p ≡ q

Theorem (15.47) “Indirect Equality ” “Indirect Equality from below ”∶
a = b ≡ (∀ z ● z ≤ a ≡ z ≤ b)

Proof:
Using “Mutual implication ”∶ “Antisymmetry of⇒” would work as well

Subproof for `a = b ⇒ (∀ z ● z ≤ a ≡ z ≤ b)`∶
Assuming `a = b`∶

For any `z`∶
By Assumption `a = b`

Subproof for `(∀ z ● z ≤ a ≡ z ≤ b) ⇒ a = b`∶
Assuming “A ” `(∀ z ● z ≤ a ≡ z ≤ b)`∶

a = b≡ ⟨ “Antisymmetry of ≤ ” ⟩
a ≤ b ∧ b ≤ a≡ ⟨ Assumption “A ” ⟩
a ≤ a ∧ b ≤ b≡ ⟨ “Reflexivity of ≤ ”, “Idempotency of ∧ ” ⟩
true

Proof by Mutual Implication — Using
(3.80) Mutual implication: (p⇒ q)∧(q⇒p) ≡ p ≡ q

Theorem “Cancellation of unary minus ”∶ − a = − b ≡ a = b
Proof:

Using “Mutual implication ”∶
Subproof: Subproof goals determined by the enclosed proof can be omitted.

Assuming `a = b`∶− a= ⟨ Assumption `a = b` ⟩− b
Subproof:

Assuming ` − a = − b`∶
a= ⟨ “Self-inverse of unary minus ” ⟩− − a= ⟨ Assumption ` − a = − b` ⟩− − b= ⟨ “Self-inverse of unary minus ” ⟩
b

Opportunities for Structured Proofs: LADM Theory of Integers — Positivity and Ordering
(15.30) Axiom, Addition in pos: pos a∧pos b ⇒ pos (a + b)
(15.31) Axiom, Multiplication in pos: pos a∧pos b ⇒ pos (a ⋅ b)
(15.32) Axiom: ¬ pos 0
(15.33) Axiom: b ≠ 0 ⇒ (pos b ≡ ¬pos (−b))
(15.34) Positivity of Squares: b ≠ 0 ⇒ pos (b ⋅ b)
(15.35) pos a ⇒ (pos b ≡ pos (a ⋅ b)
(15.36) Axiom, Less: a < b ≡ pos (b − a)
(15.37) Axiom, Greater: a > b ≡ pos (a − b)
(15.38) Axiom, At most: a ≤ b ≡ a < b ∨ a = b
(15.39) Axiom, At least: a ≥ b ≡ a > b ∨ a = b
(15.40) Positive elements: pos b ≡ 0 < b
(15.41) Transitivity: (a) a < b ∧ b < c ⇒ a < c (b) a ≤ b ∧ b < c ⇒ a < c(c) a < b ∧ b ≤ c ⇒ a < c (d) a ≤ b ∧ b ≤ c ⇒ a ≤ c
(15.42) Monotonicity of +: a < b ≡ a + d < b + d
(15.43) Monotonicity of ⋅: 0 < d ⇒ (a < b ≡ a ⋅ d < b ⋅ d)
(15.44) Trichotomy: (a < b ≡ a = b ≡ a > b) ∧ ¬(a < b ∧ a = b ∧ a > b)
(15.45) Antisymmetry of ≤: a ≤ b ∧ a ≥ b ≡ a = b
(15.46) Reflexivity of ≤: a ≤ a

Proof Structures Can Be Freely Combined. . .
Theorem (15.35) “Positivity under positive ⋅ ”∶ pos a ⇒ (pos b ≡ pos (a ⋅ b))
Proof:

Assuming `pos a`∶
Using “Mutual implication ”∶

Subproof for `pos b ⇒ pos (a ⋅ b)`∶
pos b ⇒ pos (a ⋅ b)⇐⟨ “Positivity under ⋅ ” ⟩
pos a — This is Assumption `pos a`

Subproof for `pos (a ⋅ b) ⇒ pos b`∶
Using “Contrapositive ”∶

Subproof for `¬ pos b ⇒ ¬ pos (a ⋅ b)`∶
By cases∶ `b = 0`, `b ≠ 0`

Completeness: By “Definition of ≠ ”, “LEM ”
Case `b = 0`∶¬ pos b ⇒ ¬ pos (a ⋅ b)≡ ⟨ Assumption `b = 0`, “Zero of ⋅ ” ⟩¬ pos 0 ⇒ ¬ pos 0 — This is “Reflexivity of⇒ ”
Case `b ≠ 0`∶¬ pos b≡ ⟨ (15.33b)with Assumption `b ≠ 0` ⟩

pos (− b)≡ ⟨ Assumption `pos a`, “Identity of ∧ ” ⟩
pos a ∧ pos (− b)⇒⟨ (15.31) ⟩
pos (a ⋅ − b)≡ ⟨ (15.22) ⟩
pos (− (a ⋅ b))≡ ⟨ (15.33b)with subproof for `a ⋅ b ≠ 0`∶

a ⋅ b ≠ 0⇐⟨ “Non-zero multiplication ” with “Shunting ” ⟩
a ≠ 0 ∧ b ≠ 0≡ ⟨ Assumption `b ≠ 0`, “Identity of ∧ ” ⟩
a ≠ 0⇐⟨ “Positive implies non-zero ” ⟩
pos a — This is Assumption `pos a`⟩¬ pos (a ⋅ b)

The CALCCHECK Language — Calculational Proofs on Steroids

Besides calculations, CALCCHECK has the following proof structures:

By hint — for discharging simple proof obligations,

Assuming ‘expression‘: — for assuming the antecedent,

By cases: ‘expression1‘,. . . ,‘expressionn‘ — for proofs by case analysis

By induction on ‘var ∶ type‘: — for proofs by induction

Using hint: — for turning theorems into inference rules

For any ‘var ∶ type‘: — corresponding to ∀-introduction

This does not sound that different from LADM —

— but in CALCCHECK, these are actually used!



Structured Proof Example from LADM — And Fully Formal in CALCCHECK

15.1. INTEGRAL DOMAINS 307 

and write b < c if integer b occurs before integer c in this list. We 
now restrict attention to integral domains that have such an order. To 
define an order, we first define a predicate pos.b for b in domain D, with 
interpretation "b appears after 0 in the order", or "b is positive". Note 
that this interpretation is not the real definition of pos.b, but only the 
interpretation we want pos.b to have. 

Predicate pos.b is defined by four axioms. The first says that the sum of 
two positive elements is positive. The second says that the product of two 
positive elements is positive. The third says that 0 is not positive. The 
fourth says that for any non-zero element b , exactly one of b and -b is 
positive. 

(15.30) Axiom, Addition: pos.a 1\ pos.b ::::} pos(a +b) 

(15.31) Axiom, Multiplication: pos.a 1\ pos.b ::::} pos(a·b) 

(15.32) Axiom: •pos.O 

(15.33) Axiom: b :f: 0 ::::} (pos.b = •pos( -b)) 

An integral domain D with predicate pos that satisfies axioms (15.30)
(15.33) is called an ordered domain, and the ordering is a linear order 
or total order (see Definition (14.50) on page 287). The integers are an 
ordered domain, as are the rational numbers and the real numbers (and 
many others). In all ordered domains, we have the following two theorems, 
the first of which says that the square of a non-zero element is positive. 

Theorems for pos 

(15.34) b :f: 0 ::::} pos(b·b) 

(15.35) pos.a ::::} (pos.b = pos(a·b)) 

We prove (15.34). For arbitrary nonzero b in D, we prove pos(b·b) by 
case analysis: either pos.b or -.pos.b holds (see (15.33)). 

Case pos.b. By axiom (15.31) with a,b := b,b, pos(b·b) holds. 

Case •pos.b 1\ b :f: 0. We have the following. 

pos(b·b) 
((15.23), with a, b := b, b) 

pos(( -b)· (-b)) 
-¢= (Multiplication (15.31)) 

pos( -b) 1\ pos( -b) 
(Idempotency of 1\ (3.38)) 
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pos( -b) 
(Double negation (3.12) -note that b =j:. 0; (15.33)) 

•pos.b -the case under consideration 

A corollary of this theorem is that 1 ( = 1·1 ) is positive, so -1 is negative. 

We are finally ready to define the conventional inequality relations, which 
are predicates over pairs of elements of D . 

(15.36) Axiom, Less: a < b = pos(b- a) 

(15.37) Axiom, Greater: a> b = pos(a- b) 

(15.38) Axiom, At most: a ~ b = a < b V a = b 

(15.39) Axiom, At least: a ~ b = a > b V a = b 

Now we can prove that the positive elements are greater than 0 (i.e. 
pos.b = b > 0) and the negative elements are less than 0. A host of other 
theorems follow, a few of which are given below. Theorem (15.44), the law 
of Trichotomy, says that exactly one of a < b , a = b , and a > b is true . 
According to the discussion on page 46, the first conjunct of (15.44) is true 
iff one or three of its equivalents are true , and the second conjunct is true 
iff fewer than three of them are true . 

Some theorems for arithmetic relations 

(15.40) Positive elements: pos.b = 0 < b 

(15.41) Transitivity: (a) a < b 1\ b < c =? a < c 

(b) a ~ b 1\ b < c =? a < c 

(c) a< b 1\ b ~ c =? a< c 

(d) a~ b 1\ b ~ c =? a~ c 

(15.42) Monotonicity: a< b = a+ d < b + d 

(15.43) Monotonicity: 0 < d =? (a< b = a·d < b·d) 

(15.44) Trichotomy: (a< b = a= b = a> b) 1\ 

-..,(a<b 1\ a=b 1\ a>b) 

(15.45) Antisymmetry: a~ b 1\ b ~a = a= b 

(15.46) Reflexivity: a ~ a 

(15.47) a= b = (Vz:DI: z ~a = z ~b) 

We prove the first of the Transitivity theorems (15.41a). The proof uses 
(b- a)+ (c- b)= c- a, which is proved in an exercise. 

Theorem (15.34) “Positivity of squares ”∶ b ≠ 0 ⇒ pos (b ⋅ b)
Proof:

Assuming `b ≠ 0`∶
By cases∶ `pos b`, `¬ pos b`

Completeness: By “Excluded middle ”
Case `pos b`∶

By “Positivity under ⋅ ” (15.31)with assumption `pos b`
Case `¬ pos b`∶

pos (b ⋅ b)≡ ⟨ (15.23) ` − a ⋅ − b = a ⋅ b` ⟩
pos ((− b) ⋅ (− b))⇐⟨ “Positivity under ⋅ ” (15.31) ⟩
pos (− b) ∧ pos (− b)≡ ⟨ “Idempotency of ∧ ”, “Double negation ” ⟩¬ ¬ pos (− b)≡ ⟨ “Positivity under unary minus ” (15.33)

with assumption `b ≠ 0` ⟩¬ pos b — This is assumption `¬ pos b`
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Part 2: Introduction to Quantification (start LADM chapt. 8),

Quantification expansion

Counting Integral Points

How many integral points are in the triangle
(0,n)∣ /(0,0) — (n,0) ?

(∑ x,y ∶ N x + y ≤ n ● 1)

How many integral points are in the circle of radius n around (0,0)?
(∑ x,y ∶ Z x ⋅ x + y ⋅ y ≤ n ⋅ n ● 1)

Sum Quantification Examples

( ∑ k ∶ N k < 5 ● k )
“The sum of all natural numbers less than five”

( ∑ k ∶ N k < 5 ● k ⋅ k )
“For all natural numbers k that are less than 5, adding up the value of k ⋅ k”

“The sum of all squares of natural numbers less than five”

( ∑ x,y ∶ N x ⋅ y = 120 ● 2 ⋅ (x + y) )
“For all natural numbers x and y with product 120, adding up
the value of 2 ⋅ (x + y)”
“The sum of the perimeters of all integral rectangles with area 120”

Product Quantification Examples

“The factorial of n is the product of all positive integers up to n”

factorial ∶ N→ N

factorial n = (∏ k ∶ N 0 < k ≤ n ● k )

“The product of all odd natural numbers below 50.”

(∏ n ∶ N ¬(2 ∣ n) ∧ n < 50 ● n )
(∏ k ∶ N 2 ⋅ k + 1 < 50 ● 2 ⋅ k + 1 )
(∏ k ∶ N k < 25 ● 2 ⋅ k + 1 )

Sum and Product Quantification

( ∑ x R ● E )
“For all x satisfying R, summing up the value of E”

“The sum of all E for x with R”

( ∑ x ∶ T ● E )
“For all x of type T, summing up the value of E”

“The sum of all E for x of type T”

(∏ x R ● E )
“The product of all E for x with R”

(∏ x ∶ T ● E )
“The product of all E for x of type T”

General Shape of Sum and Product Quantifications

( ∑ x ∶ t1; y, z ∶ t2 R ● E )
(∏ x ∶ t1; y, z ∶ t2 R ● E )

Any number of variables x, y, z can be quantified over

The quantified variables may have type annotations (which act as type
declarations)

Expression R ∶ B is the range of the quantification

Expression E is the body of the quantification

E will have a number type (N, Z, Q, R, C)

Both R and E may refer to the quantified variables x, y, z

The type of the whole quantification expression is the type of E.

LADM/CALCCHECK Quantification Notation

Conventional sum quantification notation:
n∑

i=1
e = e[i ∶= 1] + . . . + e[i ∶= n]

The textbook uses a different, but systematic linear notation:

(∑ i 1 ≤ i ≤ n ∶ e) or (+ i 1 ≤ i ≤ n ∶ e)
We use a variant with a “spot” “●” instead of the colon “:” and only use “big” operators:

(∑ i 1 ≤ i ≤ n ● e) — (/sum i /with 1 /leq i /<= n /spot e )

Reasons for using this kind of linear quantification notation:
Clearly delimited introduction of quantified variables (dummies)

Arbitrary Boolean expressions can define the range(∑ i 1 ≤ i ≤ 7 ∧ even i ● i) = 2 + 4 + 6

The notation extends easily to multiple quantified variables:(∑ i, j ∶ Z 1 ≤ i < j ≤ 4 ● i/j) = 1/2 + 1/3 + 1/4 + 2/3 + 2/4 + 3/4
Meaning of Sum Quantification

Let i be a variable list, R a Boolean expression, and E an expression of a number type.

The meaning of (∑ i R ● E) in state s is:
the sum of the meanings of E
in all those states that satisfy R
and are different from s at most in variables in i.

Examples:(∑ i, j i = j = i + 1 ● i ⋅ j) = 0

(∑ i, j 0 < i < j < 4 ● i ⋅ j) = 1 ⋅ 2 + 1 ⋅ 3 + 2 ⋅ 3
(∑ i, j 1 ≤ i ≤ 2∧3 ≤ j ≤ 4 ● i ⋅ j) = 1 ⋅ 3 + 1 ⋅ 4 + 2 ⋅ 3 + 2 ⋅ 4
In state [(i,7), (j,11), (k,3)], we have:(∑ i, j 0 < i < j < k ● i ⋅ j) = 1 ⋅ 2

Expanding Sum and Product Quantification

Sum quantification (∑) is “addition (+) of arbitrarily many terms”:

( ∑ i 5 ≤ i < 9 ● i ⋅ (i + 1) )
= ⟨ Quantification expansion ⟩
(i ⋅ (i + 1))[i ∶= 5] + (i ⋅ (i + 1))[i ∶= 6] + (i ⋅ (i + 1))[i ∶= 7] + (i ⋅ (i + 1))[i ∶= 8]

= ⟨ Substitution ⟩
5 ⋅ (5 + 1) + 6 ⋅ (6 + 1) + 7 ⋅ (7 + 1) + 8 ⋅ (8 + 1)

Product quantification (∏) is “multiplication (⋅) of arbitrarily many factors”:

(∏ i 0 ≤ i < 3 ● 5 ⋅ i + 1 )
= ⟨ Quantification expansion ⟩
(5 ⋅ i + 1)[i ∶= 0] ⋅ (5 ⋅ i + 1)[i ∶= 1] ⋅ (5 ⋅ i + 1)[i ∶= 2]

= ⟨ Substitution ⟩
(5 ⋅ 0 + 1) ⋅ (5 ⋅ 1 + 1) ⋅ (5 ⋅ 2 + 1)



Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2024

Wolfram Kahl

2024-09-24

General Quantification — LADM Chapter 8

Quantification Examples

(∑ i 0 ≤ i < 4 ● i ⋅ 8)
= ⟨ Quantification expansion, substitution ⟩

0 ⋅ 8+1 ⋅ 8+2 ⋅ 8+3 ⋅ 8
(∏ i 0 ≤ i < 3 ● i + (i + 1))

= ⟨ Quantification expansion, substitution ⟩(0 + 1) ⋅(1 + 2) ⋅(2 + 3)
(∀ i 1 ≤ i < 3 ● i ⋅ d ≠ 6)

= ⟨ Quantification expansion, substitution ⟩
1 ⋅ d ≠ 6 ∧ 2 ⋅ d ≠ 6

(∃ i 0 ≤ i < 6 ● b i = 0)
= ⟨ Quantification expansion, substitution ⟩

b 0 = 0 ∨ b 1 = 0 ∨ b 2 = 0 ∨ b 3 = 0 ∨ b 4 = 0 ∨ b 5 = 0

General Quantification

It works not only for +, ∧, ∨ . . .
Let a type T and an operator ⋆ ∶ T × T → T be given.
If for an appropriate u ∶ T we have:

Symmetry: b ⋆ c = c ⋆ b

Associativity: (b ⋆ c) ⋆ d = b ⋆ (c ⋆ d)
Identity u: u ⋆ b = b = b ⋆ u

we may use ⋆ as quantification operator:

(⋆ x ∶ T1,y ∶ T2 R ● E)
R ∶ B is the range of the quantification

E ∶ T is the body of the quantification

E and R may refer to the quantified variables x and y

The type of the whole quantification expression is T.

General Quantification: Instances
Let a type T and an operator ⋆ ∶ T × T → T be given.
If for an appropriate u ∶ T we have:

Symmetry: b ⋆ c = c ⋆ b
Associativity: (b ⋆ c) ⋆ d = b ⋆ (c ⋆ d)
Identity u: u ⋆ b = b = b ⋆ u

we may use ⋆ as quantification operator: (⋆ x ∶ T1,y ∶ T2 R ● E)∨ ∶ B ×B→ B is symmetric (3.24), associative (3.25),
and has false as identity (3.30) — the “big operator” for ∨ is ∃”:(∃ k ∶ N k > 0 ● k ⋅ k < k + 1)∧ ∶ B ×B→ B is symmetric (3.36), associative (3.27),
and has true as identity (3.39) — the “big operator” for ∧ is ∀”:( ∀ k ∶ N k > 2 ● prime k ⇒ ¬ prime (k + 1) )+ ∶ Z ×Z→ Z is symmetric (15.2), associative (15.1),
and has 0 as identity (15.3) — the “big operator” for + is ∑”:( ∑ n ∶ Z 0 < n < 100∧prime n ● n ⋅ n )

Meaning of General Quantification
Let a type T, and a symmetric and associative operator ⋆ ∶ T × T → T with identity u ∶ T be given.
Further let x be a variable list, R a Boolean expression, and E an expression of type T.

LADM: “Expression (⋆ x ∶ X R ● E) denotes the application of operator ⋆ to the values
of E for all x in X for which range R is true.”

The meaning of (⋆ x R ● E) in state s is:
the nested application of ⋆ to the meanings of E
in all those states that satisfy R
and are different from s at most in variables in x,

or u, if there are no such states.

Examples:(∃ i, j i = j = i + 1 ● i < j) = false(∀ i, j i = j = i + 1 ● i < j) = true(∏ i, j 5 = j = i + 1 ● i ⋅ j) = 4 ⋅ 5(∃ i, j 0 < i ≤ j < 3 ● i ≥ j) = 1 ≥ 1 ∨ 1 ≥ 2 ∨ 2 ≥ 2

Bound / Free Variable Occurrences

(∑ i ∶ N i < x ● i + 1) = 10 example expression

Is this true or false? In which states?

We have: (∑ i ∶ N i < x ● i + 1) = 10 ≡ x = 4

The value of this example expression in a state depends only on x, not on i!

Renaming quantified variables does not change the meaning:

(∑ i ∶ N i < x ● i + 1) = (∑ j ∶ N j < x ● j + 1)
Occurrences of quantified variables inside the quantified expression are bound

Non-bound variable occurences are called free

Variables of the same name may occur both free and bound
in the same expression, e.g.: 3 ⋅ i + (∑ i ∶ N i < x ● 2 ⋅ i)
The variable declarations after the quantification operator
may be called binding occurrences.

Variable Binding is Everywhere! Including in Substitution!

Another example expression: (x + 3 = 5 ⋅ i)[i ∶= 9]
Is this true or false? In which states?

(x + 3 = 5 ⋅ i)[i ∶= 9]≡ ⟨ Substitution, . . . ⟩
x = 42

The value of (x + 3 = 5 ⋅ i)[i ∶= 9] in a state depends only on x, not on i!

Renaming substituted variables does not change the meaning:

(x + 3 = 5 ⋅ i)[i ∶= 9] ≡ (x + 3 = 5 ⋅ j)[j ∶= 9]
Occurrences of substituted variables inside the target expression are bound
The variable occurrences to the left of ∶= in substitutions
may be called binding occurrences.
Non-bound variable occurences are called free.

i > 0 ∧ (x + 3 = 5 ⋅ i)[i ∶= 7 + i]
Substitution does not bind to the right of ∶= !

Trivial Range Axioms

(8.13) Axiom, Empty Range (where u is the identity of ⋆):

(⋆ x false ● P) = u

(∀ x false ● P) = true

(∃ x false ● P) = false

(∑ x false ● P) = 0

(∏ x false ● P) = 1

(8.14) Axiom, One-point Rule: Provided ¬occurs(‘x’, ‘E’),
(⋆x x = E ● P) = P[x ∶= E]

The occurs Meta-Predicate

Definition: occurs(‘v’, ‘e’)means that at least one variable in the list v of variables occurs
free in at least one expression in expression list e.

occurs(‘i,n’, ‘(∑ i,n 1 ≤ i ⋅ n ≤ k ● ni), (∑ n 0 ≤ n < k ● ni)’)√
occurs(‘i’, ‘(i ⋅ (5 + i))[i ∶= k + 2]’) × Substitution is a variable binder, too!

occurs(‘i’, ‘(i ⋅ (5 + i))[i ∶= i + 2]’)√

The ¬occurs Proviso for the One-point Rule

(8.14) Axiom, One-point Rule for ∑: Provided ¬occurs(‘x’, ‘E’),(∑x x = E ● P) = P[x ∶= E]
(8.14) Axiom, One-point Rule for∏: Provided ¬occurs(‘x’, ‘E’),(∏x x = E ● P) = P[x ∶= E]
Examples:(∑x x = 1 ● x ⋅ y) = 1 ⋅ y

(∏x x = y + 1 ● x ⋅ x) = (y + 1) ⋅ (y + 1)
(∑x x = (∑x 1 ≤ x < 4 ● x) ● x ⋅ y) = (∑x 1 ≤ x < 4 ● x) ⋅ y = 6 ⋅ y

Counterexamples:(∑x x = x + 1 ● x) ? x + 1 — “=” not valid!

(∏x x = 2 ⋅ x ● y + x) ? y + 2 ⋅ x — “=” not valid!



The ¬occurs Proviso for the One-point Rule

(8.14) Axiom, One-point Rule: Provided ¬occurs(‘x’, ‘E’),
(⋆x x = E ● P) = P[x ∶= E]
(∀x x = E ● P) ≡ P[x ∶= E]
(∃x x = E ● P) ≡ P[x ∶= E]

Examples:(∀x x = 1 ● x ⋅ y = y) ≡ 1 ⋅ y = y

(∃x x = y + 1 ● x ⋅ x > 42) ≡ (y + 1) ⋅ (y + 1) > 42

Counterexamples:(∀x x = x + 1 ● x = 42) ? x + 1 = 42 — “≡” not valid!

(∃x x = 2 ⋅ x ● y + x = 42) ? y + 2 ⋅ x = 42 — “≡” not valid!

One-point Rule with Example Calculation

(8.14) Axiom, One-point Rule: Provided ¬occurs(‘x’, ‘E’),
(⋆ x x = E ● P) = P[x ∶= E]

Example:

(∑ i ∶ N ● 5 + 2 ⋅ i < 7 5 + 7 ⋅ i)
= ⟨ . . . ⟩
(∑ i ∶ N ● i = 0 5 + 7 ⋅ i)

= ⟨ One-point rule ⟩
(5 + 7 ⋅ i)[i ∶= 0]

= ⟨ Substitution ⟩
5 + 7 ⋅ 0

Automatic extraction of ¬occurs Provisos

(8.14) Axiom, One-point Rule: Provided ¬occurs(‘x’, ‘E’),
(∀ x x = E ● P) ≡ P[x ∶= E]
(∃ x x = E ● P) ≡ P[x ∶= E]

Investigate the binders in scope at the metavariables P and E:
P on the LHS occurs in scope of the binder ∀ x
P on the RHS occurs in scope of the binder [x ∶= . . .]

Therefore: Whether x occurs in P or not does not raise any problems.

E on the LHS occurs in scope of the binder ∀ x
E on the RHS occurs in scope no binders

Therefore: An x that is free in E would be bound on the LHS,
but escape into freedom on the RHS!

CALCCHECK derives and checks ¬occurs provisos automatically.

Textual Substitution Revisited
Let E and R be expressions and let x be a variable. Original definition:

We write: E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of
x replaced by (R).

This was for expressions E built from constants, variables, operator applications only!

In presence of variable binders, such as ∑,∏, ∀, ∃ and substitution,
only free occurrences of x can be replaced
and we need to avoid “capture of free variables”:

(8.11) Provided ¬occurs(‘y’, ‘x,F’),(⋆ y R ● P)[x ∶= F] = (⋆ y R[x ∶= F] ● P[x ∶= F])
LADM Chapter 8:
“⋆ is a metavariable for operators + , ⋅ , ∧ , ∨ ” (resp. ∑,∏, ∀, ∃)

(8.11) is part of the Substitution keyword in CALCCHECK.

Read LADM Chapter 8!

Substitution Examples

(8.11) Provided ¬occurs(‘y’, ‘x,F’),
(⋆ y R ● P)[x ∶= F] = (⋆ y R[x ∶= F] ● P[x ∶= F])

(∑ x 1 ≤ x ≤ 2 ● y)[y ∶= y + z]= ⟨ substitution ⟩(∑ x 1 ≤ x ≤ 2 ● y + z)
(∑ x 1 ≤ x ≤ 2 ● y)[y ∶= y + x]= ⟨ (8.21) Variable renaming ⟩(∑ z 1 ≤ z ≤ 2 ● y)[y ∶= y + x]= ⟨ substitution ⟩(∑ z 1 ≤ z ≤ 2 ● y + x)

Substitution Examples (ctd.)

(8.11) Provided ¬occurs(‘y’, ‘x,F’),
(⋆ y R ● P)[x ∶= F] = (⋆ y R[x ∶= F] ● P[x ∶= F])

(∑ x 1 ≤ x ≤ 2 ● y)[x ∶= y + x]= ⟨ (8.21) Variable renaming ⟩(∑ z 1 ≤ z ≤ 2 ● y)[x ∶= y + x]= ⟨ (8.11) ⟩(∑ z (1 ≤ z ≤ 2)[x ∶= y + x] ● (y)[x ∶= y + x])= ⟨ Substitution ⟩(∑ z 1 ≤ z ≤ 2 ● y)= ⟨ (8.21) Variable renaming ⟩(∑ x 1 ≤ x ≤ 2 ● y)
(8.11f) Provided ¬occurs(‘x’, ‘E’),

E[x ∶= F] = E

Renaming of Bound Variables
(8.21) Axiom, Dummy renaming (α-conversion):(⋆ x R ● P) = (⋆ y R[x ∶= y] ● P[x ∶= y]) provided ¬occurs(‘y’, ‘R,P’).
(∑ i 0 ≤ i < k ● ni)

= ⟨ Dummy renaming (8.21), ¬occurs(‘j’, ‘0 ≤ i < k, ni’) ⟩
(∑ j 0 ≤ j < k ● nj)
(∑ i 0 ≤ i < k ● ni)

? ⟨ Dummy renaming (8.21) ×⟩
(∑ k 0 ≤ k < k ● nk) k captured!

Generally, use fresh variables for renaming to avoid variable capture!

In CALCCHECK, renaming of bound variables is part of “Reflexivity of =”,
but can also be mentioned explicitly.

Leibniz Rules for Quantification

Try to use x + x = 2 ⋅ x and Leibniz (1.5)
X = Y

E[z ∶= X] = E[z ∶= Y] to obtain:

(∑ x 0 ≤ x < 9 ● x + x) = (∑ x 0 ≤ x < 9 ● 2 ⋅ x)
Choose E as: (∑ x 0 ≤ x < 9 ● z)
Perform substitution: (∑ x 0 ≤ x < 9 ● z)[z ∶= x + x](∑ y 0 ≤ y < 9 ● x + x)
Not possible with (1.5)!
— E[z ∶= X] = E[z ∶= Y] renames x!

Special Leibniz rule for quantification:
P = Q(⋆ x R ● E[z ∶= P]) = (⋆ x R ● E[z ∶= Q])

LADM Leibniz Rules for Quantification

Rewrite equalities in the range context of quantifications:

(8.12) Leibniz
P = Q(⋆ x E[z ∶= P] ● S) = (⋆ x E[z ∶= Q] ● S)

Rewrite equalities in the body context of quantifications:

(8.12) Leibniz
R ⇒ (P = Q)(⋆ x R ● E[z ∶= P]) = (⋆ x R ● E[z ∶= Q])

(These inference rules will also be used implicitly.)

Important: P = Q, repectively R⇒(P = Q), needs to be a theorem!
These rules are not available for local Assumptions!
(Because x may occur in R, P, Q.)

The CALCCHECK versions use universally-quantified antecedents.

Axiom “Leibniz for ∑ range ”∶ (∀ x ● R1 ≡ R2) ⇒ (∑ x R1 ● E) = (∑ x R2 ● E)
Axiom “Leibniz for ∑ body ”∶ (∀ x ● R ⇒ E1 = E2) ⇒ (∑ x R ● E1) = (∑ x R ● E2)
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Bound / Free Variable Occurrences — The occurs Meta-Predicate

Renaming quantified variables does not change the meaning:

(∀ i ● x ⋅ i = 0) ≡ (∀ j ● x ⋅ j = 0)
Occurrences of quantified variables inside the quantified expression are bound

Variable occurences in an expression where they are not bound are free

i > 0 ∨ (∀ i 0 ≤ i ● x ⋅ i = 0)
The variable declarations after the quantification operator may be called binding
occurrences.

Definition: occurs(‘v’, ‘e’)means that at least one variable in the list v of variables occurs
free in at least one expression in expression list e.

CALCCHECK derives and checks ¬occurs provisos automatically.

Leibniz Rules for Quantification: LADM and CALCCHECK

Rewrite equalities in the range context of quantifications:

(8.12) Leibniz
P = Q(⋆ x E[z ∶= P] ● S) = (⋆ x E[z ∶= Q] ● S)

Rewrite equalities in the body context of quantifications:

(8.12) Leibniz
R ⇒ (P = Q)(⋆ x R ● E[z ∶= P]) = (⋆ x R ● E[z ∶= Q])

(These inference rules will also be used implicitly.)

Important: P = Q, repectively R⇒(P = Q), needs to be a theorem!
These rules are not available for local Assumptions!
(Because x may occur in R, P, Q.)

The CALCCHECK versions use universally-quantified antecedents.

Axiom “Leibniz for ∑ range ”∶ (∀ x ● R1 ≡ R2) ⇒ (∑ x R1 ● E) = (∑ x R2 ● E)
Axiom “Leibniz for ∑ body ”∶ (∀ x ● R ⇒ E1 = E2) ⇒ (∑ x R ● E1) = (∑ x R ● E2)

Distributivity
(8.15) Axiom, (Quantification) Distributivity:

(⋆ x R ● P) ⋆ (⋆ x R ● Q) = (⋆ x R ● P ⋆Q),
provided each quantification is defined.

CALCCHECK currently has no way to express or check this proviso —
— it remains in your responsibility!

(∑ i ∶ N i < n ● f i) + (∑ i ∶ N i < n ● g i)
= ⟨ Quantification Distributivity (8.15) ⟩
(∑ i ∶ N i < n ● f i + g i)

Note: Some quantifications are not defined, e.g.: (∑n ∶ N ● n)
Note that quantifications over ∧ or ∨ are always defined:

(∀ x R ● P∧Q) = (∀ x R ● P)∧(∀ x R ● Q)
(∃ x R ● P∨Q) = (∃ x R ● P)∨(∃ x R ● Q)

Distributivity
(8.15) Axiom, (Quantification) Distributivity:

(⋆ x R ● P) ⋆ (⋆ x R ● Q) = (⋆ x R ● P ⋆Q),
provided each quantification is defined.

Calculation∶
(1 + 1 ⋅ 1) + (2 + 2 ⋅ 2) + (3 + 3 ⋅ 3)

= ⟨ Quantification expansion, substitution ⟩
∑ i ∶ N 1 ≤ i < 4 ● (i + i ⋅ i)

= ⟨ “Distributivity of ∑ over + ” ⟩
(∑ i ∶ N 1 ≤ i < 4 ● i) + (∑ i ∶ N 1 ≤ i < 4 ● i ⋅ i)

= ⟨ Quantification expansion, substitution ⟩
(1 + 2 + 3) + (1 ⋅ 1 + 2 ⋅ 2 + 3 ⋅ 3)

Disjoint Range Split — LADM

(8.16) Axiom, Range split:

(⋆ x R∨S ● P) = (⋆ x R ● P) ⋆ (⋆ x S ● P)
provided R∧S = false and each quantification is defined.

(Σ x R∨S ● P) = (Σ x R ● P) + (Σ x S ● P)
provided R∧S = false and each sum is defined.

(∀ x R∨S ● P) = (∀ x R ● P)∧(∀ x S ● P)
provided R∧S = false.

(∃ x R∨S ● P) = (∃ x R ● P)∨(∃ x S ● P)
provided R∧S = false.

Disjoint Range Split for ∑ (LADM and CALCCHECK)
(8.16) Axiom, Range Split: (Σ x R∨S ● P) = (Σ x R ● P) + (Σ x S ● P)

provided R∧S = false and each sum is defined.

CALCCHECK currently cannot deal with “provided each sum is defined”.
But once ∀ is available, Q∧R = false does not need to be a proviso:

Theorem “Disjoint range split for ∑ ”∶
(∀ x ● R ∧ S ≡ false) ⇒
((∑ x R ∨ S ● E) = (∑ x R ● E) + (∑ x S ● E))

That is: Summing up over a large range can be done by adding the results
of summing up two disjoint and complementary subranges.

Ô⇒ “Divide and conquer” algorithm design pattern

DIVIDE ET IMPERA
— Gaius Julius Caesar

Range Split “Axioms”

(8.16) Axiom, Range split:(⋆ x R∨S ● P) = (⋆ x R ● P) ⋆ (⋆ x S ● P)
provided R∧S = false and each quantification is defined.

(8.17) Axiom, Range Split:(⋆ x R∨S ● P) ⋆ (⋆ x R∧S ● P) = (⋆ x R ● P) ⋆ (⋆ x S ● P)
provided each quantification is defined.

(8.18) Axiom, Range Split for idempotent ⋆:(⋆ x R∨S ● P) = (⋆ x R ● P) ⋆ (⋆ x S ● P)
provided each quantification is defined.

(∀ x R∨S ● P) = (∀ x R ● P)∧(∀ x S ● P)
(∃ x R∨S ● P) = (∃ x R ● P)∨(∃ x S ● P)

Variable Binding Rearrangements

(8.19) Axiom, Interchange of dummies:

(⋆ x R ● (⋆ y S ● P)) = (⋆ y S ● (⋆ x R ● P))
provided ¬occurs(‘y’, ‘R’) and ¬occurs(‘x’, ‘S’), and each quantification is defined.

Apparently not provable for general quantification from the quantification axioms in LADM:

(8.19.1) Dummy list permutation: (⋆ x,y R ● P) = (⋆ y,x R ● P)
(without side conditions restricting variable occurrences!)

(8.20) Axiom, Nesting: (⋆ x,y R∧S ● P) = (⋆ x R ● (⋆ y S ● P))
provided ¬occurs(‘y’, ‘R’).

(8.21) Axiom, Dummy renaming (α-conversion):(⋆ x R ● P) = (⋆ y R[x ∶= y] ● P[x ∶= y]) provided ¬occurs(‘y’, ‘R,P’).
Substitution (8.11) prevents capture of y by binders in R or P

Formalise, and prove:

The sum of the first n odd natural numbers is equal to n2.

Formalise it in a way that makes it easy to prove!

One option:
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How do you prove this?

The sum of the first n odd natural numbers is equal to n2
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The sum of the first n odd natural numbers is equal to n2

7KHRUHP�'2GG�QXPEHU�VXP(��
�����-�L�����:�L���Q�-�VXF�L���L�� �Q�y�Q�
3URRI��
��%\�LQGXFWLRQ�RQ�CQ����C��
����%DVH�FDVH��
���������-�L�����:�L�����-�VXF�L���L��
������ ��'1RWKLQJ�LV�OHVV�WKDQ�]HUR(���
���������-�L�����:�IDOVH�-�VXF�L���L��
������ ��'(PSW\�UDQJH�IRU�-(��
����������
������ ��''HILQLWLRQ�RI�y�IRU��(���
����������y���
����,QGXFWLRQ�VWHS��
���������-�L�����:�L���VXF�Q�-�VXF�L���L��
������ ��'6SOLW�RII�WHUP�DW�WRS(��6XEVWLWXWLRQ���
���������-�L�����:�L���Q�-�VXF�L���L�����VXF�Q���Q��
������ ��,QGXFWLRQ�K\SRWKHVLV���
��������VXF�Q���Q���Q�y�Q�
������ ��''HILQLWLRQ�RI�y�IRU�CVXFC(���
��������VXF�Q���Q�y�VXF�Q�
������ ��''HILQLWLRQ�RI�y�IRU�CVXFC(���
��������VXF�Q�y�VXF�Q�

Manipulating Ranges (General Quantfication Version)

(8.23) Theorem Split off term: For n ∶ N and dummies i ∶ N,

(⋆ i 0 ≤ i < n + 1 ● P) = (⋆ i 0 ≤ i < n ● P) ⋆ P[i ∶= n]
(⋆ i 0 ≤ i < n + 1 ● P) = P[i ∶= 0] ⋆ (⋆ i 0 < i < n + 1 ● P)

Typical uses: Induction proofs, verification of loops

Generalisation: NÐ→ Z, 0Ð→ m ∶ Z (with m ≤ n)

The following work both with m,n, i ∶ N and with m,n, i ∶ Z:

Theorem: Split off term from top:

m ≤ n ⇒(⋆ i m ≤ i < n + 1 ● P) = (⋆ i m ≤ i < n ● P) ⋆ P[i ∶= n]
Theorem: Split off term from bottom:

m ≤ n ⇒(⋆ i m ≤ i < n + 1 ● P) = P[i ∶= m] ⋆ (⋆ i m + 1 ≤ i < n + 1 ● P)
Manipulating Ranges (Sum Version)

(8.23) Theorem Split off term: For n ∶ N and dummies i ∶ N,

(∑ i 0 ≤ i < n + 1 ● P) = (∑ i 0 ≤ i < n ● P) + P[i ∶= n]
(∑ i 0 ≤ i < n + 1 ● P) = P[i ∶= 0] + (∑ i 0 < i < n + 1 ● P)

Typical uses: Induction proofs, verification of loops

Generalisation: NÐ→ Z, 0Ð→ m ∶ Z (with m ≤ n)

The following work both with m,n, i ∶ N and with m,n, i ∶ Z:

Theorem: Split off term from top:

m ≤ n ⇒(∑ i m ≤ i < n + 1 ● P) = (∑ i m ≤ i < n ● P) + P[i ∶= n]
Theorem: Split off term from bottom:

m ≤ n ⇒(∑ i m ≤ i < n + 1 ● P) = P[i ∶= m] + (∑ i m + 1 ≤ i < n + 1 ● P)

Proving Split-off Term
We have:

(8.16) Axiom, Range Split:(Σ x R∨S ● P) = (Σ x R ● P) + (Σ x S ● P)
provided R∧S = false and each sum is defined.

How can you prove theorems like the following?

Theorem “Split off ∑ -term from top of <-suc range ”∶
(∑ i ∶ N i < suc n ● E) = (∑ i ∶ N i < n ● E) + E[i ∶= n]

Use range split first —Ô⇒ need to transform the LHS range expression i < suc n into an appropriate disjunctionÔ⇒ the first disjunct should be the range expression i < n from the RHS

The second range will have one elementÔ⇒ The second sum from the (8.16) RHS has range i = nÔ⇒ That second sum disappears via the one-point rule
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Part 2: Predicate Logic 1

Generalising De Morgan to Quantification

¬(∃ i 0 ≤ i < 4 ● P)
= ⟨ Expand quantification ⟩

¬(P[i ∶= 0] ∨ P[i ∶= 1] ∨ P[i ∶= 2] ∨ P[i ∶= 3])
= ⟨ (3.47) De Morgan ⟩

¬P[i ∶= 0] ∧ ¬P[i ∶= 1] ∧ ¬P[i ∶= 2] ∧ ¬P[i ∶= 3]
= ⟨ Contract quantification ⟩
(∀ i 0 ≤ i < 4 ● ¬P)

(9.18b,c,a) Generalised De Morgan:¬(∃ x R ● P) ≡ (∀ x R ● ¬P)(∃ x R ● ¬P) ≡ ¬(∀ x R ● P)¬(∃ x R ● ¬P) ≡ (∀ x R ● P)
(9.17) Axiom, Generalised De Morgan:(∃ x R ● P) ≡ ¬(∀ x R ● ¬P)

“Trading” Range Predicates with Body Predicates in ∀ and ∃
(9.2) Axiom, Trading: (∀ x R ● P) ≡ (∀ x ● R⇒P)
Trading Theorems for ∀:
(9.3a) (∀ x R ● P) ≡ (∀ x ● ¬R∨P)
(9.3b) (∀ x R ● P) ≡ (∀ x ● R∧P ≡ R)
(9.3c) (∀ x R ● P) ≡ (∀ x ● R∨P ≡ P)
(9.4a) (∀ x Q∧R ● P) ≡ (∀ x Q ● R⇒P)
(9.4b) (∀ x Q∧R ● P) ≡ (∀ x Q ● ¬R∨P)
(9.4c) (∀ x Q∧R ● P) ≡ (∀ x Q ● R∧P ≡ R)
(9.4d) (∀ x Q∧R ● P) ≡ (∀ x Q ● R∨P ≡ P)
(9.17) Axiom, Generalised De Morgan: (∃ x R ● P) ≡ ¬(∀ x R ● ¬P)
(9.19) Trading for ∃: (∃ x R ● P) ≡ (∃ x ● R ∧ P)
(9.20) Trading for ∃: (∃ x Q ∧R ● P) ≡ (∃ x Q ● R ∧ P)

Instantiation for ∀P[x ∶= E]
≡ ⟨ (8.14) One-point rule ⟩(∀ x x = E ● P)
⇐ ⟨ (9.10) Range weakening for ∀ ⟩(∀ x true∨x = E ● P)
≡ ⟨ (3.29) Zero of ∨ ⟩(∀ x true ● P)
≡ ⟨ true range in quantification ⟩(∀ x ● P)

This proves: (9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]

∀ x ● P
P[x ∶= E] ∀-Elim

The one-point rule is “sharper” than Instantiation.

Using sharper rules often means fewer dead ends. . .

A sharp version obtained via (3.60):(∀ x ● P) ≡ (∀ x ● P)∧P[x ∶= E]
Using Instantiation for ∀

(9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]
A sharp version of Instantiation obtained via (3.60): (∀ x ● P) ≡ (∀ x ● P)∧P[x ∶= E]
Proving (∀ x ● x + 1 > x) ⇒ y + 2 > y:

(∀ x ● x + 1 > x)
= ⟨ Instantiation (9.13) with (3.60) ⟩
(∀ x ● x + 1 > x) ∧ y + 1 > y

⇒ ⟨ Left-monotonicity of ∧ (4.3) with Instantiation (9.13) ⟩
(y + 1) + 1 > y + 1 ∧ y + 1 > y

⇒ ⟨ Transitivity of > (15.41) ⟩
y + 1 + 1 > y

= ⟨ 1 + 1 = 2 ⟩
y + 2 > y

Recall: with2

¬ (a ⋅ b = a ⋅ 0)
≡ ⟨ “Cancellation of ⋅ ” with assumption `a ≠ 0` ⟩
¬ (b = 0)

In a hint of shape “HintItem1 with HintItem2 and HintItem3”:
If HintItem1 refers to a theorem of shape p⇒ q,

then HintItem2 and HintItem3 are used to prove p

and q is used in the surrounding proof.

Here:
HintItem1 is “Cancellation of ⋅”: z ≠ 0 ⇒ (z ⋅ x = z ⋅ y ≡ x = y)
HintItem2 is “Assumption a ≠ 0”

The surrounding proof uses: a ⋅ b = a ⋅ 0 ≡ b = 0



Monotonicity with . . .

(∀ x ● x + 1 > x) ∧ y + 1 > y

⇒ ⟨ Left-monotonicity of ∧ (4.3) with Instantiation (9.13) ⟩
(y + 1) + 1 > y + 1 ∧ y + 1 > y

In a hint of shape “HintItem1 with HintItem2 and HintItem3”:
If HintItem1 refers to a theorem of shape p⇒ q,
then HintItem2 and HintItem3 are used to prove p
and q is used in the surrounding proof.

Here:
HintItem1 is “Left-monotonicity of ∧”: (p⇒ q)⇒((p∧ r) ⇒ (q∧ r))
HintItem2 is “Instantiation”: (∀ x ● x + 1 > x)⇒ (y + 1) + 1 > y + 1

The surrounding proof uses: (∀ x ● x + 1 > x) ∧ y + 1 > y⇒ (y + 1) + 1 > y + 1 ∧ y + 1 > y

with3: Rewriting Theorems before Rewriting
ThmA with ThmB

If ThmB gives rise to an equality/equivalence L = R:
Rewrite ThmA with L↦ R
E.g.: Assumption `p⇒ q` with (3.60) `p⇒ q ≡ p∧ q ≡ q`

The local theorem p⇒ q (resulting from the Assumption)
rewrites via: p⇒ q ↦ p ≡ p∧ q (from (3.60))
to: p ≡ p∧ q
which can be used for the rewrite: p ↦ p∧ q

Theorem (4.3) “Left-monotonicity of ∧ ”∶ (p ⇒ q) ⇒ ((p ∧ r) ⇒ (q ∧ r))
Proof:

Assuming `p ⇒ q`∶
p ∧ r≡ ⟨ Assumption `p ⇒ q` with “Definition of⇒ from ∧ ” ⟩
p ∧ q ∧ r⇒⟨ “Weakening ” ⟩
q ∧ r

Using Instantiation for ∀
(9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]
A sharp version of Instantiation obtained via (3.60): (∀ x ● P) ≡ (∀ x ● P)∧P[x ∶= E]
Theorem∶ (∀ x ∶ Z ● x < x + 1) ⇒ y < y + 2
Proof:(∀ x ∶ Z ● x < x + 1)≡ ⟨ “Instantiation ” (9.13)with “Definition of⇒ via ∧” (3.60)— explicit substitution needed! ⟩(∀ x ∶ Z ● x < x + 1) ∧ (x < x + 1)[x ∶= y + 1]≡ ⟨ Substitution, Fact `1 + 1 = 2` ⟩(∀ x ∶ Z ● x < x + 1) ∧ y + 1 < y + 2⇒⟨ “Monotonicity of ∧ ” with “Instantiation ” ⟩(x < x + 1)[x ∶= y] ∧ y + 1 < y + 2≡ ⟨ Substitution ⟩

y < y + 1 ∧ y + 1 < y + 2⇒⟨ “Transitivity of < ” ⟩
y < y + 2
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Predicate Logic — LADM Chapter 9 (ctd.)

Warm-Up

What does “assuming the antecedent” mean?

Give the rule for quantification nesting.

State the one-point rule and the empty range axiom.

State the quantification distributivity axiom.

Give the rule for disjoint range split.

Give the rule for substitution into quantification.

State the basic trading laws for ∀ and ∃.

State the theorem of instantiation for ∀.

Using Instantiation for ∀
(9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]
A sharp version of Instantiation obtained via (3.60): (∀ x ● P) ≡ (∀ x ● P)∧P[x ∶= E]
Proving (∀ x ● x + 1 > x) ⇒ y + 2 > y:

(∀ x ● x + 1 > x)
≡ ⟨ “Instantiation” (9.13) with “Implication via ∧” (3.60=) ⟩
(∀ x ● x + 1 > x) ∧ y + 1 > y

⇒ ⟨ “Left-monotonicity of ∧” (4.3) with “Instantiation” (9.13) ⟩
(y + 1) + 1 > y + 1 ∧ y + 1 > y

⇒ ⟨ “Transitivity of >” (15.41) ⟩
y + 1 + 1 > y

≡ ⟨ 1 + 1 = 2 ⟩
y + 2 > y

Recall: with2

¬ (a ⋅ b = a ⋅ 0)
≡ ⟨ “Cancellation of ⋅ ” with assumption `a ≠ 0` ⟩
¬ (b = 0)

In a hint of shape “HintItem1 with HintItem2 and HintItem3”:
If HintItem1 refers to a theorem of shape p⇒ q,

then HintItem2 and HintItem3 are used to prove p

and q is used in the surrounding proof.

Here:
HintItem1 is “Cancellation of ⋅”: z ≠ 0 ⇒ (z ⋅ x = z ⋅ y ≡ x = y)
HintItem2 is “Assumption a ≠ 0”

The surrounding proof uses: a ⋅ b = a ⋅ 0 ≡ b = 0

Recall: with2 in: Monotonicity with . . .

(∀ x ● x + 1 > x) ∧ y + 1 > y

⇒ ⟨ “Left-monotonicity of ∧” (4.3) with “Instantiation” (9.13) ⟩
(y + 1) + 1 > y + 1 ∧ y + 1 > y

In a hint of shape “HintItem1 with HintItem2 and HintItem3”:
If HintItem1 refers to a theorem of shape p⇒ q,
then HintItem2 and HintItem3 are used to prove p
and q is used in the surrounding proof.

Here:
HintItem1 is “Left-monotonicity of ∧”: (p⇒ q)⇒((p∧ r) ⇒ (q∧ r))
HintItem2 is “Instantiation”: (∀ x ● x + 1 > x)⇒ (y + 1) + 1 > y + 1

The surrounding proof uses: (∀ x ● x + 1 > x) ∧ y + 1 > y⇒ (y + 1) + 1 > y + 1 ∧ y + 1 > y

Modus Pones via with2

Modus ponens theorem: (3.77) Modus ponens: p∧(p⇒ q)⇒ q

Modus ponens inference rule:

(“Implication elimination” rule)
P⇒Q P

Q ⇒-Elim
f ∶ A→ B x ∶ A(f x) ∶ B

Fct. app.

Applying implication theorems:

Q1⊑ ⟨ “Theorem 1” `P⇒(Q1 ⊑ Q2)` with “Theorem 2” `P` ⟩
Q2

A proof for P⇒Q can be used as a recipe
for turning a proof for P into a proof for Q.

Theorem “Left-monotonicity of ∧”: (p⇒ q) ⇒ ((p∧ r) ⇒ (q∧ r))
(∀ x ● x + 1 > x) ∧ y + 1 > y⇒ ⟨ “Left-monotonicity of ∧” (4.3) with “Instantiation” (9.13) ⟩(y + 1) + 1 > y + 1 ∧ y + 1 > y

with3: Rewriting Theorems before Rewriting
ThmA with ThmB

If ThmB gives rise to an equality/equivalence L = R: Rewrite ThmA with L↦ R

E.g.: “Instantiation” (9.13) with “Implication via ∧” `(p⇒ q) = (p∧ q ≡ q)`
The theorem (∀ x ● P) ⇒ P[x ∶= E] “Instantiation” (9.13)

rewrites via the rule p⇒ q ↦ p ≡ p∧ q (from “Implication via ∧” (3.60=))

to (∀ x ● P) ≡ (∀ x ● P) ∧ P[x ∶= E],
which instantiated with x + 1 > x for P and y for E to:(∀ x ● x + 1 > x) ≡ (∀ x ● x + 1 > x) ∧ (x + 1 > x)[x ∶= y]

In LADM, this substitution can be implicitly applied:

(∀ x ● x + 1 > x)≡ ⟨ “Instantiation” (9.13) with “Implication via ∧” (3.60=) ⟩(∀ x ● x + 1 > x) ∧ y + 1 > y

(CALCCHECK need it explicit — see the next slide.)



with3: Rewriting Theorems before Rewriting
ThmA with ThmB

If ThmB gives rise to an equality/equivalence L = R: Rewrite ThmA with L↦ R

E.g.: “Instantiation” (9.13) with “Implication via ∧” `(p⇒ q) = (p∧ q ≡ q)`
The theorem (∀ x ● P) ⇒ P[x ∶= E] “Instantiation” (9.13)

rewrites via the rule p⇒ q ↦ p ≡ p∧ q (from “Implication via ∧” (3.60=))

to (∀ x ● P) ≡ (∀ x ● P) ∧ P[x ∶= E],
which can be used right-to-left† as rewrite rule (∀ x ● P) ∧ P[x ∶= E] ↦ (∀ x ● P)
and instantiated with x + 1 > x for P and y for E to:(∀ x ● x + 1 > x) ∧ (x + 1 > x)[x ∶= y] ↦ (∀ x ● x + 1 > x)
(∀ x ∶ Z ● x < x + 1)≡ ⟨ “Instantiation ” (9.13)with “Implication via ∧” (3.60 =)— explicit substitution needed! ⟩(∀ x ∶ Z ● x < x + 1) ∧ (x < x + 1)[x ∶= y + 1]

† Trying this left-to-right would not gain an instantiation for E from the matching of (∀ x ● P) against(∀ x ● x + 1 > x).

Using Instantiation for ∀
(9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]
A sharp version of Instantiation obtained via (3.60): (∀ x ● P) ≡ (∀ x ● P)∧P[x ∶= E]
Theorem∶ (∀ x ∶ Z ● x < x + 1) ⇒ y < y + 2
Proof:(∀ x ∶ Z ● x < x + 1)≡ ⟨ “Instantiation ” (9.13)with “Definition of⇒ via ∧” (3.60)— explicit substitution needed! ⟩(∀ x ∶ Z ● x < x + 1) ∧ (x < x + 1)[x ∶= y + 1]≡ ⟨ Substitution, Fact `1 + 1 = 2` ⟩(∀ x ∶ Z ● x < x + 1) ∧ y + 1 < y + 2⇒⟨ “Monotonicity of ∧ ” with “Instantiation ” ⟩(x < x + 1)[x ∶= y] ∧ y + 1 < y + 2≡ ⟨ Substitution ⟩

y < y + 1 ∧ y + 1 < y + 2⇒⟨ “Transitivity of < ” ⟩
y < y + 2

Theorems and Universal Quantification

(9.16) Metatheorem: P is a theorem iff (∀ x ● P) is a theorem.

This is another justification for implicit use of “Instantiation” (9.13)(∀ x ● P) ⇒ P[x ∶= E]:
Theorem∶ (∀ x ∶ Z ● x < x + 1) ⇒ y < y + 2
Proof:

Assuming (1) `∀ x ∶ Z ● x < x + 1`∶
y< ⟨ Assumption (1)— implicit instantiation with `y` for `E` ⟩
y + 1< ⟨ Assumption (1)— implicit instantiation with `y + 1` for `E` ⟩
y + 1 + 1= ⟨ Fact `1 + 1 = 2` ⟩
y + 2

Implicit Universal Quantification in Theorems 1

(9.16) Metatheorem: P is a theorem iff (∀ x ● P) is a theorem.

(If proving “x + 1 > x” is considered to really mean proving “∀ x ● x + 1 > x”, then the x in
“x + 1 > x” is called implicitly universally quantified.)

Proof method: To prove (∀ x ● P),
we prove P for arbitrary x.

That is really a prose version of the following inference rule:

P∀ x ● P
∀-Intro (prov. x not free in assumptions)

In CALCCHECK:
Proving (∀ v ∶ N ● P): For any ‘v ∶ N‘:

Proof for P
(Non-local assumptions
with free v are not usable.)

Using “For any” for “Proof by Generalisation”
In CALCCHECK:

Proving (∀ v ∶ N ● P): For any ‘v ∶ N‘:
Proof for P

Proving ∀ x ∶ N ● x < x + 1:

For any `x ∶ N`:
x < x + 1≡ ⟨ Identity of + ⟩
x + 0 < x + 1≡ ⟨ Cancellation of + ⟩
0 < 1≡ ⟨ Fact `1 = suc 0` ⟩
0 < suc 0≡ ⟨ Zero is less than successor ⟩
true

Implicit Universal Quantification in Theorems 2

(9.16) Metatheorem: P is a theorem iff (∀ x ● P) is a theorem.

LADM Proof method: To prove (∀ x R ● P),
we prove P for arbitrary x in range R.

That is:
Assume R to prove P (and assume nothing else that mentions x)
This proves R⇒P
Then, by (9.16), (∀ x ● R⇒P) is a theorem.
With (9.2) Trading for ∀, this is transformed into (∀ x R ● P).

In CALCCHECK:
Proving (∀ v ∶ N ● P): For any ‘v ∶ N‘:

Proof for P

Proving (∀ v ∶ N R ● P): For any ‘v ∶ N‘ satisfying ‘R‘:
Proof for P using Assumption ‘R‘

Using “For any . . . satisfying” for “Proof by Generalisation”
In CALCCHECK:

Proving (∀ v ∶ N R ● P): For any ‘v ∶ N‘ satisfying ‘R‘:
Proof for P using Assumption ‘R‘

Proving ∀ x ∶ N x < 2 ● x < 3 :

For any `x ∶ N` satisfying `x < 2`:
x

< ⟨ Assumption `x < 2` ⟩
2

< ⟨ Fact `2 < 3` ⟩
3

Combined Quantification Examples
“There is a least integer.”

“There exists an integer b such that every integer n is at least b”.

“There exists an integer b such that for every integer n, we have b ≤ n”.

(∃ b ∶ Z ● (∀ n ∶ Z ● b ≤ n))
“π can be enclosed within rational bounds that are less than any ε apart”

“For every positive real number ε, there are rational numbers r and s with
r < s < r + ε, such that r < π < s”

(∀ ε ∶ R 0 < ε● (∃ r, s ∶ Q r < s < r + ε ● r < π < s))
“f ∶ R→ R is continuous” — Exercise!

∃-Introduction

Recall: (9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]
Dual: (9.28) ∃-Introduction: P[x ∶= E] ⇒ (∃ x ● P)
An expression E with P[x ∶= E] is called a “witness” of (∃ x ● P).
Proving an existential quantification via ∃-Introduction requires “exhibiting a witness”.

Inference rule:

P[x ∶= E]∃ x ● P
∃-Intro

∀ x ● P
P[x ∶= E] ∀-Elim

Using ∃-Introduction for “Proof by Example”

(9.28) ∃-Introduction: P[x ∶= E] ⇒ (∃ x ● P)
An expression E with P[x ∶= E] is called a “witness” of (∃ x ● P).
Proving an existential quantification via ∃-Introduction requires “exhibiting a witness”.

(∃ x ∶ N ● x ⋅ x < x + x)
⇐ ⟨ ∃-Introduction ⟩
(x ⋅ x < x + x)[x ∶= 1]

≡ ⟨ Substitution ⟩
1 ⋅ 1 < 1 + 1

≡ ⟨ Evaluation ⟩
true



Using ∃-Introduction for “Proof by Counter-Example”

(9.28) ∃-Introduction: P[x ∶= E] ⇒ (∃ x ● P)
¬(∀ x ∶ N ● x + x < x ⋅ x)

≡ ⟨ Generalised De Morgan ⟩
(∃ x ∶ N ● ¬(x + x < x ⋅ x))

⇐ ⟨ ∃-Introduction ⟩
(¬(x + x < x ⋅ x))[x ∶= 2]

≡ ⟨ Substitution ⟩
¬(2 + 2 < 2 ⋅ 2)

≡ ⟨ Fact `2 + 2 < 2 ⋅ 2 ≡ false` ⟩
¬false

≡ ⟨Negation of false ⟩
true
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Part 1: Assuming witness . . ., Monotonicity of ∀ and ∃
Witnesses

(9.30v) Metatheorem Witness: If ¬occurs(‘x’, ‘Q’), then:

(∃ x R ● P)⇒Q is a theorem iff (R∧P)⇒Q is a theorem

Theorem “Witness”: (∃ x R ● P)⇒Q ≡ (∀ x ● R∧P⇒Q) prov. ¬occurs(‘x’, ‘Q’)
Proof: (∃ x R ● P)⇒Q

= ⟨ (9.19) Trading for ∃ ⟩(∃ x ● R∧P)⇒Q
= ⟨ (3.59) Material implication p⇒ q ≡ ¬p∨ q, (9.18b) Gen. De Morgan ⟩(∀ x ● ¬(R∧P))∨Q
= ⟨ (9.5) Distributivity of ∨ over ∀ — ¬occurs(‘x’, ‘Q’) ⟩(∀ x ● ¬(R∧P)∨Q)
= ⟨ (3.59) Material implication p⇒ q ≡ ¬p∨ q ⟩(∀ x ● R∧P⇒Q)

The last line is, by Metatheorem (9.16), a theorem iff (R∧P)⇒Q is.

LADM Theory of Integers — Axioms and Some Theorems
(15.1) Axiom, Associativity: (a + b) + c = a + (b + c)(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
(15.2) Axiom, Symmetry: a + b = b + a

a ⋅ b = b ⋅ a
(15.3) Axiom, Additive identity: 0 + a = a

(15.4) Axiom, Multiplicative identity: 1 ⋅ a = a

(15.5) Axiom, Distributivity: a ⋅ (b + c) = a ⋅ b + a ⋅ c
(15.6) Axiom, Additive Inverse: (∃x ● x + a = 0)
(15.7) Axiom, Cancellation of ⋅: c ≠ 0 ⇒ (c ⋅ a = c ⋅ b ≡ a = b)
(15.8) Cancellation of +: a + b = a + c ≡ b = c

(15.10b) Unique mult. identity: a ≠ 0 ⇒ (a ⋅ z = a ≡ z = 1)
(15.12) Unique additive inverse: x + a = 0 ∧ y + a = 0 ⇒ x = y

“Witness”:(∃ x R ● P)⇒Q≡ (∀ x ● R∧P⇒Q)
prov. ¬occurs(‘x’, ‘Q’)

(15.6) Additive Inverse:(∃ x ● x + a = 0)
(15.8) Cancellation of +:

a + b = a + c ≡ b = c
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(15.6) Additive Inverse(∃ x ● x + a = 0)

(∃x ● P)
⌜P⌝....
R

R
∃-Elim
(prov. x not
free in R,
assumptions)

New Proof Strutures: Assuming witness

Assuming witness `x{ ∶ type}?` satisfying `P` ∶
introduces the bound variable ‘x‘
makes P available as assumption to the contained proof.
This proves (∃ x ∶ type ● P)⇒R
if the contained proof proves R,

Assuming witness `x{∶ type}?` satisfying `P` by hint ∶
introduces the bound variable ‘x‘
makes P available as assumption to the contained proof.
hint needs to prove (∃ x ∶ type ● P)
This then proves R
if the contained proof proves R
(with the additional assumnption P)
This can be understood as providing ∃-elimination:
It uses hint to discharge the antecedent (∃ x ∶ type ● P)
and then has inferred proof goal R.

(∃x ● P)
⌜P⌝....
R

R
∃-Elim
(prov. x not
free in R,
assumptions)
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(15.6) Additive Inverse(∃ x ● x + a = 0)

(∃x ● P)
⌜P⌝....
R

R
∃-Elim
(prov. x not
free in R,
assumptions)

Recall: Monotonicity With Respect To⇒
Let ≤ be an order on T, and let f ∶ T → T be a function on T. Then f is called

monotonic iff x ≤ y ⇒ f x ≤ f y ,
antitonic iff x ≤ y ⇒ f y ≤ f x .

(4.2) Left-Monotonicity of ∨: (p⇒ q) ⇒ (p∨ r⇒ q∨ r)
(4.3) Left-Monotonicity of ∧: (p⇒ q) ⇒ p∧ r ⇒ q∧ r

Antitonicity of ¬: (p⇒ q) ⇒ ¬q ⇒ ¬p

Left-Antitonicity of⇒: (p⇒ q) ⇒ (q⇒ r) ⇒ (p⇒ r)
Right-Monotonicity of⇒: (p⇒ q) ⇒ (r⇒p) ⇒ (r⇒ q)
Guarded Right-Monotonicity of⇒: (r⇒(p⇒ q)) ⇒ (r⇒p) ⇒ (r⇒ q)

Transitivity Laws are Monotonicity Laws

Notice: The following two “are” transitivity of⇒:● Left-Antitonicity of⇒: (p⇒ q) ⇒ (q⇒ r) ⇒ (p⇒ r)● Right-Monotonicity of⇒: (p⇒ q) ⇒ (r⇒p) ⇒ (r⇒ q)
This works also for other orders — with general monotonicity: Let≤1 be an order on T1, and ≤2 be an order on T2,

f ∶ T1 → T2 be a function from T1 to T2.
Then f is called

monotonic iff x ≤1 y ⇒ f x ≤2 f y,
antitonic iff x ≤1 y ⇒ f y ≤2 f x.

Transitivity of ≤ is antitonitcity of ( ≤ r) ∶ Z→ B:● Left-Antitonicity of ≤: (p ≤ q) ⇒ (q ≤ r) ⇒ (p ≤ r)
● Right-Monotonicity of ≤: (p ≤ q) ⇒ (r ≤ p) ⇒ (r ≤ q)



Weakening/Strengthening for ∀ and ∃ — “Cheap Antitonicity/Monotonicity”

(9.10) Range weakening/strengthening for ∀: (∀ x Q∨R ● P) ⇒ (∀ x Q ● P)
(9.11) Body weakening/strengthening for ∀: (∀ x R ● P∧Q) ⇒ (∀ x R ● P)
(9.25) Range weakening/strengthening for ∃: (∃ x R ● P) ⇒ (∃ x Q∨R ● P)
(9.26) Body weakening/strengthening for ∃: (∃ x R ● P) ⇒ (∃ x R ● P∨Q)
Recall:

(9.2) Trading for ∀: (∀ x R ● P) ≡ (∀ x ● R ⇒ P)
(9.19) Trading for ∃: (∃ x R ● P) ≡ (∃ x ● R ∧ P)

Monotonicity for ∀
(9.12) Monotonicity of ∀:

(∀ x R ● P1⇒P2) ⇒ ((∀ x R ● P1) ⇒ (∀ x R ● P2))
Range-Antitonicity of ∀:

(∀ x ● R2⇒R1) ⇒ ((∀ x R1 ● P) ⇒ (∀ x R2 ● P))
(∀ x ● R2⇒R1)⇒ ⟨ (9.12) with shunted (3.82a) Transitivity of⇒ ⟩
(∀ x ● (R1⇒P)⇒(R2⇒P))

⇒ ⟨ (9.12) Monotonicity of ∀ ⟩
(∀ x ● R1⇒P)⇒(∀ x ● R2⇒P)

= ⟨ (9.2) Trading for ∀ ⟩
(∀ x R1 ● P)⇒(∀ x R2 ● P)

Monotonicity for ∃
(9.27) (Body) Monotonicity of ∃:

(∀ x R ● P1⇒P2) ⇒ ((∃ x R ● P1) ⇒ (∃ x R ● P2))
Range-Monotonicity of ∃:

(∀ x ● R1⇒R2) ⇒ ((∃ x R1 ● P) ⇒ (∃ x R2 ● P))

Predicate Logic Laws You Really Need To Know Already Now
(8.13) Empty Range: (∀ x false ● P) = true(∃ x false ● P) = false

(8.14) One-point Rule: Provided ¬occurs(‘x’, ‘E’), (∀x x = E ● P) ≡ P[x ∶= E](∃x x = E ● P) ≡ P[x ∶= E]
(9.17) Generalised De Morgan: (∃ x R ● P) ≡ ¬(∀ x R ● ¬P)
(9.2) Trading for ∀: (∀ x R ● P) ≡ (∀ x ● R⇒P)
(9.4a) Trading for ∀: (∀ x Q∧R ● P) ≡ (∀ x Q ● R⇒P)
(9.19) Trading for ∃: (∃ x R ● P) ≡ (∃ x ● R∧P)
(9.20) Trading for ∃: (∃ x Q∧R ● P) ≡ (∃ x Q ● R∧P)
(9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]
(9.28) ∃-Introduction: P[x ∶= E] ⇒ (∃ x ● P)
. . . and correctly handle substitution, Leibniz, renaming of bound variables,
monotonicity/antitonicity, For any . . .

Sentences: Predicate Logic Formulae without Free Variables

Definition: A sentence is a Boolean expression without free variables.
Expressions without free variables are also called “closed”:
A sentence is a closed Boolean expression.
Recall: The value of an expression (in a state) only depends on its free variables.
Therefore: The value of a closed expression does not depend on the state.
That is, a closed Boolean expression, or sentence,

either always evaluates to true
or always evaluates to false

In other words: A closed Boolean expression, or sentence,
is either valid
or a contradiction

Also: For a closed Boolean expression, or sentence, φ
either φ is valid
or ¬φ is valid

This means: For a closed Boolean expression, or sentence, φ,
only one of φ and ¬φ can have a proof!

Closed Boolean Expressions . . . — 2018 Midterm 2

Midterm 2 Question 1A: Using Minimum and Maximum of Natural Numbers (≈ 18%)

The definitions of the binary minimum ↓ and maximum ↑ operators on natural numbers as seen in A4.2 are
available here:

Axiom “Left-zero of ↓”:                 0 ↓ n = 0 
Axiom “Right-zero of ↓”:                m ↓ 0 = 0 
Axiom “Distributivity of `S` over ↓”:   (S m) ↓ (S n) = S (m ↓ n) 

Axiom “Left-identity of ↑”:             0 ↑ n = n 
Axiom “Right-identity of ↑”:            m ↑ 0 = m 
Axiom “Distributivity of `S` over ↑”:   (S m) ↑ (S n) = S (m ↑ n)

(No symmetry and associativity of these is available, and therefore also not active.)

Also available here are propositional logic, and “Zero is not successor” and “Cancellation of successor”.

Prove the following theorem (by induction) — only one item is allowed per hint.

Theorem “Golden rule for ↑ and ↓”:  m ↑ n = m ↓ n  ≡  m = n

Midterm 2 Question 2A: Universal and Existential Quantification in ℤ (≈ 45%)

Structured Proofs in Predicate Logic

The same setting is active here as in A6.2: Preloaded here is integer material including all order material,
with > (respectively ≥) automatically recognised as converse of < (respectively ≤), in the same way as ⇐ is
automatically recognised as converse of ⇒. (Therefore, theorems about < can, with arguments flipped as
appropriate, also be used about >, etc.)

Preloaded are also all propositional logic, and also universal and existential quantification.

Prove one of the following two theorem statements — only one is valid. (Should be easy in less than ten
steps.)

Theorem “M2-3A-1-yes”: (∃ x : ℤ • ∀ y : ℤ • (x - 2) · y + 1 = x - 1)

Theorem “M2-3A-1-no”: ¬ (∃ x : ℤ • ∀ y : ℤ • (x - 2) · y + 1 = x - 1)

Prove one of the following two theorem statements — only one is valid.

You may need a case analysis, and some integer order theorems may come in handy, possibly including (but
not limited to) some trichotomy, irreflexivity, transitivity theorems, and some of the following:

“<-Monotonicity of ·”:   0 < d  ⇒  (a < b  ≡  a · d < b · d) 
“≤-Monotonicity of ·”:   0 < d  ⇒  (a ≤ b  ≡  a · d ≤ b · d) 

“Least greater element”:  a < b      ≡  a + 1 ≤ b 
“At least successor”:     a > b      ≡      a ≥ b + 1 
“Less than successor”:    a < b + 1  ≡      a ≤ b 
“Successor greater”:  a + 1 > b      ≡      a ≥ b

Theorem “M2-3A-2-yes”: (∃ i : ℤ • 11 = 3 · i)

Theorem “M2-3A-2-no”: ¬ (∃ i : ℤ • 11 = 3 · i)

For a closed Boolean expression, or sentence, φ,
only one of φ and ¬φ can have a proof!
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Part 2: More Command Correctness

Recall: Partial Correctness for Pre-Postcond. Specs in Dynamic Logic Notation

Program correctness statement in LADM (and much current use):

{ P } C { Q }
This is called a “Hoare triple”.

Partial Correctness Meaning:
If command C is started in a state in which the precondition P holds
then it will terminate only in states in which the postcondition Q holds.

Dynamic logic notation (used in CALCCHECK):

P ⇒[ C ] Q

Assignment Axiom:

— Hoare triple: { Q[x ∶= E] } x ∶= E { Q }
— Dynamic logic notation (used in CALCCHECK): Q[x ∶= E] ⇒[ x ∶= E ] Q

Transitivity Rules for Calculational Command Correctness Reasoning

Primitive inference rule “Sequence ”∶
`P ⇒ C1 Q`, `Q ⇒ C2 R`

⊢
`P ⇒ C1 ; C2 R`

Strengthening the precondition:
�����C3U�î�3VC����C3V�î?�&�@�4C�
���1������������������������������
����������C3U�î?�&�@�4C

Weakening the postcondition:
�����C3�î?�&�@�4UC����C4U�î�4VC�
���1������������������������������
����������C3�î?�&�@�4VC�

Activated as transitivity rules

Therefore used implicitly in calculations,
e.g., proving P ⇒[ C1 ; C2 ] R below

No need to refer to these rules explicitly

P

⇒[ C1 ] ⟨ . . . ⟩
Q

⇒ ⟨ . . . ⟩
Q′

⇒[ C2 ] ⟨ . . . ⟩
R

Conditional Commands

Pascal:
if condition then
statement1

else
statement2

Ada:

if condition then
statement1

else
statement2

end if;

C/Java:
if (condition)
statement1

else
statement2

Python:
if condition:
statement1

else:
statement2

sh:

if condition
then
statement1

else
statement2

fi



Conditional Rule

Primitive inference rule “Conditional ”∶
`B ∧ P ⇒ C1 Q`, `¬ B ∧ P ⇒ C2 Q`

⊢ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

`P ⇒ if B then C1 else C2 fi Q`
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The “While” Rule
The constituents of a while loop “while B do C od” are:

The loop condition B ∶ B
The (loop) body C ∶ Cmd

The conventional while rule allows to infer only correctness statements for while loops
that are in the shape of the conclusion of this inference rule, involving an invariant
condition Q ∶ B:

�����������������C%�<�4��î?�&�@��4C�
��������1��������������������������������������
����������C4��î?�ZKLOH�%�GR�&�RG�@��n�%�<�4C�

This rule reads:
If you can prove that execution of the loop body C starting in states
satisfying the loop condition B preserves the invariant Q,
then you have proof that the whole loop also preserves the invariant
Q, and in addition establishes the negation of the loop condition.

The “While” Rule — Induction for Partial Correctness

�����������������C%�<�4��î?�&�@��4C�
��������1��������������������������������������
����������C4��î?�ZKLOH�%�GR�&�RG�@��n�%�<�4C�

The invariant will need to hold
immediately before the loop starts,
after each execution of the loop body,
and therefore also after the loop ends.

The invariant will typically mention all variables that are changed by the loop, and
explain how they are related.

Frequent pattern: Generalised postcondition using the negated loop condition

In general, you have to identify an appropriate invariant yourself!

Well-written programs contain documentation of invariants for all loops.

Using the “While” Rule

Theorem “While-example ”∶
Pre⇒ INIT ;

while B
do

C
od ;

FINAL

Post

Proof:
Pre Precondition⇒ INIT ⟨ ? ⟩
Q Invariant⇒ while B do

C
od ⟨ “While ” with subproof:

B ∧ Q Loop condition and invariant⇒ C ⟨ ? ⟩
Q Invariant⟩¬ B ∧ Q Negated loop condition, and invariant⇒ FINAL ⟨ ? ⟩

Post Postcondition

“Quantification is Somewhat Like Loops”
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Invariant: s = ∑ j ∶ N j < i ● f j

— Generalised postcondition using the negated loop condition

(This is a frequent pattern.)
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While, Sequences

Plan for Today

Correctness proofs for while-loops (ctd.)

Sequences — a brief start (LADM chapter 13)

Coming up:
Some remarks about Types (see also LADM section 8.1)

“A Theory of Sets” (LADM chapter 11)

Relations (see also LADM chapter 14)
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Part 1: Correctness of while-Loops

The “While” Rule — Induction for Partial Correctness
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The invariant will need to hold
immediately before the loop starts,
after each execution of the loop body,
and therefore also after the loop ends.

The invariant will typically mention all variables that are changed by the loop, and
explain how they are related.

Frequent pattern: Generalised postcondition using the negated loop condition

In general, you have to identify an appropriate invariant yourself!

Well-written programs contain documentation of invariants for all loops.



Using the “While” Rule

Theorem “While-example ”∶
Pre⇒ INIT ;

while B
do

C
od ;

FINAL

Post

Proof:
Pre Precondition⇒ INIT ⟨ ? ⟩
Q Invariant⇒ while B do

C
od ⟨ “While ” with subproof:

B ∧ Q Loop condition and invariant⇒ C ⟨ ? ⟩
Q Invariant⟩¬ B ∧ Q Negated loop condition, and invariant⇒ FINAL ⟨ ? ⟩

Post Postcondition

“Quantification is Somewhat Like Loops”
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Invariant: s = ∑ j ∶ N j < i ● f j

— Generalised postcondition using the negated loop condition

(This is a frequent pattern.)

Using the “While” Rule — An Example

Theorem “Adding1 ”∶
n = n0⇒ i ∶ = 0 ;

while i ≠ m
do

i ∶ = i + 1 ;
n ∶ = n + 1

od

n = m + n0

Proof:
n = n0 Precondition≡ ⟨ “Identity of + ” ⟩
n = 0 + n0⇒ i ∶ = 0 ⟨ “Assignment ” with substitution ⟩
n = i + n0 Invariant⇒ while i ≠ m do

i ∶ = i + 1 ;
n ∶ = n + 1

od ⟨ “While ” with subproof:
i ≠ m ∧ n = i + n0 Loop condition and invariant⇒⟨ “Weakening ” ⟩
n = i + n0≡ ⟨ “Cancellation of + ” ⟩
n + 1 = i + 1 + n0⇒ i ∶ = i + 1 ⟨ “Assignment ” with substitution ⟩
n + 1 = i + n0⇒ n ∶ = n + 1 ⟨ “Assignment ” with substitution ⟩
n = i + n0 Invariant⟩¬ (i ≠ m) ∧ n = i + n0 Negated loop condition, and inv.≡ ⟨ “Definition of ≠ ”, “Double negation ” ⟩

i = m ∧ n = i + n0≡ ⟨ “Abbreviated replacement in ∧ ”, substitution ⟩
i = m ∧ n = m + n0⇒⟨ “Weakening ” ⟩
n = m + n0 Postcondition

Using the “While” Rule — Another Example. . .

Theorem “Answering... ”∶
true⇒ i ∶ = 0 ;

while i = 0
do

n ∶ = n + 1
od

n = 42

This program will terminate only in states satisfying n = 42.

Using the “While” Rule — Another Example. . .

Theorem “Answering... ”∶
true⇒ i ∶ = 0 ;

while i = 0
do

n ∶ = n + 1
od

n = 42

Proof:
true Precondition≡ ⟨ “Reflexivity of = ” ⟩
0 = 0⇒ i ∶ = 0 ⟨ “Assignment ” with substitution ⟩
i = 0 Invariant⇒ while i = 0 do

n ∶ = n + 1
od ⟨ “While ” with subproof:

i = 0 ∧ i = 0 Loop condition and invariant≡ ⟨ “Idempotency of ∧ ” ⟩
i = 0⇒ n ∶ = n + 1 ⟨ “Assignment ” with substitution ⟩
i = 0 Invariant⟩¬ (i = 0) ∧ i = 0 Negated loop condition, and inv.⇒⟨ ? ⟩

n = 42 Postcondition
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Part 2: Sequences

Sequences
We may write [33,22,11] (Haskell notation) for the sequence that has

“33” as its first element,
“22” as its second element,
“11” as its third element, and
no further elements.

(Notation “[. . .]” for sequences is not supported by CALCCHECK. LADM writes “⟨. . .⟩”.)
Sequence matters: [33,22,11] and [11,22,33] are different!
Multiplicity matters: [33,22,11] and [33,22,22,11] are different!
We consider the type Seq A of sequences with elements of type A
as generated inductively by the following two constructors:

>

∶ Seq A /eps empty sequence◃ ∶ A→ Seq A→ Seq A /cons “cons”◃ associates to the right.

Therefore: [33,22,11] = 33 ◃ [22,11]= 33 ◃ 22 ◃ [11]= 33 ◃ 22 ◃ 11 ◃
>

Sequences — “cons” and “snoc”
We consider the type Seq A of sequences with elements of type A
as generated inductively by the following two constructors:

>

∶ Seq A /eps empty sequence◃ ∶ A→ Seq A→ Seq A /cons “cons”◃ associates to the right.

Therefore: [33,22,11] = 33 ◃ [22,11]= 33 ◃ 22 ◃ [11]= 33 ◃ 22 ◃ 11 ◃
>

Appending single elements “at the end”:▹ ∶ Seq A→ A→ Seq A /snoc “snoc”▹ associates to the left.
(Con-)catenation:⌢ ∶ Seq A→ Seq A→ Seq A /catenate⌢ associates to the right.

Sequences — Induction Principle

The set of all sequences over type A is written Seq A.

The empty sequence “
>

” is a sequence over type A.

If x is an element of A and xs is a sequence over type A,
then “x ◃ xs” (pronounced: “x cons xs”) is a sequence over type A, too.

Two sequences are equal iff they are constructed the same way from
>

and ◃.

Induction principle for sequences:

if P(
>

) If P holds for
>

and if P(xs) implies P(x ◃ xs) for all x ∶ A,
and whenever P holds for xs, it also holds for any x ◃ xs,

then for all xs ∶ Seq A we have P(xs).
then P holds for all sequences over A.

Sequences — Induction Proofs

Induction principle for sequences:

if P(
>

) If P holds for
>

and if P(xs) implies P(x ◃ xs) for all x ∶ A,
and whenever P holds for xs, it also holds for any x ◃ xs,

then for all xs ∶ Seq A we have P(xs). then P holds for all sequences over A.

An induction proof using this looks as follows:
Theorem: P
Proof:

By induction on xs ∶ Seq A:
Base case:

Proof for P[xs ∶=
>

]
Induction step:

Proof for (∀x ∶ A ● P[xs ∶= x ◃ xs])
using Induction hypothesis P



Concatenation

$[LRP���������!/HIW�LGHQWLW\�RI��"�
��������������!'HILQLWLRQ�RI���IRU�>"��������������>���\V� �\V�
$[LRP���������!0XWXDO�DVVRFLDWLYLW\�RI���ZLWK��"�
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Ô⇒ H9. , Ex6.
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Part 1: Types

Types

A type denotes a set of values that
can be associated with a variable
an expression might evaluate to

Some basic types: B, Z, N, Q, R, C

Some constructed types: Seq N, N→ B, Seq (Seq N)→ Seq B, set Z

“E : t” means: “Expression E is declared to have type t”.

Examples:
constants: true ∶ B, π ∶ R, 2 ∶ Z, 2 ∶ N
variable declarations: p ∶ B, k ∶ N, d ∶ R
type annotations in expressions:(x + y) ⋅ x Ð→ (x ∶ N + y) ⋅ x

(x + y) ⋅ x Ð→ ((((x ∶ N) + (y ∶ N)) ∶ N) ⋅ (x ∶ N)) ∶ N
Function Types — LADM Version

If the parameters of function f have types
t1, . . . , tn

and the result has type r,

then f has type t1 ×⋯ × tn → r

We write: f ∶ t1 ×⋯ × tn → r

Examples: ¬ ∶ B→ B + ∶ Z ×Z→ Z< ∶ Z ×Z→ B
Forming expressions using < ∶ Z ×Z→ B:

if expression a1 has type Z, and a2 has type
Z
then a1 < a2 is a (well-typed) expression

and has type B.

Mechanised Mathematics Version

If the parameters of function f have types
t1, . . . , tn

and the result has type r,

then f has type t1 → ⋯→ tn → r

We write: f ∶ t1 → ⋯→ tn → r
(The function type constructor “→” associates
to the right!)

Example: < ∶ Z→ Z→ B
Forming expressions using < ∶ Z→ Z→ B:

a1 ∶ Z a2 ∶ Z(a1 < a2) ∶ B
In general:

f ∶ A→ B x ∶ A
f x ∶ B

Non-well-typed expressions make no sense!

Function Application — LADM Version

Consider function g defined by: (1.6) g(z) = 3 ⋅ z + 6

Special function application syntax for argument that is identifier or constant:

g.z = 3 ⋅ z + 6

LADM Table of Precedences

[x ∶= e] (textual substitution) (highest precedence)
. (function application)
unary prefix operators +, −, ¬, #, ∼, P∗∗⋅ / ÷ mod gcd+ − ∪ ∩ × ○ ●↓ ↑
#◁ ▷ ˆ= ≠ < > ∈ ⊂ ⊆ ⊃ ⊇ ∣ (conjunctional)∨ ∧⇒ /⇒ ⇐ /⇐≡ /≡ (lowest precedence)

All non-associative binary infix operators associate to the left,
except ∗∗, ◁,⇒, →, which associate to the right.

Function Application — Mechanised Mathematics Version

Consider function g defined by: (1.6) g z = 3 ⋅ z + 6

Function application is denoted by juxtaposition (“putting side by side”)

Lexical separation for argument that is identifier or constant: space required:
h z = g (g z)

Superfluous parentheses (e.g., “h(z) = g(g(z))”) are allowed, ugly, and bad style.

Function application still has higher precedence than other binary operators.

As non-associative binary infix operator, function application associates to the left:
If f ∶ Z→ (Z→ Z) , then f 2 3 = (f 2) 3 , and f 2 ∶ Z→ Z

Typing rule for function application:

f ∶ A→ B x ∶ A
f x ∶ B

COMPSCI 2LC3 Fall 2024 CALCCHECK Default Table of Precedences● (∞): [ ∶= ] (textual substitution) (highest precedence)● 140: unary postfix operators: ! ⌣ * + (∣ ∣)● 130: unary prefix operators: + − ¬ # ∼ P suc● 120: (function application), @● 115: **● 110: ⋅ / ÷ mod gcd● 105: # M z● 100: + − ∪ ∩ × ○ ⊕ _ ◁ −◁ ▷ −▷● 97: ↔ (relation type)● 95: → (function type)● 90: ↓ ↑● 70: #● 60: ◁ ▷ ⌢● 50: = ≠ < > ∈ ⊂ ⊆ ⊃ ⊇ ∣ (conjunctional)● 40: ∨ ∧● 20: ⇒ /⇒ ⇐ /⇐● 10: ≡ /≡● 9: : = (assignment command, two characters)● 5: ; (command sequencing)● (−∞): ⍟ ● (quantification notation, for ⍟ ∈ {∀,∃,⋃,⋂,∑,∏, . . .})(lowest precedence)

All non-associative binary infix operators associate to the left, except ∗∗, ◁,⇒,→,_, ×, which associate to
the right.
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Part 2: Sets



LADM Chapter 11: A Theory of Sets

“A set is simply a collection of distinct (different) elements.”

11.1 Set comprehension and membership

11.2 Operations on sets

11.3 Theorems concerning set operations (many! — mostly easy. . . )

11.4 Union and intersection of families of sets (quantification over ∪ and ∩)

. . .

The Axioms of Set Theory — Overview
(11.2) Provided ¬occurs(‘x’, ‘e0, . . . , en−1’),{e0, . . . , en−1} = {x x = e0 ∨ ⋯ ∨ x = en−1 ● x}
(11.3) Axiom, Set membership: Provided ¬occurs(‘x’, ‘F’),

F ∈ {x R ● E} ≡ (∃ x R ● E = F)
(11.2f) Empty Set: v ∈ {} ≡ false

(11.4) Axiom, Extensionality: Provided ¬occurs(‘x’, ‘S,T’),
S = T ≡ (∀x ● x ∈ S ≡ x ∈ T)

(11.13T)Axiom, Subset: Provided ¬occurs(‘x’, ‘S,T’),
S ⊆ T ≡ (∀x ● x ∈ S ⇒ x ∈ T)

(11.14) Axiom, Proper subset: S ⊂ T ≡ S ⊆ T ∧ S ≠ T
(11.20) Axiom, Union: v ∈ S∪T ≡ v ∈ S ∨ v ∈ T
(11.21) Axiom, Intersection: v ∈ S∩T ≡ v ∈ S ∧ v ∈ T
(11.22) Axiom, Set difference: v ∈ S − T ≡ v ∈ S ∧ v ∉ T
(11.23) Axiom, Power set: v ∈ P S ≡ v ⊆ S

Set Membership versus Type Annotation

Like in Haskell: ● Sets are datastructures (Data.Set.Set)● Types aid program correctness

Therefore: Types are not sets!

Let T be a type; let S be a set, that is, an expression of type set T,
and let e be an expression ot type T, then

e ∈ S is an expression
of type B

and denotes “e is in S”
or “e is an element of S”

Because: ∈ ∶ T → set T → B

Note: ● e ∶ T is nothing but the expression e, with type annotation T.● If e has type T, then e ∶ T has the same value as e.

Cardinality of Finite Sets

(11.12) Axiom, Size: Provided ¬occurs(‘x’, ‘S’),
#S = (Σ x x ∈ S ● 1)

This uses: # ∶ set t→ N

Note: (Σ x x ∈ S ● 1) is defined if and only if S is finite.

#{n ∶ N true ● n} is undefined!

“#N” is a type error! — because N ∶ Type

Types are not sets — like in Haskell:

Integer :: *
Data.Set.Set Integer :: *

Set Comprehension
Set comprehension examples: {i ∶ N i < 4 ● 2 ⋅ i + 1} = {1,3,5,7}{x ∶ Z 1 ≤ x < 5 ● x ⋅ x} = {1,4,9,16}{i ∶ Z 5 ≤ i < 8 ● i ◃ i ◃

>

} = {(5 ◃ 5 ◃
>

), (6 ◃ 6 ◃
>

), (7 ◃ 7 ◃
>

)}
(11.1) Set comprehension general shape: {x ∶ t R ● E}

— This set comprehension binds variable x in R and E!

Evaluated in state s, this denotes the set containing the values of E evaluated in those
states resulting from s by changing the binding of x to those values from type t that
satisfy R.

Note: The braces “{. . .}” are only used for set notation!

Abbreviation for special case: {x R} = {x R ● x}
(11.2) Provided ¬occurs(‘x’, ‘e0, . . . , en−1’),{e0, . . . , en−1} = {x x = e0 ∨ ⋯ ∨ x = en−1 ● x}
Note: This is covered by “Reflexivity of =” in CALCCHECK.

Set Membership
(11.3) Axiom, Set membership: Provided ¬occurs(‘x’, ‘F’),

F ∈ {x R ● E} ≡ (∃ x R ● E = F)
F ∈ {x R}

= ⟨ Expanding abbreviation ⟩
F ∈ {x R ● x}

= ⟨ (11.3) Axiom, Set membership — provided ¬occurs(‘x’, ‘F’) ⟩(∃ x R ● x = F)
= ⟨ (9.19) Trading for ∃ ⟩(∃ x x = F ● R)
= ⟨ (8.14) One-point rule — provided ¬occurs(‘x’, ‘F’) ⟩

R[x ∶= F]
This proves: Simple set compr. membership: Prov. ¬occurs(‘x’, ‘F’),

F ∈ {x R} ≡ R[x ∶= F]

Set Equality and Inclusion
(11.4) Axiom, Extensionality: Provided ¬occurs(‘x’, ‘S,T’),

S = T ≡ (∀x ● x ∈ S ≡ x ∈ T)
(11.13T)Axiom, Subset: Provided ¬occurs(‘x’, ‘S,T’),

S ⊆ T ≡ (∀x ● x ∈ S ⇒ x ∈ T)
(11.11b) Metatheorem Extensionality:

Let S and T be set expressions and v be a variable.
Then S = T is a theorem iff v ∈ S ≡ v ∈ T is a theorem. — Using “Set extensionality”

(11.13m) Metatheorem Subset:
Let S and T be set expressions and v be a variable.
Then S ⊆ T is a theorem iff v ∈ S ⇒ v ∈ T is a theorem.

— Using “Set inclusion”

Extensionality (11.11b) and Subset (11.13m) will, by LADM,
mostly be used as the following inference rules:

v ∈ S ≡ v ∈ T
S = T

v ∈ S ⇒ v ∈ T
S ⊆ T

LADM Set Equality via Equivalence
(11.4) Axiom, Extensionality: Provided ¬occurs(‘x’, ‘S,T’),

S = T ≡ (∀x ● x ∈ S ≡ x ∈ T)
(11.9) “Simple set comprehension equality”: {x Q} = {x R} ≡ (∀ x ● Q ≡ R )
(11.10) Metatheorem set comprehension equality:

{x Q} = {x R} is valid iff Q ≡ R is valid.

(11.11) Methods for proving set equality S = T:
(a) Use Leibniz directly
(b) Use axiom Extensionality (11.4) and prove v ∈ S ≡ v ∈ T
(c) Prove Q ≡ R and conclude {x Q} = {x R} via (11.9)/(11.10)

Note:
In the informal setting, confusion about variable binding is easy!
Using “Set extensionality” or Using (11.9)

followed by For any . . . make variable binding clear.

Using Set Extensionality — LADM-Style

Extensionality (11.11b) inference rule: v ∈ S ≡ v ∈ T
S = T

Ex. 8.2(a) Prove: {E,E} = {E} for each expression E.

By extensionality (11.11b):

Proving v ∈ {E,E} ≡ v ∈ {E}:
v ∈ {E,E}

≡ ⟨ Set enumerations (11.2) ⟩
v ∈ {x x = E∨x = E}

≡ ⟨ Idempotency of ∨ (3.26) ⟩
v ∈ {x x = E}

≡ ⟨ Set enumerations (11.2) ⟩
v ∈ {E}

Using Set Extensionality — CALCCHECK Example

Axiom (11.4) “Set extensionality”: S = T ≡ (∀x ● x ∈ S ≡ x ∈ T)
— provided ¬occurs(‘x’, ‘S,T’)

Theorem (11.26) “Symmetry of ∪ ”∶ S ∪ T = T ∪ S
Proof:

Using “Set extensionality ”∶
Subproof for `∀ e ● e ∈ S ∪ T ≡ e ∈ T ∪ S`∶

For any `e`∶
e ∈ S ∪ T≡ ⟨ “Union ” ⟩
e ∈ S ∨ e ∈ T≡ ⟨ “Symmetry of ∨ ” ⟩
e ∈ T ∨ e ∈ S≡ ⟨ “Union ” ⟩
e ∈ T ∪ S



Anything Wrong?

Let the set Q be defined by the following:

(R) Q = {S S ∉ S}
Then:

Q ∈ Q≡ ⟨ (R) ⟩
Q ∈ {S S ∉ S}≡ ⟨ (11.3) Membership in set comprehension ⟩(∃S S ∉ S ● Q = S}≡ ⟨ (9.19) Trading for ∃, (8.14) One-point rule ⟩
Q ∉ Q≡ ⟨ (11.0) Def. ∉ ⟩¬(Q ∈ Q)

With (3.15) p ≡ ¬p ≡ false, this proves:

(R′) false — “Russell’s paradox”

∈ , ∉ ∶ A→ set A→ B 
“The mother of all type errors”

Ô⇒ birth of type theory. . .

“The Universe” in LADM
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We now give the general form of set comprehension. Let R be a pred
icate, E an expression, x a list of dummies, and t a type. Evaluation 
of 

(11.1) {x:t I R: E} 

in a state yields the set of values that result from evaluating E[x := v] in 
the state for each value v in t such that R[x := v] holds in that state. In 
contexts where the type of the dummy is obvious, the type may be omitted. 
If E has type t1, then the set comprehension has type set(tl). 

The notation for set comprehension is similar to that for quantification 
in (8.6). As in (8.6), boolean expression R is the range and expression 
E is the body. The notions of scope, free variable, and bound variable 
apply to set comprehension, without change. Finally, the dummies may 
have different types, just as in a quantification. 

We can define a set enumeration { e0 , ... , en-d to be an abbreviation 
of a set comprehension: 

(11.2) {eo, ... ,en-1} ={xI x=eo V ··· V x=en-1 :x} 

In the following examples of set comprehension, the dummies range over 
the integers. 

{il0<i<4:i} 
{ i I 0 < i < 50 1\ even.i : i} 
{i I 0 < 2·i <50: 2·i} 
{ x, y I 1 S:: x S:: 2 S:: y s; 3 : xY} 
{xI 0 S:: x < 3: x·y} 
{xI 0 S:: x < 0: x·y} 

The set {1, 2, 3} 
Even positive integers less than 50 
Even positive integers less than 50 
The set {12 13 22 23 } 

' ' ' The set {O·y, 1·y, 2·y} 
The empty set { } 

The second and third examples denote the same set. The fourth example 
shows two dummies in one set comprehension. The fifth illustrates the use 
of a free variable in a set comprehension; the value of the expression depends 
on the value of y in the state in which the expression is evaluated. 

THE UNIVERSE 

A theory of sets concerns sets constructed from some collection of elements. 
There is a theory of sets of integers, a theory of sets of characters, a theory 
of sets of sets of integers, and so forth. This collection of elements is called 
the domain of discourse or the universe of values; it is denoted by U . The 
universe can be thought of as the type of every set variable in the theory. 
For example, if the universe is set(Z) , then v: set(Z) . 

When several set theories are being used at the same time, there is a 
different universe for each. The name U is then overloaded, and we have 
to distinguish which universe is intended in each case. This overloading is 
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similar to using the constant 1 as a denotation of an integer, a real, the 
identity matrix, and even (in some texts, alas) the boolean true. 

SET MEMBERSHIP AND EQUALITY 

For an expression e and a set-valued expression 1 S, 

eE S 

is an expression whose value is the value of the statement "e is a member 
of S ", or "e is in S ". The expression •(e E S) may be abbreviated by 
e rt S. For example, 2 E {1, 2, 4} is true and 3rt {1, 2, 4} is true. Symbol 
E is treated as a conjunctional operator and has the same precedence as 
the sign = for equality ~see the precedence table on the inside front cover. 

Set comprehension is formalized by defining membership in the set it 
denotes. For expression F:t and set {x I R: E:t} (for some type t ), we 
define: 

(11.3) Axiom, Set membership: Provided •occurs('x', 'F'), 

F E { x I R : E} = (3x I R : F = E) . 

Two sets are equal if they contain the same elements. Thus, for sets S 
and T we have the following axiom. 2 

(11.4) Axiom, Extensionality: S = T = (\:lx 1: xES = x E T) 

Several consequences follow from the definition of set comprehension, set 
membership and the abbreviation {eo, ... , en-1} for {x I x = e0 V ... V 
x=en-1:x}: 

• { x I false : E} and { } denote the empty set, i.e. the set with no 
elements. Exercise 11.4 asks you to prove formally that e E { x I false : 
E} = false for all e and E . The empty set is also denoted by 0 . 
Note that the set { { } } contains one element: the set { } . 

• The expressions { x I x = e : x} (where x does not occur free in 
e) and { e} yield a singleton set, which has one element, the value 
of e . Note that e yields a value, while { e} yields a set containing 
that value. The expression e E { e} is always true ; e = { e} is not 
even an expression since the LHS and RHS have different types ( t 
and set(t) for some type t ). 

1 See Table 11.1 on page 200 for type restrictions on set-theory expressions. 
2 An extensional definition of set equality depends only on the contents of 

the sets. An intentional definition would concern how the sets are defined or 
constructed. For example, was the element 0 added to the set before or after the 
element 2? 

Overloading via type polymorphism: {},U ∶ set t

({} ∶ set B) = {} (U ∶ set B) = {false, true}({} ∶ set N) = {} (U ∶ set N) = {k ∶ N true}
“The Universe” and Complement in LADM
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icate, E an expression, x a list of dummies, and t a type. Evaluation 
of 
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The notation for set comprehension is similar to that for quantification 
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apply to set comprehension, without change. Finally, the dummies may 
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We can define a set enumeration { e0 , ... , en-d to be an abbreviation 
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' ' ' The set {O·y, 1·y, 2·y} 
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The second and third examples denote the same set. The fourth example 
shows two dummies in one set comprehension. The fifth illustrates the use 
of a free variable in a set comprehension; the value of the expression depends 
on the value of y in the state in which the expression is evaluated. 

THE UNIVERSE 

A theory of sets concerns sets constructed from some collection of elements. 
There is a theory of sets of integers, a theory of sets of characters, a theory 
of sets of sets of integers, and so forth. This collection of elements is called 
the domain of discourse or the universe of values; it is denoted by U . The 
universe can be thought of as the type of every set variable in the theory. 
For example, if the universe is set(Z) , then v: set(Z) . 

When several set theories are being used at the same time, there is a 
different universe for each. The name U is then overloaded, and we have 
to distinguish which universe is intended in each case. This overloading is 
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(11.15) Axiom, Superset: T ~ S = S ~ T 

(11.16) Axiom, Proper superset: T :J S = S C T 

Operators C , ~ , :J , and ~ are conjunctional and have the same prece
dence as = . As with all conjunctional operators, a superimposed slash 
denotes negation. For example, S CJ,_ T means •(S ~ T). 

COMPLEMENT 

({S) The complement of S , written "'S , 4 is the set of elements that 
\_i:::J are not in S (but are in the universe). In the Venn diagram 

in this paragraph, we have shown set S and universe U . The 
non-filled area represents "'S. 

(11.17) Axiom, Complement: v E rv s = v E u 1\ v f/. s 

For example, for U = {0, 1, 2, 3, 4, 5}, we have 

rv{3,5} = {0,1,2,4} 

rvU=0 rv0=U 

We can easily prove 

(11.18) V E rv S =: V f/. S (for V in U ). 

(11.19) rv rv S = S 

SET UNION, INTERSECTION, AND DIFFERENCE 

The three operations union, intersection, and difference are used to con
struct a set from two other sets. The union of sets S and T , written 

4 sc and S are also used to denote set complement. 

FIGURE 11.1. VENN DIAGRAMS FOR UNION, INTERSECTION, AND DIFFER
ENCE 

SUT SnT S-T 
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4 sc and S are also used to denote set complement. 

FIGURE 11.1. VENN DIAGRAMS FOR UNION, INTERSECTION, AND DIFFER
ENCE 

SUT SnT S-T 

“The” Universe

Frequently, a “domain of discourse” is assumed, that is, a set of “all objects under
consideration”.

This is often called a “universe”. Special notation: U — /universe
Declaration: U ∶ set t

Axiom “Universal set”: x ∈ U — remember: ∈ ∶ t→ set t→ B

Theorem: (U ∶ set t) = {x ∶ t ● x}
Types are not sets! — (U ∶ set t) is the set containing all values of type t.

We define a nicer notation: ⌞ t ⌟ = (U ∶ set t)
“Definition of ⌞ ⌟”: ∀ x ∶ t ● x ∈ ⌞ t ⌟
Example: ⌞ B ⌟ = {false, true}

Set Complement

(11.17) Axiom, Complement: v ∈ ∼S ≡ v ∈ U∧v ∉ S

Complement can be expressed via difference: ∼S = U − S

Complement ∼ always implicitly depends on the universe U!

Example: ∼{true} = ⌞ B ⌟ − {true} = {false, true} − {true} = {false}
LADM: “We can easily prove
(11.18) v ∈ ∼ S ≡ v ∉ S (for v in U).”

Consider Z+ ∶ set Z defined as Z+ = {x ∶ Z pos x}:
Let S be a subset of Z+. For example: S = {2,3,7}
Consider the complement ∼S
Is −5 ∈ ∼S true or false?
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Sets (ctd.)

Recall: The Axioms of Set Theory — Overview
(11.2) Provided ¬occurs(‘x’, ‘e0, . . . , en−1’), {e0, . . . , en−1} = {x x = e0 ∨ ⋯ ∨ x = en−1 ● x}
(11.3) Axiom, Set membership: Provided ¬occurs(‘x’, ‘F’),

F ∈ {x R ● E} ≡ (∃ x R ● E = F)
(11.2) Empty Set: v ∈ {} ≡ false

(11.12) Axiom, Size: Provided ¬occurs(‘x’, ‘S’), #S = (Σ x x ∈ S ● 1)
(11.4) Axiom, Extensionality: Provided ¬occurs(‘x’, ‘S,T’),

S = T ≡ (∀x ● x ∈ S ≡ x ∈ T)
(11.13) Axiom, Subset: Provided ¬occurs(‘x’, ‘S,T’),

S ⊆ T ≡ (∀x ● x ∈ S ⇒ x ∈ T)
(11.14) Axiom, Proper subset: S ⊂ T ≡ S ⊆ T ∧ S ≠ T

(11.17) Axiom, Complement: v ∈ ∼S ≡ v ∉ S
(11.20) Axiom, Union: v ∈ S∪T ≡ v ∈ S ∨ v ∈ T
(11.21) Axiom, Intersection: v ∈ S∩T ≡ v ∈ S ∧ v ∈ T
(11.22) Axiom, Set difference: v ∈ S − T ≡ v ∈ S ∧ v ∉ T
(11.23) Axiom, Power set: v ∈ P S ≡ v ⊆ S
(14.3) Axiom, Cross product: S × T = {b, c b ∈ S∧ c ∈ T ● ⟨b, c⟩}

Set Comprehension and Quantification Semantics

Evaluated in state s, the expression { x ∶ t R ● E } denotes the set containing the
values of E evaluated in those states resulting from s by changing the binding of x to
those values from type t that satisfy R.

Evaluated in state s, the expression (∑ x ∶ t R ● E ) denotes the sum of the values
of E evaluated in those states resulting from s by changing the binding of x to those
values from type t that satisfy R.

Evaluated in state s, the expression (∀ x ∶ t R ● P ) evaluates to true iff P
evaluates to true in all those states resulting from s by changing the binding of x to
those values from type t that satisfy R.

Evaluated in state s, the expression (∃ x ∶ t R ● P ) evaluates to true iff P evaluates
to true in at least one state resulting from s by changing the binding of x to a value
from type t that satisfies R.

Cardinality Example
(11.12) Axiom, Size: Provided ¬occurs(‘x’, ‘S’), #S = (Σ x x ∈ S ● 1)

#{1,1,2}= ⟨ (11.12) Axiom, Size ⟩(Σ x x ∈ {1,1,2} ● 1)= ⟨ (11.2) Set enumeration ⟩(Σ x x ∈ {y y = 1∨y = 1∨y = 2 ● y} ● 1)= ⟨ (11.3) Set membership, (9.19) Trading for ∃ ⟩(Σ x (∃y y = x ● y = 1∨y = 1∨y = 2) ● 1)= ⟨ (8.14) One-point rule: (⋆x x = E ● P) = P[x ∶= E] prov. ¬occurs(‘x’, ‘E’) ⟩(Σ x x = 1∨x = 1∨x = 2 ● 1)= ⟨ (3.26) Idempotency of ∨ ⟩(Σ x x = 1∨x = 2 ● 1)= ⟨ (8.16) Disjoint range split: (x = 1∧x = 2) ≡ false ⟩(Σ x x = 1 ● 1) + (Σ x x = 2 ● 1)= ⟨ (8.14) One-point rule ⟩
1 + 1= ⟨ Arithmetic ⟩
2

“The” Universe

Frequently, a “domain of discourse” is assumed, that is, a set of “all objects under
consideration”.

This is often called a “universe”. Special notation: U — /universe
Declaration: U ∶ set t

Axiom “Universal set”: x ∈ U — remember: ∈ ∶ t→ set t→ B

Theorem: (U ∶ set t) = {x ∶ t ● x}
Types are not sets! — (U ∶ set t) is the set containing all values of type t.

We define a nicer notation: ⌞ t ⌟ = (U ∶ set t) — /llcorner . . . /lrcorner
⌞ t ⌟ is the set of all values of type t

“Definition of ⌞ ⌟”: ∀ x ∶ t ● x ∈ ⌞ t ⌟
Example: ⌞ B ⌟ = {false, true}



Set Complement

(11.17) Axiom, Complement: v ∈ ∼S ≡ v ∈ U∧v ∉ S

Complement can be expressed via difference: ∼S = U − S

Complement ∼ always implicitly depends on the universe U!

Example: ∼{true} = ⌞ B ⌟ − {true} = {false, true} − {true} = {false}
LADM: “We can easily prove

(11.18) v ∈ ∼ S ≡ v ∉ S (for v in U).”

Consider Z+ ∶ set Z defined as Z+ = {x ∶ Z pos x}:
Let S be a subset of Z+. For example: S = {2,3,7}
Consider the complement ∼S
Is −5 ∈ ∼S true or false?

We will just rely on the type system to provide the relevant universe, and use:
Axiom “Set complement”: v ∈ ∼S ≡ v ∉ S

Set Complement via Set Difference

Theorem (11.55.1) “Set complement via difference ”∶ ∼ S = U − S

Proof:

Using “Set extensionality ”∶
For any `x`∶

x ∈ U − S

≡ ⟨ “Set difference ” ⟩
x ∈ U ∧ ¬ (x ∈ S)

≡ ⟨ “Universal set ”, “Identity of ∧ ” ⟩
¬ (x ∈ S)

≡ ⟨ “Set complement ” ⟩
x ∈ ∼ S

Let c be defined by: x ≤ c ≡ x ≤ 5

What do you know about c? Why? (Prove it!)

Note: x is implicitly univerally quantified!

Proving 5 ≤ c:

5 ≤ c

≡ ⟨ The given equivalence, with x ∶= 5 ⟩
5 ≤ 5 — This is Reflexivity of ≤

Proving c ≤ 5:

c ≤ 5

≡ ⟨ Given equivalence, with x ∶= c ⟩
c ≤ c — This is Reflexivity of ≤

With antisymmetry of ≤ (that is, a ≤ b ∧ b ≤ a ⇒ a = b), we obtain c = 5 — An instance of:

(15.47) Indirect equality: a = b ≡ (∀ z ● z ≤ a ≡ z ≤ b)

Relative Pseudocomplement

Let A,B ∶ set t be two sets of the same type.

The relative pseudocomplement A_B of A with respect to B is defined by:

X ⊆ (A_B) ≡ X∩A ⊆ B

Calculate the relative pseudocomplement A_B as a set expression
not using _! That is:

Calculate A_B = ?

Using set extensionality, that is:

Calculate x ∈ A_B ≡ x ∈ ?

Characterisation of relative pseudocomplement of sets: X ⊆ (A_B) ≡ X∩A ⊆ B
x ∈ A_B≡ ⟨ e ∈ S ≡ {e} ⊆ S — Exercise! ⟩{x} ⊆ A_B≡ ⟨ Def. _, with X ∶= {x} ⟩{x}∩A ⊆ B≡ ⟨ (11.13) Subset ⟩(∀ y y ∈ {x}∩A ● y ∈ B)≡ ⟨ (11.21) Intersection ⟩(∀ y y ∈ {x}∧y ∈ A ● y ∈ B)≡ ⟨ y ∈ {x} ≡ y = x — Exercise! ⟩(∀ y y = x∧y ∈ A ● y ∈ B)≡ ⟨ (9.4b) Trading for ∀, Def. ∉ ⟩(∀ y y = x ● y ∉ A ∨ y ∈ B)≡ ⟨ (8.14) One-point rule ⟩
x ∉ A ∨ x ∈ B≡ ⟨ (11.17) Set complement, (11.20) Union ⟩
x ∈ ∼A ∪ B

Theorem: A_B = ∼A ∪ B

Characterisation of relative pseudocomplement of sets: X ⊆ A_B ≡ X∩A ⊆ B

Theorem “Pseudocomplement via ∪”: A_B = ∼A ∪ B

Calculation:

x ∈ A_B
≡ ⟨ Pseudocomplement via ∪ ⟩

x ∈ ∼A ∪ B
≡ ⟨ (11.20) Union, (11.17) Set complement ⟩¬(x ∈ A) ∨ x ∈ B
≡ ⟨ (3.59) Material implication ⟩

x ∈ A ⇒ x ∈ B

Corollary “Membership in pseudocomplement”:
x ∈ A_B ≡ x ∈ A ⇒ x ∈ B

Easy to see: On sets, relative pseudocomplement wrt. {} is complement:
A_ {} = ∼ A

Power Set

(11.23) Axiom, Power set: v ∈ P S ≡ v ⊆ S

Declaration: P ∶ set t→ set (set t)
— remember: set ∶ Type→ Type

P {0,1} = {{},{0},{1},{0,1}}
For a set S, the set of its subsets is P S

For a type t, the type of sets of elements of type t is set t

Therefore we have: ⌞ set t ⌟ = P ⌞ t ⌟
According to the textbook, type annotations v ∶ t, in particular in variable
declarations in quantifications and in set comprehensions, may only use types t.

(The specification notation Z allows the use of sets in variable declarations
— this makes ∀ and ∃ rules more complicated.)

Calculate!

The size of a finite set S is written #S.
(11.23) Axiom, Power set: v ∈ P S ≡ v ⊆ S

# (P B)
# (P {1,2,3})
# (P {1,2,3,4,5})
# (P {2,3,4,5})
# (P {1,2,3} ∩ P {2,3,4,5})
# (P {1,2,3} ∪ P {2,3,4,5})
# (P {2,3,4,5} − P {1,2,3})
(Σ S ∶ P {1,2,3,4,5} ● (Σn n ∈ S ● n))
(Σ S ∶ P {1,2,3,4,5} #S > 1 ● (Σ n n ∈ S ● n))
(Σ S ∶ P {1,2,3,4,5} #S > 2 ● (Σ n n ∈ S ● n))

Calculate!

The size of a finite set S, that is, the number of its elements, is written # S .

Calculate:
# ⌞ B ⌟
# {S ∶ set B true ∈ S ● S}
# {T ∶ set set B {} ∉ T ● T}
# {S ∶ set N (∀x ∶ N x ∈ S ● x < n) ∧ #S = k ● S}
⌞ B ⌟ = {false, true}
S ∈ ⌞ set B ⌟ ≡ S ⊆ ⌞ B ⌟
⌞ set B ⌟ = {{},{false},{true},{false, true}}
T ∈ ⌞ set set B ⌟ ≡ T ⊆ P ⌞ B ⌟

Metatheorem (11.25): Sets⇐⇒ Propositions
Let

P,Q,R, . . . be set variables
p, q, r, . . . be propositional variables
E,F be expressions built from these set variables
and ∪, ∩, ∼ , U, {}.

Define the Boolean expressions Ep and Fp by replacing
P,Q,R, . . . with p, q, r, . . . ∼ with ¬∪ with ∨ U with true∩ with ∧ {} with false

Then:
E = F is valid iff Ep ≡ Fp is valid.
E ⊆ F is valid iff Ep⇒Fp is valid.
E = U is valid iff Ep is valid.



Metatheorem (11.25): Sets⇐⇒ Propositions — Examples

Let E,F be expressions built from set variables P, Q, R, . . .
and ∪, ∩, ∼ , U, {}.
Define the Boolean expressions Ep and Fp by replacing

P,Q,R, . . . with p, q, r, . . . ∼ with ¬∪ with ∨ U with true∩ with ∧ {} with false
Then:

E = F is valid iff Ep ≡ Fp is valid.
E ⊆ F is valid iff Ep⇒Fp is valid.
E = U is valid iff Ep is valid.

“Free” theorems! — (typically proven via set extensionality/inclusion and unfold-fold)
P∩(P∪Q) = P
P∩(Q∪R) = (P∩Q)∪(P∩R)
P∪(Q∩R) ⊆ P∪Q⋮

Tuples and Tuple Types in CALCCHECK

Tuples can have arbitrary “arity” at least 2.

Example: A triple with type: ⟨2, true,”Hello”⟩ ∶ ⟨⟨⟨⟨⟨⟨⟨ Z,B,String ⟩⟩⟩⟩⟩⟩⟩
Example: A seven-tuple: ⟨3, true,5 ◃

>

, ⟨5, false⟩,”Hello”,{2,8},{42 ◃
>

}⟩
The type of this: ⟨⟨⟨⟨⟨⟨⟨ Z,B,Seq Z, ⟨⟨⟨⟨⟨⟨⟨ Z,B ⟩⟩⟩⟩⟩⟩⟩,String, set Z, set (Seq Z) ⟩⟩⟩⟩⟩⟩⟩

Tuples are enclosed in ⟨ . . . ⟩ as in LADM. (type “\<” and “\>”)
Tuple types are enclosed in ⟨⟨⟨⟨⟨⟨⟨ . . . ⟩⟩⟩⟩⟩⟩⟩. (type “\<!” and “\>!”)
Otherwise, tuples and tuple types “work” as in Haskell.
In particular, there is no implicit nesting:

⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨A,B⟩⟩⟩⟩⟩⟩⟩,C⟩⟩⟩⟩⟩⟩⟩ and ⟨⟨⟨⟨⟨⟨⟨A,B,C⟩⟩⟩⟩⟩⟩⟩ and ⟨⟨⟨⟨⟨⟨⟨A, ⟨⟨⟨⟨⟨⟨⟨B,C⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩ are three different types!

Pairs and Pair Projections

Cartesian product of types: Two-tuple types, pair types:
b ∶ t1 and c ∶ t2 are well-typed iff ⟨b, c⟩ ∶ ⟨⟨⟨⟨⟨⟨⟨ t1, t2 ⟩⟩⟩⟩⟩⟩⟩ is well-typed.

Pair projections: fst ∶ ⟨⟨⟨⟨⟨⟨⟨ t1, t2 ⟩⟩⟩⟩⟩⟩⟩→ t1 fst ⟨b, c⟩ = b
snd ∶ ⟨⟨⟨⟨⟨⟨⟨ t1, t2 ⟩⟩⟩⟩⟩⟩⟩→ t2 snd ⟨b, c⟩ = c

Pair equality: For p, q ∶ ⟨⟨⟨⟨⟨⟨⟨ t1, t2 ⟩⟩⟩⟩⟩⟩⟩, p = q ≡ fst p = fst q ∧ snd p = snd q

Theorem “Pair extensionality”: For p ∶ ⟨⟨⟨⟨⟨⟨⟨ t1, t2 ⟩⟩⟩⟩⟩⟩⟩, p = ⟨ fst p, snd p ⟩
Proof:

p = ⟨fst p,snd p⟩= ⟨ Pair equality ⟩
fst p = fst ⟨fst p,snd p⟩ ∧ snd p = snd ⟨fst p,snd p⟩= ⟨ Pair projections ⟩
fst p = fst p ∧ snd p = snd p= ⟨ Reflexivity of equality, Idempotency of ∧ ⟩
true

LADM: Pairs and Cross Products
If b and c are expressions, then ⟨b, c⟩ is their 2-tuple or ordered pair

— “ordered” means that there is a first constituent (b) and a second constituent (c).
(14.2) Axiom, Pair equality: ⟨b, c⟩ = ⟨b′, c′⟩ ≡ b = b′ ∧ c = c′
(14.3) Axiom, Cross product: S × T = {b, c b ∈ S∧ c ∈ T ● ⟨b, c⟩}

— This uses: × ∶ set t1 → set t2 → set ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩
(14.4) Membership: ⟨b, c⟩ ∈ S × T ≡ b ∈ S ∧ c ∈ T
(14.5) ⟨x,y⟩ ∈ S × T ≡ ⟨y,x⟩ ∈ T × S
(14.6) S = {} ⇒ S × T = T × S = {}
(14.7) S × T = T × S ≡ S = {}∨T = {}∨S = T

(14.8) Distributivity of × over ∪: S × (T∪U) = (S × T)∪(S ×U)(S∪T) ×U = (S ×U)∪(T ×U)
(14.9) Distributivity of × over ∩: S × (T∩U) = (S × T)∩(S ×U)(S∩T) ×U = (S ×U)∩(T ×U)
(14.10) Distributivity of × over −: S × (T −U) = (S × T) − (S ×U)(S − T) ×U = (S ×U) − (T ×U)
(14.12) Monotonicity: S ⊆ S′ ∧ T ⊆ T′ ⇒ S × T ⊆ S′ × T′

Some Spice. . .
Converting between “different ways to take two arguments”:

curry ∶ (⟨⟨⟨⟨⟨⟨⟨A,B⟩⟩⟩⟩⟩⟩⟩→ C)→ (A→ B→ C)
curry f x y = f ⟨x,y⟩
uncurry ∶ (A→ B→ C)→ (⟨⟨⟨⟨⟨⟨⟨A,B⟩⟩⟩⟩⟩⟩⟩→ C)
uncurry g ⟨x,y⟩ = g x y

These functions correspond to the “Shunting” law:

(3.65) Shunting: p∧ q ⇒ r ≡ p⇒(q⇒ r)
The “currying” concept is named for Haskell Brooks Curry (1900–1982),
but goes back to Moses Ilyich Schönfinkel (1889–1942)
and Gottlob Frege (1848–1925).
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General Induction

Descending Chains in Numbers

Consider numbers with the usual strict-order <, and consider descending chains,
like 17 > 12 > 9 > 8 > 3 > . . .
Are there infinite descending chains in

Z ? — 0 > −1 > −2 > −3 > . . .
N ? — No

R ? — 0 > −1 > −2 > −3 > . . .
R+ ? — π0 > π−1 > π−2 > π−3 > . . .
Q+ ? — 1 > 1/2 > 1/3 > 1/4 > . . .
C ? — no “default” order!

Relations ; with no infinite (descending) <-chains are well-founded.

while-loops terminate iff they are “going down” some well-founded relation.

Induction over inductive datatypes like N and Seq A is based on of their
well-founded respective ` part − of ` relation.

Idea Behind Induction — How Does It Work? — Informally
Proving (∀ x ∶ t ● P) by induction, for an appropriate type t:

You are familiar with proving a base case and an induction step
The base cases establish P[x ∶= S], for each S that are “simplest t”
The induction steps work for x ∶ t for which we already know P[x ∶= x]
and from that establish P[x ∶= C x] for elements C x ∶ t that “are slightly more
complicated than x”.
Since the construction principle(s) (“C”) used in the induction step
is/are sufficiently powerful to construct all x ∶ t,
this justifies (∀ x ∶ t ● P).

Idea Behind Induction — How Does It Work? — Informally
Proving (∀ x ∶ t ● P) by induction, for an appropriate type t:

You are familiar with proving a base case and an induction step
The base cases establish P[x ∶= S], for each S that are “simplest t”
The induction steps work for x ∶ t for which we already know P[x ∶= x]
and from that establish P[x ∶= C x] for elements C x ∶ t that “are slightly more
complicated than x”.
Since the construction principle(s) (“C”) used in the induction step
is/are sufficiently powerful to construct all x ∶ t,
this justifies (∀ x ∶ t ● P).

Looking at this from the other side:
Each element x ∶ t is either a “simplest element” (“S”), or constructed via a
construction principle (“C”) from “slightly simpler elements” y,
that is, x = C y.
In the first case, the base case gives you the proof for P[x ∶= S].
In the second case, you obtain P[x ∶= Cy] via the induction step
from a proof for P[x ∶= y], if you can find that.
You can find that proof if repeated decomposition into S or C
always terminates.

Idea Behind Induction — Reduction via Well-founded Relations
Goal: prove (∀ x ∶ T ● P x) for some property P ∶ T → B (with ¬occurs(‘x’, ‘P’))
Situation: Elements of T are related via < ∶ T → T → B with “simpler” elements
(constituents, predecessors, parts, . . . )
“y; x” may read “y precedes x” or “y is an (immediate) constituent of x” or “y is
simpler than x” or “y is below x”. . .

If for every x ∶ T there is a proof that

if P y for all predecessors y of x, then P x,

then for every z ∶ T with ¬(P z):
there is a predecessor u of z with ¬(P u)
and so there is an infinite <-chain (of elements c with ¬(P c))
starting at z.

Theorem “Mathematical induction over ⟨T,;⟩”:
If there are no infinite <-chains in T, (that is, if; is noetherian), then:

(∀ x ● P x) ≡ (∀ x ● (∀ y y; x ● P y) ⇒ P x)



“⟨T,;⟩ Admits Induction” (LADM Section 12.4)

Definition (12.19): ⟨T,;⟩ admits induction iff the following principle of mathematical
induction over ⟨T,;⟩ holds for all properties P ∶ T → B:(∀ x ● P x) ≡ (∀ x ● (∀ y y; x ● P y) ⇒ P x)
Definition (12.21): ⟨T,;⟩ is well-founded iff every non-empty subset of T has a minimal
element wrt.;, that is:∀ S ∶ set T ● S ≠ {} ≡ ∃ x ∶ T ● x ∈ S ∧ ∀ y ∶ T y; x ● y ∉ S

Theorem (12.22): ⟨T,;⟩ is well-founded iff it admits induction.

Definition (12.25’): ⟨T,;⟩ is noetherian iff there are no infinite <-chains in T.

Definition (12.25”): ⟨T,;⟩ is noetherian iff ¬ (∃ s ∶ N→ T ● ∀ n ∶ N ● s (n + 1) ; s n)
Theorem (12.26): ⟨T,;⟩ is well-founded iff it is noetherian.

Theorem “Mathematical induction over ⟨T,;⟩”:
If there are no infinite <-chains in T, that is, if; is noetherian, then:(∀ x ● P x) ≡ (∀ x ● (∀ y y; x ● P y) ⇒ P x)

Mathematical Induction in N
Consider ; ∶ N→ N→ B with (x ; y) = (y < x) = (y = suc x). ; = ⌜suc ⌝
Mathematical induction over (N,;):(∀ x ∶ N ● P x)
= ⟨ (12.19) Math. induction; Def.; ⟩(∀ x ∶ N ● (∀ y ∶ N suc y = x ● P y) ⇒ P x)
= ⟨ Disjoint range split, with true ≡ x = 0∨x > 0 ⟩
(∀ x ∶ N x = 0 ● (∀ y ∶ N suc y = x ● P y)⇒P x)∧(∀ x ∶ N x > 0 ● (∀ y ∶ N suc y = x ● P y)⇒P x)

= ⟨ One-point rule; (8.22) Change of dummy — x↦ suc z ⟩
((∀ y ∶ N suc y = 0 ● P y)⇒P 0)∧(∀ z ∶ N ● (∀ y ∶ N suc y = suc z ● P y) ⇒ P (suc z))

= ⟨ (8.13) Empty range, with suc y = 0 ≡ false;
Cancellation of suc , (8.14) One-point rule for ∀ ⟩

P 0 ∧ (∀ z ∶ N ● P z ⇒ P (suc z))
Mathematical Induction in N (ctd.)

Mathematical induction over (N, ⌜suc⌝):
(∀ x ∶ N ● P x) ≡ P 0 ∧ (∀ z ∶ N ● P z ⇒ P (suc z))
(∀ x ∶ N ● P x) ≡ P 0 ∧ (∀ z ∶ N ● P z ⇒ P (z + 1))

Absence of infinite descending ⌜suc⌝ chains is due to the inductive definition of N with
constructors 0 and suc : “. . . and nothing else is a natural number.”

Mathematical induction over (N,<) “Complete induction over N”:

(∀ x ∶ N ● P x) ≡ (∀ x ∶ N ● (∀ y ∶ N y < x ● P y) ⇒ P x)
Complete induction gives you a stronger induction hypothesis
for non-zero x — some proofs become easier.

Natural Numbers Generated from 0 and suc — Explicit Induction Principle

Mathematical induction over (N, ⌜suc⌝):
(∀ n ∶ N ● P n) ≡ P 0 ∧ (∀ n ∶ N ● P n ⇒ P (suc n))

As inference rule underlying “By induction on `n ∶ N`”:

With variable P ∶ N→ B:

P 0

⌜P n⌝....
P(suc n)

P n

With P ∶ B as metavariable for an expression:

P[n ∶= 0]
⌜P⌝....

P[n ∶= suc n]
P

As axiom / theorem — LADM p. 219: “weak induction”:

Axiom “Induction over N ”∶
P[n ∶= 0]⇒ (∀ n ∶ N P ● P[n ∶= suc n])⇒ (∀ n ∶ N ● P)

Proving “Right-identity of +” Using the Induction Principle (v0)

$[LRP�',QGXFWLRQ�RYHU��(��

���3>Q�`��@�

���î����Q�����:�3�-�3>Q�`�VXF�Q@��

���î����Q�����-�3�

7KHRUHP�'5LJKW�LGHQWLW\�RI��(����P�����-�P����� �P�
3URRI��
��8VLQJ�',QGXFWLRQ�RYHU��(��
����6XESURRI�IRU�C�P����� �P�>P�`��@C��
������%\�VXEVWLWXWLRQ�DQG�''HILQLWLRQ�RI��(�
����6XESURRI�IRU�C��P�����:�P����� �P�-��P����� �P�>P�`�VXF�P@C��
������)RU�DQ\�CP����C�VDWLVI\LQJ�CP����� �PC��
�����������P����� �P�>P�`�VXF�P@�
�������� ��6XEVWLWXWLRQ��''HILQLWLRQ�RI��(���
����������VXF��P������ �VXF�P�
�������� ��$VVXPSWLRQ�CP����� �PC��'5HIOH[LYLW\�RI� (���
����������WUXH�

(I never use this pattern with substitutions in the subproof goals.)

Proving “Right-identity of +” Using the Induction Principle (v1)

$[LRP�',QGXFWLRQ�RYHU��(��

���3>Q�`��@�

���î����Q�����:�3�-�3>Q�`�VXF�Q@��

���î����Q�����-�3�

7KHRUHP�'5LJKW�LGHQWLW\�RI��(����P�����-�P����� �P�
3URRI��
��8VLQJ�',QGXFWLRQ�RYHU��(��
����6XESURRI�IRU�C������ ��C��
������%\�''HILQLWLRQ�RI��(�
����6XESURRI�IRU�C��P�����:�P����� �P�-�VXF�P����� �VXF�PC��
������)RU�DQ\�CP����C�VDWLVI\LQJ�CP����� �PC��
����������VXF�P�����
�������� ��''HILQLWLRQ�RI��(���
����������VXF��P������
�������� ��$VVXPSWLRQ�CP����� �PC���
����������VXF�P�

Proving “Right-identity of +” Using the Induction Principle (v2)

7KHRUHP�'5LJKW�LGHQWLW\�RI��(����P�����-�P����� �P�
3URRI��
��8VLQJ�',QGXFWLRQ�RYHU��(��
����6XESURRI��
��������������
������ ��''HILQLWLRQ�RI��(���
����������
����6XESURRI��
������)RU�DQ\�CP����C�VDWLVI\LQJ�',QG+\S(�CP����� �PC��
����������VXF�P�����
�������� ��''HILQLWLRQ�RI��(���
����������VXF��P������
�������� ��$VVXPSWLRQ�',QG+\S(���
����������VXF�P

$[LRP�',QGXFWLRQ�RYHU��(��

���3>Q�`��@�

���î����Q�����:�3�-�3>Q�`�VXF�Q@��

���î����Q�����-�3�

(Subproof goals can be omitted where they are clear from the
contained proof.)

You need to understand (v0) and (v1) to be able to do (v2)!

“By induction on . . . ” versus Using Induction Principles

Using induction principles directly is not much more verbose than “By
induction on . . . ”

“By induction on . . . ” only supports very few built-in induction principles

Induction principles can be derived as theorems, or provided as axioms, and
then can be used directly!

Mathematical Induction on Sequences

Cons induction: Mathematical induction over (Seq A,;)where

xs; ys ≡ ∃ x ∶ A ● x ◃ xs = ys

(∀ xs ∶ Seq A ● P xs) ≡ P
>

∧ (∀ xs ∶ Seq A P xs ● (∀ x ∶ A ● P(x ◃ xs)))
Snoc induction: Mathematical induction over (Seq A,;)where

xs; ys ≡ ∃ x ∶ A ● xs ▹ x = ys

(∀ xs ∶ Seq A ● P xs) ≡ P
>

∧ (∀ xs ∶ Seq A P xs ● (∀ x ∶ A ● P(xs ▹ x)))
Strict prefix induction: Mathematical induction over (Seq A,;)where

xs; ys ≡ ∃ z ∶ A; zs ∶ Seq A ● xs ⌢ z ◃ zs = ys

(∀ xs ∶ Seq A ● P xs) ≡(∀ xs ∶ Seq A ● (∀ ys ∶ Seq A ys; xs ● P ys) ⇒ P xs)
Different induction hypotheses make certain proofs easier.

Sequences — Induction Principle
Cons induction: Mathematical induction over (Seq A,;)where

xs; ys ≡ ∃ x ∶ A ● x ◃ xs = ys

(∀ xs ∶ Seq A ● P xs) ≡ P
>

∧ (∀ xs ∶ Seq A P xs ● (∀ x ∶ A ● P(x ◃ xs)))
As inference rule underlying “By induction on `xs ∶ Seq A`”:

With variable P ∶ Seq A→ B:

P
>

⌜P xs⌝....∀ x ● P (x ◃ xs)
P xs

With P ∶ B as metavariable for an expression:

P[xs ∶=
>

]
⌜P⌝....∀ x ● P[xs ∶= x ◃ xs]

P

Axiomn “Induction over sequences”:
P[xs ∶=

>

]⇒ (∀ xs ∶ Seq A P ● (∀ x ∶ A ● P[xs ∶= x ◃ xs])⇒ (∀ xs ∶ Seq A ● P)



Recall: Tail is different — LADM Proof
Theorem (13.7) “Tail is different ”∶ ∀ xs ∶ Seq A ● ∀ x ∶ A ● x ◃ xs ≠ xs
Proof:

By induction on `xs ∶ Seq A`∶
Base case∶

For any `x ∶ A`∶
x ◃ > ≠ >≡ ⟨ “Cons is not empty ” ⟩
true

Induction step∶
For any `z ∶ A`, `x ∶ A`∶

x ◃ z ◃ xs ≠ z ◃ xs≡ ⟨ “Definition of ≠ ”, “Cancellation of ◃ ” ⟩¬ (x = z ∧ z ◃ xs = xs)⇐⟨ “Consequence ”, “De Morgan ”, “Weakening ”, “Definition of ≠ ” ⟩
z ◃ xs ≠ xs≡ ⟨ Induction hypothesis `∀ x ∶ A ● x ◃ xs ≠ xs` ⟩
true

(For explanations about using “By induction on `xs ∶ Seq A`:” for proving
“∀ xs ∶ Seq A ● P”, see Ex6.1 and Ex6.2.)

Proving “Tail is different” Using the Induction Principle
Theorem “Induction over sequences ”∶

P[xs ∶= >] ⇒ (∀ xs ∶ Seq A P ● (∀ x ∶ A ● P[xs ∶= x ◃ xs]))⇒ (∀ xs ∶ Seq A ● P)
Theorem (13.7) “Tail is different ”∶ ∀ xs ∶ Seq A ● ∀ x ∶ A ● x ◃ xs ≠ xs
Proof:

Using “Induction over sequences ”∶
Subproof for `∀ x ∶ A ● x ◃ > ≠ > `∶

For any `x ∶ A`∶
By “Cons is not empty ”

Subproof for `∀ xs ∶ Seq A (∀ x ∶ A ● x ◃ xs ≠ xs)● (∀ z ∶ A ● (∀ x ∶ A ● x ◃ z ◃ xs ≠ z ◃ xs))`∶
For any `xs ∶ Seq A`

satisfying “Ind. Hyp. ” `(∀ x ∶ A ● x ◃ xs ≠ xs)`∶
For any `z ∶ A`, `x ∶ A`∶

x ◃ z ◃ xs ≠ z ◃ xs≡ ⟨ “Definition of ≠ ”, “Injectivity of ◃ ” ⟩¬ (x = z ∧ z ◃ xs = xs)⇐⟨ “De Morgan ”, “Weakening ”, “Definition of ≠ ” ⟩
z ◃ xs ≠ xs≡ ⟨ Assumption “Ind. Hyp. ” ⟩
true

Proving “Tail is different” Using the Induction Principle — Less Verbose
Theorem “Induction over sequences ”∶

P[xs ∶= >]⇒ (∀ xs ∶ Seq A P ● (∀ x ∶ A ● P[xs ∶= x ◃ xs]))⇒ (∀ xs ∶ Seq A ● P)
Theorem (13.7) “Tail is different ”∶ ∀ xs ∶ Seq A ● ∀ x ∶ A ● x ◃ xs ≠ xs
Proof:

Using “Induction over sequences ”∶
Subproof for `∀ x ∶ A ● x ◃ > ≠ > `∶

For any `x ∶ A`∶
By “Cons is not empty ”

Subproof:
For any `xs ∶ Seq A` satisfying “Ind. Hyp. ” `(∀ x ∶ A ● x ◃ xs ≠ xs)`∶

For any `z ∶ A`, `x ∶ A`∶
x ◃ z ◃ xs ≠ z ◃ xs≡ ⟨ “Definition of ≠ ”, “Injectivity of ◃ ” ⟩¬ (x = z ∧ z ◃ xs = xs)⇐⟨ “De Morgan ”, “Weakening ”, “Definition of ≠ ” ⟩
z ◃ xs ≠ xs≡ ⟨ Assumption “Ind. Hyp. ” ⟩
true

Structural Induction

Structural induction is mathematical induction over, e.g.,

finite sequences with the strict suffix relation

expressions with the direct constituent relation

propositional formulae with the strict subformula relation

trees with the appropriate strict subtree relation

proofs with appropriate strict sub-proof relation

programs with appropriate strict sub-program relation

. . .
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Part 1: Inductive Datastructures: Trees

Inductively-defined Tree Data Structures — with Haskell Definitions

Binary (search) trees

data BTree = EmptyB∣ Branch BTree Int BTree

103

7

5 112

bt1left = Branch
(Branch EmptyB 2 EmptyB)
3
(Branch EmptyB 5 EmptyB)

bt1right = Branch
EmptyB
10
(Branch EmptyB 11 EmptyB)

Huffman trees

data HTree = Leaf Char∣ HBranch HTree HTree

h

t r

e

0 1

1

10

0

hTree1 = HBranch (Leaf ’e’)
(HBranch

(HBranch (Leaf ’t’) (Leaf ’r’))
(Leaf ’h’))

decode hTree1 "100110" = "the"

Arbitrarily branching

data Tree
= Branch Int [Tree]

103

7

5

112

t1left = Branch 7
[Branch 3 [Branch 2 []]
,Branch 5 [Branch 11 []]
,Branch 10 []
]

Trees are Everywhere!

Search trees, dictionary datastructures — BinTree, balanced trees

Huffman trees — used for compression encoding e.g. in JPEG

Abstract Syntax Trees (ASTs) — central datastructures in compilers

— Recall: For expressions, we write strings, but we think trees. . .

. . .

Every “data” in Haskell defines a (possibly degenerated) tree datastructure

Binary Trees
Declaration∶ ∆⋅ ∶ Tree A
Declaration∶ ∶ Tree A → A → Tree A → Tree A

Declaration∶ t1 ∶ Tree N
Axiom “Definition of `t1` ”∶

t1 = ((∆⋅ 2 ∆⋅ ) 3 (∆⋅ 5 ∆⋅ ))
7(∆⋅ 10 (∆⋅ 11 ∆⋅ ))

103

7

5 112

Declaration∶ ∶ A → Tree A
Axiom “Singleton tree ”∶

x = ∆⋅ x ∆⋅
Fact “Alternative definition of `t1` ”∶

t1 = ( 2 3 5 )
7(∆⋅ 10 11 )

Axiom “Tree induction ”∶
P[t ∶= ∆⋅ ]∧ ( ∀ l, r ∶ Tree A; x ∶ A● P[t ∶= l] ∧ P[t ∶= r] ⇒ P[t ∶= l x r])⇒ (∀ t ∶ Tree A ● P)

Using the Induction Principle for Binary Trees
7KHRUHP�'6HOI�LQYHUVH�RI�WUHH�PLUURU(����W���7UHH�$�-��W�u��u� �W�
3URRI��
��8VLQJ�'7UHH�LQGXFWLRQ(��
����6XESURRI�IRU�CC�u�u� �CC��%\�'0LUURU(�
����6XESURRI�IRU�C��O��U���7UHH�$��[���$�
���������-��O�u��u� �O�<��U�u��u� �U�
���������î��O�V�[�Q�U�u�u� ��O�V�[�Q�U�C��
�������)RU�DQ\�CO��U��[C��
���������$VVXPLQJ�',+/(�C�O�u��u� �OC��
������������������',+5(�C�U�u��u� �UC��
��������������O�V�[�Q�U��u�u�
����������� ��'0LUURU(���
��������������O�u�u��V�[�Q��U�u�u��
����������� ��$VVXPSWLRQV�',+/(�DQG�',+5(���
�������������O�V�[�Q�U
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�������
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Induction Principle for Binary Trees
'HFODUDWLRQ�����������C�����7UHH�$�
'HFODUDWLRQ���������BVBQB���7UHH�$�®�$�®�7UHH�$�®�7UHH�$

)DFW�'$OWHUQDWLYH�GHILQLWLRQ�RI�CW�C(��

��W�� ��î���ï�V���Q�î���ï��

�������V���Q�

��������C�V����Q�î����ï�

103

7

5 112

'HFODUDWLRQ��B;B���7UHH�$�®�7UHH�$�®�x�
$[LRP�'+7UHH�;(��
�����W�;�C������������m��IDOVH��
�<���W�;��O�V�[�Q�U���m��W� �O��=��W� �U�

Theorem (12.19) Mathematical induction over (T,;), if; is well-founded(∀ x ● P x) ≡ (∀ x ● (∀ y y; x ● P y) ⇒ P x)
Equivalently:
$[LRP�'7UHH�LQGXFWLRQ(��

�����3>W�`�C@�

��<������O��U���7UHH�$��[���$�

�������-�3>W�`�O@�<�3>W�`�U@��î��3>W�`�O�V�[�Q�U@

�������

��î�����W���7UHH�$�-�3�

Structural Induction — Remember!

Theorem (12.19) Mathematical induction over (T,;), if; is well-founded(∀ x ● P x) ≡ (∀ x ● (∀ y y; x ● P y) ⇒ P x)
Structural induction is mathematical induction over, e.g.,

finite sequences with the strict suffix relation

expressions with the direct constituent relation

propositional formulae with the strict subformula relation

trees with the appropriate strict subtree relation

proofs with appropriate strict sub-proof relation

programs with appropriate strict sub-program relation

. . .
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Part 2: with2 and with3

with — Overview
CALCCHECK currently knows three kinds of “with”:

“with1”: For explicit substitutions: “Identity of +” with ‘x ∶= 2‘

ThmA with ThmB and ThmB2 . . .
“with2”: If ThmA gives rise to an implication A1⇒A2⇒ . . .(L = R):
Perform conditional rewriting, rigidly applying Lσ ↦ Rσ

if using ThmB and ThmB2 . . . to prove A1σ, A2σ, . . . succeeds

Using hi1:
sp1
sp2

is essentially syntactic sugar for: By hi1 with sp1 and sp2

“with3”: ThmA with ThmB
If ThmB gives rise to an equality/equivalence L = R:

Rewrite ThmA with L↦ R to ThmA′,
and use ThmA′ for rewriting the goal.

with2: Conditional Rewriting

ThmA with ThmB and ThmB2 . . .

If ThmA gives rise to an implication A1⇒A2⇒ . . .(L = R),
where FVar(L) = FVar(A1⇒A2⇒ . . .(L = R)):

Find substitution σ such that Lσ matches goal

Resolve A1σ, A2σ, . . . using ThmB and ThmB2 . . .

Rewrite goal applying Lσ ↦ Rσ rigidly.

E.g.: “Cancellation of ⋅” with Assumption ‘m + n ≠ 0‘

when trying to prove (m + n) ⋅ (n + 2) = (m + n) ⋅ 5 ⋅ k:

“Cancellation of ⋅” is: c ≠ 0⇒(c ⋅ a = c ⋅ b ≡ a = b)
We try to use: c ⋅ a = c ⋅ b↦ a = b, so L is c ⋅ a = c ⋅ b
Matching L against goal produces σ = [a, b, c ∶= (n + 2), (5 ⋅ k), (m + n)](c ≠ 0)σ is (m + n) ≠ 0

and can be proven by “Assumption ‘m + n ≠ 0‘”
The goal is rewritten to (a = b)σ, that is, (n + 2) = 5 ⋅ k.

Limitations of Conditional Rewriting Implementation of with2

ThmA with ThmB and ThmB2 . . .

If ThmA gives rise to an implication A1⇒A2⇒ . . .(L = R):
Find substitution σ such that Lσ matches goal
Resolve A1σ, A2σ, . . . using ThmB and ThmB2 . . .
Rewrite goal applying Lσ ↦ Rσ rigidly.

E.g.: “Transitivity of ⊆” with Assumptions `Q∩S ⊆ Q` and `Q ⊆ R`
when trying to prove `Q∩S ⊆ R`

“Transitivity of ⊆” is: Q ⊆ R⇒R ⊆ S⇒Q ⊆ S
For application, a fresh renaming is used: q ⊆ r⇒ r ⊆ s⇒ q ⊆ s
We try to use: q ⊆ s↦ true, so L is: q ⊆ s
Matching L against goal produces σ = [q, s ∶= Q∩S,R](q ⊆ r)σ is (Q∩S ⊆ r), and (r ⊆ s)σ is r ⊆ R

— which cannot be proven by “Assumption ‘Q∩S ⊆ Q‘”
resp. by “Assumption ‘Q ⊆ R‘”

Narrowing or unification would be needed for such cases
— not yet implemented

Adding an explicit substitution should help:
“Transitivity of ⊆” with `R ∶= Q` and assumption `Q∩S ⊆ Q` and assumption `Q ⊆ R`

with3: Rewriting Theorems before Rewriting
ThmA with ThmB

If ThmB gives rise to an equality/equivalence L = R:
Rewrite ThmA with L↦ R
E.g.: Assumption `p⇒ q` with (3.60) `p⇒ q ≡ p∧ q ≡ q`

The local theorem p⇒ q (resulting from the Assumption)
rewrites via: p⇒ q ↦ p ≡ p∧ q (from (3.60))
to: p ≡ p∧ q
which can be used for the rewrite: p ↦ p∧ q

Theorem (4.3) “Left-monotonicity of ∧ ”∶ (p ⇒ q) ⇒ ((p ∧ r) ⇒ (q ∧ r))
Proof:

Assuming `p ⇒ q`∶
p ∧ r≡ ⟨ Assumption `p ⇒ q` with “Definition of⇒ via ∧ ” ⟩
p ∧ q ∧ r⇒⟨ “Weakening ” ⟩
q ∧ r

with3: Rewriting Theorems before Rewriting

ThmA with ThmB
If ThmB gives rise to an equality/equivalence L = R:
Rewrite ThmA with L↦ R
E.g.: “Instantiation” with (3.60)

“Instantiation” `(∀ x ● P)⇒P[x ∶= E]` rewrites via (3.60) `q⇒ r ↦ q ≡ q∧ r`

to: (∀ x ● P) ≡ (∀ x ● P)∧P[x ∶= E]
which can be used as: (∀ x ● P) ↦ (∀ x ● P)∧P[x ∶= E]

H11:
(∀ x ∶ Z ● 5 < f x)≡ ⟨ “Instantiation ” with “Definition of⇒ via ∧ ” (3.60) ⟩ with3(∀ x ∶ Z ● 5 < f x) ∧ (5 < f x)[x ∶= 9]⇒⟨ “Monotonicity of ∧ ” with “Instantiation ” ⟩ with2(5 < f x)[x ∶= 8] ∧ (5 < f x)[x ∶= 9]

How can you simplify if you know P1⇒P2 ?
⋮

≡ ⟨ . . . ⟩
. . . ∨ P1 ∨ P2 ∨ . . .

≡ ⟨ ? ⟩
?

⋮
≡ ⟨ . . . ⟩

. . . ∧ P1 ∧ P2 ∧ . . .

≡ ⟨ ? ⟩
?

⋮
≡ ⟨ . . . ⟩

. . . ∨ P1 ∨ P2 ∨ . . .

≡ ⟨ “Reason for P1⇒P2”
with “Def. of⇒ via ∨” ⟩

. . . ∨ P2 ∨ . . .

⋮
≡ ⟨ . . . ⟩

. . . ∧ P1 ∧ P2 ∧ . . .

≡ ⟨ “Reason for P1⇒P2”
with “Def. of⇒ via ∧” ⟩

. . . ∧ P1 ∧ . . .

How can you simplify if you know S1 ⊆ S2 ?

⋮
= ⟨ . . . ⟩

. . . ∪ S1 ∪ S2 ∪ . . .

= ⟨ ? ⟩
?

⋮
= ⟨ . . . ⟩

. . . ∩ S1 ∩ S2 ∩ . . .

= ⟨ ? ⟩
?

Ð→ Set Theory:
“Set inclusion via ∪” S ⊆ T ≡ S∪T = T
“Set inclusion via ∩” S ⊆ T ≡ S∩T = S
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Relations in Set Theory

Predicates and Tuple Types — Relations are Tuple Sets — Think Database Tables!

called ∶ P→ P→ B

(uncurry called ) ∶ ⟨⟨⟨⟨⟨⟨⟨P,P⟩⟩⟩⟩⟩⟩⟩→ B is the characteristic function of the set

Rcalled ∶ set ⟨⟨⟨⟨⟨⟨⟨P,P⟩⟩⟩⟩⟩⟩⟩
Rcalled = {p, q ∶ P p called q ● ⟨p, q⟩}

Rcalled is a (binary) relation.

D ∶ P→ City→ City→ B

D p a b ≡ p drove from a to b

RD ∶ set ⟨⟨⟨⟨⟨⟨⟨P,City,City⟩⟩⟩⟩⟩⟩⟩
RD = {p ∶ P; a, b ∶ City D p a b ● ⟨p, a, b⟩}

RD is a (ternary) relation.

Relations

LADM: A (n-ary) relation on B1 ×⋯ × Bn is a subset of B1 ×⋯ × Bn
— where B1, . . . ,Bn are sets — avoiding to mention types. . .

CALCCHECK: Normally: A relation on ⟨⟨⟨⟨⟨⟨⟨ t1, . . . , tn ⟩⟩⟩⟩⟩⟩⟩ is a subset of ⌞ ⟨⟨⟨⟨⟨⟨⟨ t1, . . . , tn ⟩⟩⟩⟩⟩⟩⟩ ⌟ ,
that is, an item of type set ⟨⟨⟨⟨⟨⟨⟨ t1, . . . , tn ⟩⟩⟩⟩⟩⟩⟩

— where t1, . . . , tn are types

A relation on the tuple type ⟨⟨⟨⟨⟨⟨⟨ t1, . . . , tn ⟩⟩⟩⟩⟩⟩⟩ is an n-ary relation.

“Tables” in relational databases are n-ary relations.

A relation on the pair type ⟨⟨⟨⟨⟨⟨⟨ t1, t2 ⟩⟩⟩⟩⟩⟩⟩ is a binary relation.

The type of binary relations on ⟨⟨⟨⟨⟨⟨⟨ t1, t2 ⟩⟩⟩⟩⟩⟩⟩ is also written t1 ↔ t2, with

t1 ↔ t2 = set ⟨⟨⟨⟨⟨⟨⟨ t1, t2 ⟩⟩⟩⟩⟩⟩⟩ — /rel
The set of binary relations on the Cartesian product B ×C will be written B ○←→ C ,
with

B ○←→ C = P (B ×C) — /Rel

What is a Relation?

A relation
is a subset

of a Cartesian product.

What is a Binary Relation?

A binary relation
is a set of pairs.

Relations are Everywhere in Specification and Reasoning in CS

Operations are easily defined and understood via set theory

These operations satisfy many algebraic properties

Formalisation using relation-algebraic operations needs no quantifiers

Similar to how matrix operations do away with quantifications and indexed
variables aij in linear algebra

Like linear algebra, relation algebra
raises the level of abstraction

makes reasoning easier by reducing necessity for quantification

Starting with lots of quantification over elements,
while proving properties via set theory.

Moving towards abstract relation algebra
(avoiding any mention of and quantification over elements)

(Graphs), Simple Graphs
A graph consists of:

a set of “nodes” or “vertices”
a set of “edges” or “arrows”
“incidence” information specifying how edges connect nodes

— more details another day.

A simple graph consists of:
a set of “nodes”, and
a set of “edges”, which are pairs of nodes.

(A simple graph has no “parallel edges”.)

Formally: A simple graph ⟨N,E⟩ is a pair consisting of
a set N, the elements of which are called “nodes”, and
a relation E with E ∈ N ○←→ N,
the element pairs of which are called “edges”.

Simple Graphs
A simple graph consists of:

a set of “nodes”, and
a set of “edges”, which are pairs of nodes.

(A simple graph has no “parallel edges”.)

Formally: A simple graph ⟨N,E⟩ is a pair consisting of
a set N, the elements of which are called “nodes”, and
a relation E with E ∈ N ○←→ N,
the element pairs of which are called “edges”.

Even more formally: A simple graph ⟨N,E⟩ is a pair consisting of
a set N, and
a relation E with E ∈ N ○←→ N.

Given a simple graph ⟨N,E⟩, the elements of N are called “nodes” and the elements of E
are called “edges”.

Simple Graphs: Example

Formally: A simple graph ⟨N,E⟩ is a pair consisting of
a set N, the elements of which are called “nodes”, and
a relation E with E ∈ N ○←→ N, the element pairs of which are called “edges”.

Example: G1 = ⟨{2,0,1,9},{⟨2,0⟩, ⟨9,0⟩, ⟨2,2⟩}⟩
Graphs are normally visualised via graph drawings:

0

2

1

9

Simple graphs are essentially just relations!

Reasoning with relations is reasoning about graphs!

Visualising Binary Relations
⌞ Person ⌟ = {Bob, Jill, Jane,Tom,Mary, Joe, Jack}
parentOf = {⟨Jill,Bob⟩, ⟨Jill, Jane⟩, ⟨Tom,Bob⟩, ⟨Tom, Jane⟩,⟨Bob,Mary⟩, ⟨Bob, Joe⟩, ⟨Jane, Jack⟩}
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parentOf ∶ Person↔ Person parentOf ∈ (parents ○←→ children)
parents = Dom parentOf = {Bob, Jill, Jane,Tom}
children = Ran parentOf = {Bob, Jane,Mary, Joe, Jack}

Expressing relationship: ⟨Jill,Bob⟩ ∈ parentOf ≡ Jill parentOf Bob



Notation for Relationship

Notations for “x is related via R with y”:

explicit membership notation: ⟨x,y⟩ ∈ R

ambiguous traditional infix notation: x R y

CALCCHECK: x R y

Type “/(( . . . /))” for these “tortoise shell bracket” Unicode codepoints

The operator ∶ t1 → (t1 ↔ t2)→ t2 → B
is conjunctional:(1 = x R y < 5) ≡ (1 = x) ∧ (x R y) ∧ (y < 5)
and calculational:

x

R ⟨ Reason why x R y ⟩
y

Experimental Key Bindings

— US keyboard only! Firefox only?

Alt-= for ≡ in addition to /==
Alt-< for ⟨ in addition to /<
Alt-> for ⟩ in addition to />
Alt-( for in addition to /((
Alt-) for in addition to /))

Set Operations Used as Operations on Binary Relations

Relation union: ⟨u,v⟩ ∈ (R∪S) ≡ ⟨u,v⟩ ∈ R ∨ ⟨u,v⟩ ∈ S
u R∪S v ≡ u R v ∨ u S v

Relation intersection: u R∩S v ≡ u R v ∧ u S v

Relation difference: u R − S v ≡ u R v ∧ ¬(u S v)
Relation complement: u ∼R v ≡ ¬ (u R v)
Relation extensionality: R = S ≡ (∀x ● ∀y ● x R y ≡ x S y)

R = S ≡ (∀x, y ● x R y ≡ x S y)
Relation inclusion: R ⊆ S ≡ (∀ x ● ∀y ● x R y ⇒ x S y)

R ⊆ S ≡ (∀ x ● ∀y x R y ● x S y)
R ⊆ S ≡ (∀ x, y ● x R y ⇒ x S y)
R ⊆ S ≡ (∀ x, y x R y ● x S y)

Empty and Universal Binary Relations

The empty relation on ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ is {} ∶ t1 ↔ t2 x {} y ≡ false

⟨x,y⟩ ∈ {} ≡ false

The universal relation on ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ is ⌞ ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ ⌟ ∶ t1 ↔ t2 or U ∶ t1 ↔ t2

x ⌞ ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ ⌟ y ≡ true x U y ≡ true

⟨x,y⟩ ∈ ⌞ ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ ⌟ ≡ true ⟨x,y⟩ ∈ U ≡ true

The universal relation on B ×C is B ×C

x B ×C y ≡ x ∈ B∧y ∈ C

(14.4) ⟨x,y⟩ ∈ B ×C ≡ x ∈ B∧y ∈ C

Relation-Algebraic Operations: Operations on Relations

Set operations ∼ , ∪, ∩, −, _ are all available.

If R ∶ B↔ C, B R-C
then its converse R⌣ ∶ C↔ B
(in the textbook called “inverse” and written: R−1)
stands for “going R backwards”: c R⌣ b ≡ b R c

If R ∶ B↔ C and S ∶ C↔ D, B R-C S-D
then their composition R #S
(in the textbook written: R ○ S)
is a relation in B↔ D, and stands for
“going first a step via R, and then a step via S”:

b R #S d ≡ (∃c ∶ C ● b R c S d)
The resulting relation algebra

allows concise formalisations without quantifications,
enables simple calculational proofs.
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Relations in Set Theory (ctd.)

What is a Binary Relation?

A binary relation
is a set of pairs.

Binary Relation Types Contain Subsets of Cartesian Products

The type of binary relations between types t1 and t2:

t1 ↔ t2 = set ⟨⟨⟨⟨⟨⟨⟨ t1, t2 ⟩⟩⟩⟩⟩⟩⟩ — /rel
The set of binary relations between sets B and C:

B ○←→ C = P (B × C) — /Rel
Note that for a type t, the universal set

U ∶ set t

is the set of all members of t.

Or, (U ∶ set t) is “type t as a set”.

We abbreviate: ⌞ t ⌟ ∶= (U ∶ set t),
(/llcorner . . . /lrcorner) and have:

S ∈ ⌞ set t ⌟ ≡ S ⊆ ⌞ t ⌟
“Universe of sets”: ⌞ set t ⌟ = P ⌞ t ⌟

Theorem “Universe of relations ”∶⌞ t1 ↔ t2 ⌟ = ⌞ t1 ⌟ ○←→ ⌞ t2 ⌟
Proof:

Using “Set extensionality ”∶
For any `R ∶ t1 ↔ t2`∶

R ∈ ⌞ t1 ↔ t2 ⌟≡ ⟨ “Definition of↔ ” ⟩
R ∈ ⌞ set ⟨⟨⟨⟨⟨⟨⟨ t1, t2 ⟩⟩⟩⟩⟩⟩⟩ ⌟≡ ⟨ “Universe of sets ” ⟩
R ∈ P ⌞ ⟨⟨⟨⟨⟨⟨⟨ t1, t2 ⟩⟩⟩⟩⟩⟩⟩ ⌟≡ ⟨ “Universe of pairs ” ⟩
R ∈ P (⌞ t1 ⌟ × ⌞ t2 ⌟)≡ ⟨ “Definition of ○←→ ” ⟩
R ∈ ⌞ t1 ⌟ ○←→ ⌞ t2 ⌟

Domain and Range of Binary Relations

For R ∶ t1 ↔ t2, we define Dom R ∶ set t1 and Ran R ∶ set t2 as follows:

(14.16) Dom R = {x ∶ t1 (∃ y ∶ t2 ● x R y)} = {p p ∈ R ● fst p}=mapset fst R

(14.17) Ran R = {y ∶ t2 (∃ x ∶ t1 ● x R y)} = {p p ∈ R ● snd p}=mapset snd R

“Membership in `Dom`”:
x ∈ Dom R ≡ (∃ y ∶ t2 ● x R y)

“Membership in `Ran`”:
y ∈ Ran R ≡ (∃ x ∶ t1 ● x R y)
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parents = Dom parentOf = {Bob, Jill, Jane,Tom}
children = Ran parentOf = {Bob, Jane,Mary, Joe, Jack}

Formalise Without Quantifiers!

P = type of persons
C ∶ P↔ P
p C q ≡ p called q

Remember: For R ∶ t1 ↔ t2:
“Membership in `Dom`”:

x ∈ Dom R ≡ (∃ y ∶ t2 ● x R y)
“Membership in `Ran`”:

y ∈ Ran R ≡ (∃ x ∶ t1 ● x R y)
1 Helen called somebody.

Helen ∈ Dom C ≡ (∃ y ∶ P ● Helen C y)
2 For everybody, there is somebody they haven’t called.

Dom (∼C) = ⌞ P ⌟
Dom (∼C) = U



Relation-Algebraic Operations: Operations on Relations

Set operations ∼ , ∪, ∩, −, _ are all available.

If R ∶ B↔ C, B R-C
then its converse R ⌣ ∶ C↔ B
(in the textbook called “inverse” and written: R−1)
stands for “going R backwards”: c R ⌣ b ≡ b R c

If R ∶ B↔ C and S ∶ C↔ D, B R-C S-D
then their composition R #S
(in the textbook written: R ○ S)
is a relation in B↔ D, and stands for
“going first a step via R, and then a step via S”:

b R #S d ≡ (∃c ∶ C ● b R c S d)
The resulting relation algebra

allows concise formalisations without quantifications,
enables simple calculational proofs.

Operations on Relations: Converse

If R ∶ B↔ C, B R-C
then its converse R ⌣ ∶ C↔ B
(in the textbook called “inverse” and written: R−1)
stands for “going R backwards”: c R ⌣ b ≡ b R c

— type “/converse” or “/u{}”

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n
e

Ji
ll

B
o

b

Bob

MaryJoe

Jill

Jane

Jack

Tom

Bob

Jill Tom

Jane

MaryJoe Jack Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n
e

Ji
ll

B
o

b

parentOf ∶ Person↔ Person parentOf ⌣ ∶ Person↔ Person

Proving Self-inverse of Converse: (R⌣)⌣ = R

(R⌣)⌣ = R
≡ ⟨ Relation extensionality ⟩∀ x,y ● x (R⌣)⌣ y ≡ x R y
≡ ⟨ . . . ⟩

true

Using “Relation extensionality”:
Subproof for `∀ x,y ● x (R⌣)⌣ y ≡ x R y`:

For any x, y:

x (R⌣)⌣ y
≡ ⟨ Converse ⟩

y R⌣ x
≡ ⟨ Converse ⟩

x R y

Proving Isotonicity of Converse

Proving R ⊆ S ≡ R⌣ ⊆ S⌣:
R⌣ ⊆ S⌣

≡ ⟨ Relation inclusion ⟩∀ y,x y R⌣ x ● y S⌣ x
≡ ⟨ Converse, dummy permutation ⟩∀ x,y x R y ● x S y
≡ ⟨ Relation inclusion ⟩

R ⊆ S

Properties of Converse B R-C

If R ∶ B↔ C , then its converse R ⌣ ∶ C↔ B is defined by:

(14.18) ⟨c, b⟩ ∈ R ⌣ ≡ ⟨b, c⟩ ∈ R (for b ∶ B and c ∶ C)

(14.18) c R ⌣ b ≡ b R c (for b ∶ B and c ∶ C)

(14.19) Properties of Converse: Let R,S ∶ B↔ C be relations.

(a) Dom (R⌣) = Ran R

(b) Ran (R⌣) = Dom R

(c0) If R ∈ S ○←→ T , then Dom R ⊆ S and Ran R ⊆ T

(c) If R ∈ S ○←→ T , then R⌣ ∈ T ○←→ S

(d) (R⌣)⌣ = R

(d) R ⊆ S ≡ R⌣ ⊆ S⌣

Operations on Relations: Composition B R-C S-D

If R ∶ B↔ C and S ∶ C↔ D, then their composition R #S ∶ B↔ D is defined by:

(14.20) b R #S d ≡ (∃ c ∶ C ● b R c S d) (for b ∶ B,d ∶ D)

(14.20) b R #S d ≡ (∃ c ∶ C ● b R c ∧ c S d) (for b ∶ B,d ∶ D)

parentOf = {⟨Jill,Bob⟩, ⟨Jill, Jane⟩, ⟨Tom,Bob⟩, ⟨Tom, Jane⟩,⟨Bob,Mary⟩, ⟨Bob, Joe⟩, ⟨Jane, Jack⟩}
grandparentOf = parentOf #parentOf= {⟨Jill,Mary⟩, ⟨Jill, Joe⟩, ⟨Jill, Jack⟩⟨Tom,Mary⟩, ⟨Tom, Joe⟩, ⟨Tom, Jack⟩}
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Sub-identity and Identity Relations

The (sub-)identity relation on B ∶ set t is id B ∶ t↔ t
id B = {x ∶ t x ∈ B ● ⟨x,x⟩}:

x id B y ≡ x = y ∈ B

⟨x,y⟩ ∈ id B ≡ x = y∧y ∈ Bid children =
Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

— LADM writes ιB
— Writing “id B” follows the Z notation

The identity relation on t ∶ Type is I ∶ t↔ t with I = id U

x I y ≡ x = y

⟨x,y⟩ ∈ I ≡ x = y( I ∶ Person↔ Person) =
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Combining Several Operations

How to define siblings?
First attempt: childOf #parentOf , with childOf = parentOf ⌣ Bob
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Improved: sibling = childOf #parentOf − id ⌞ Person ⌟
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P = type of persons

C ∶ P↔ P — “called”

B ∶ P↔ P — “brother of”

Aos ∶ P

Jun ∶ P

Convert into English (via predicate logic):

Aos C Jun

Aos C #B Jun

Aos ∼ (C #∼B) Jun

Aos ∼ (∼C #B) Jun

Aos ∼ ((C∩∼ (B #C⌣)) #∼B) Jun

(B #({Jun} × ⌞ P ⌟))∩(C #C⌣) ⊆ id ⌞ P ⌟

Translating between Relation Algebra and Predicate Logic

R = S ≡ (∀ x,y ● x R y ≡ x S y)
R ⊆ S ≡ (∀ x,y ● x R y⇒x S y)

u {} v ≡ false
u U v ≡ true

u A × B v ≡ u ∈ A ∧ v ∈ B
u ∼S v ≡ ¬(u S v)

u S∪T v ≡ u S v ∨ u T v
u S∩T v ≡ u S v ∧ u T v
u S − T v ≡ u S v ∧ ¬(u T v)
u S_T v ≡ u S v ⇒ (u T v)

u I v ≡ u = v
u id A v ≡ u = v ∈ A
u R⌣ v ≡ v R u

u R #S v ≡ (∃ x ● u R x S v)



P = type of persons

C ∶ P↔ P — “called”

B ∶ P↔ P — “brother of”

Aos ∶ P

Jun ∶ P

Convert into English (via predicate logic):

Aos C #B Jun

≡ ⟨ (14.20) Relation composition ⟩(∃ b ● Aos C b B Jun)
“Aos called some brother of Jun.”

“Aos called a brother of Jun.”

Aos ∼ (C #∼B) Jun≡ ⟨ (11.17r) Relation complement ⟩¬(Aos C #∼B Jun)≡ ⟨ (14.20) Relation composition ⟩¬(∃ p ● Aos C p ∼B Jun)≡ ⟨ (11.17r) Relation complement ⟩¬(∃ p ● Aos C p ∧ ¬(p B Jun))≡ ⟨ (9.18b) Generalised De Morgan ⟩(∀ p ● ¬(Aos C p ∧ ¬(p B Jun)))≡ ⟨ (3.47) De Morgan, (3.12) Double negation ⟩(∀ p ● ¬(Aos C p) ∨ p B Jun)≡ ⟨ (9.3a) Trading for ∀ ⟩(∀ p Aos C p ● p B Jun)
“Everybody Aos called is a brother of Jun.”

“Aos called only brothers of Jun.”

Formalise Without Quantifiers! (2)

P ∶= type of persons
C ∶ P↔ P
p C q ∶≡ p called q

1 Helen called somebody who called her.

2 For arbitrary people x, z, if x called z, then there is sombody whom x called, and who was
called by somebody who also called z.

3 For arbitrary people x,y, z, if x called y, and y was called by somebody who also called z,
then x called z.

4 Obama called everybody directly, or indirectly via at most two intermediaries.

First Simple Properties of Composition
If R ∶ B↔ C and S ∶ C↔ D, then their composition R #S ∶ B↔ D is defined by:

(14.20) b R #S d ≡ (∃c ∶ C ● b R c∧ c S d) (for b ∶ B,d ∶ D)

(14.22) Associativity of #: Q #(R #S) = (Q #R) #S

Left- and Right-identities of #: If R ∈ X ○←→ Y, then: id X # R = R = R # id Y

We defined: I = id U with: Relationship via I: x I y ≡ x = y

I is “the” identity of composition: Identity of #: I #R = R = R # I

Contravariance: (R #S)⌣ = S⌣ #R⌣ B
R -�
R⌣ C

� �
?

R #S

� 6 (R #S)⌣ = S⌣ #R⌣

S -�
S⌣ D

Some of the Predicate Logic Laws You Really Need To Know Now

(8.13) Empty Range: . . .

(8.14) One-point Rule: Provided . . ., . . .

(8.15) (Quantification) Distributivity: . . .

(8.16–18) Range split: . . .

(9.17) Generalised De Morgan: . . .

(9.2) Trading for ∀: . . .

(9.19) Trading for ∃: . . .

(9.13) Instantiation: . . .

(9.28) ∃-Introduction: . . .

. . . and correctly handle substitution, Leibniz, bound variable rearrangements,
monotonicity/antitonicity, For any . . .
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Quantifier Reasoning, Some Properties of Relation
Composition

Plan for Today

Examples for the kind of quantifier reasoning required in the context of
set-theoretical relations

Some properties of relation composition, e.g., # is monotonic is bijective”

Moving towards relation-algebraic formalisations and reasoning. . .

Translating between Relation Algebra and Predicate Logic

R = S ≡ (∀ x,y ● x R y ≡ x S y)
R ⊆ S ≡ (∀ x,y ● x R y⇒x S y)

u {} v ≡ false
u U v ≡ true

u A × B v ≡ u ∈ A ∧ v ∈ B
u ∼S v ≡ ¬(u S v)

u S∪T v ≡ u S v ∨ u T v
u S∩T v ≡ u S v ∧ u T v
u S − T v ≡ u S v ∧ ¬(u T v)
u S_T v ≡ u S v ⇒ (u T v)

u I v ≡ u = v
u id A v ≡ u = v ∈ A
u R⌣ v ≡ v R u

u R #S v ≡ (∃ x ● u R x S v)
P = type of persons

C ∶ P↔ P — “called”

B ∶ P↔ P — “brother of”

Aos ∶ P

Jun ∶ P

Convert into English (via predicate logic):

Aos C Jun

Aos C #B Jun

Aos ∼ (C #∼B) Jun

Aos ∼ (∼C #B) Jun

Aos ∼ ((C∩∼ (B #C⌣)) #∼B) Jun

(B #({Jun} ×U))∩(C #C⌣) ⊆ I

Aos ∼ ((C∩∼ (B #C⌣)) #∼B) Jun≡ ⟨ Relation complement ⟩¬(Aos (C∩∼ (B #C⌣)) #∼B Jun)≡ ⟨ Relation composition ⟩¬(∃ p ● Aos C∩∼ (B #C⌣) p ∼B Jun)≡ ⟨ Relation intersection ⟩¬(∃ p ● Aos C p ∧ Aos ∼ (B #C⌣) p ∧ p ∼B Jun)≡ ⟨ Relation complement ⟩¬(∃ p ● Aos C p ∧ ¬(Aos B #C⌣ p) ∧ ¬(p B Jun))≡ ⟨ Relation composition ⟩¬(∃ p ● Aos C p ∧ ¬(∃q ● Aos B q C⌣ p) ∧ ¬(p B Jun))≡ ⟨ (9.18b) Generalised De Morgan ⟩
. . .
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Part 1: Quantifier Reasoning Examples: H11

H11 — Domain of Union — Step 1

Theorem “Domain of union ”∶ Dom (R ∪ S) = Dom R ∪ Dom S
Proof:

Using “Set extensionality ”∶
For any `x`∶

x ∈ Dom (R ∪ S)

≡ ⟨ ? ⟩

x ∈ Dom R ∪ Dom S

H11 — Domain of Union — Step 2

Theorem “Domain of union ”∶ Dom (R ∪ S) = Dom R ∪ Dom S
Proof:

Using “Set extensionality ”∶
For any `x`∶

x ∈ Dom (R ∪ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∪ S y≡ ⟨ “Relation union ” ⟩∃ y ● x R y ∨ x S y

≡ ⟨ ? ⟩
(∃ y ● x R y) ∨ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∨ x ∈ Dom S≡ ⟨ “Union ” ⟩
x ∈ Dom R ∪ Dom S

H11 — Domain of Union — Step 3

Theorem “Domain of union ”∶ Dom (R ∪ S) = Dom R ∪ Dom S

Proof:

Using “Set extensionality ”∶
For any `x`∶

x ∈ Dom (R ∪ S)
≡ ⟨ “Membership in `Dom` ” ⟩

∃ y ● x R ∪ S y

≡ ⟨ “Relation union ” ⟩
∃ y ● x R y ∨ x S y

≡ ⟨ “Distributivity of ∃ over ∨ ” ⟩
(∃ y ● x R y) ∨ (∃ y ● x S y)

≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∨ x ∈ Dom S

≡ ⟨ “Union ” ⟩
x ∈ Dom R ∪ Dom S

H11 — Domain of ∩ — Step 1

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y

⇒⟨ ? ⟩
(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

H11 — Domain of ∩ — Step 2

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y≡ ⟨ “Idempotency of ∧ ” ⟩(∃ y ● x R y ∧ x S y) ∧ (∃ y ● x R y ∧ x S y)
⇒⟨ ? with “Weakening ” ⟩
(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

H11 — Domain of ∩ — Step 3

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y≡ ⟨ “Idempotency of ∧ ” ⟩(∃ y ● x R y ∧ x S y) ∧(∃ y ● x R y ∧ x S y)⇒⟨ “Monotonicity of ∧ ” with
“Body monotonicity of ∃ ” with “Weakening ” ⟩(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩

x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

H11 — Domain of ∩ (B) — Step 1

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y

⇒⟨ ? ⟩
(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

Theorem (9.21) “Distributivity of ∧ over ∃ ”∶
P ∧ (∃ x R ● Q) ≡ (∃ x R ● P ∧ Q)

provided ¬occurs(‘x’, ‘P’)

H11 — Domain of ∩ (B) — Step 2

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y

⇒⟨ ? ⟩
∃ y ● x R y ∧ (∃ y ● x S y)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

Theorem (9.21) “Distributivity of ∧ over ∃ ”∶
P ∧ (∃ x R ● Q) ≡ (∃ x R ● P ∧ Q)

provided ¬occurs(‘x’, ‘P’)

H11 — Domain of ∩ (B) — Step 3

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y≡ ⟨ Substitution ⟩∃ y ● x R y ∧ (x S y)[y ∶= y]⇒⟨ ? with “∃-Introduction ” ⟩∃ y ● x R y ∧ (∃ y ● x S y)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S



H11 — Domain of ∩ (B) — Step 4

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y≡ ⟨ Substitution ⟩∃ y ● x R y ∧ (x S y)[y ∶= y]⇒⟨ “Body monotonicity of ∃ ” with “Monotonicity of ∧ ” with “∃-Introduction ” ⟩∃ y ● x R y ∧ (∃ y ● x S y)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

Distributivity over ∀
(9.5) Axiom, Distributivity of ∨ over ∀: If ¬occurs(‘x’, ‘P’),

P∨(∀ x R ● Q) ≡ (∀ x R ● P∨Q)
(9.6) Provided ¬occurs(‘x’, ‘P’), (∀ x R ● P) ≡ P∨ (∀ x ● ¬R)
(9.7) Distributivity of ∧ over ∀: If ¬occurs(‘x’, ‘P’),

¬(∀ x ● ¬R) ⇒ (P∧(∀ x R ● Q) ≡ (∀ x R ● P∧Q))
(9.22.1) Distributivity of ∧ over ∀: If ¬occurs(‘x’, ‘P’),

(∃ x ● R) ⇒ (P∧(∀ x R ● Q) ≡ (∀ x R ● P∧Q))
(9.8) (∀ x R ● true) ≡ true

(9.9) (∀ x R ● P ≡ Q) ⇒ ((∀ x R ● P) ≡ (∀ x R ● Q))

Distributivity over ∃
(9.21) Distributivity of ∧ over ∃: If ¬occurs(‘x’, ‘P’),

P∧(∃ x R ● Q) ≡ (∃ x R ● P∧Q)
(9.22) Provided ¬occurs(‘x’, ‘P’),(∃ x R ● P) ≡ P∧ (∃ x ● R)
(9.23) Distributivity of ∨ over ∃: If ¬occurs(‘x’, ‘P’),

(∃ x ● R) ⇒ ((∃ x R ● P∨Q) ≡ P∨(∃ x R ● Q))
(9.24) (∃ x R ● false) ≡ false
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Part 2: Some Properties of Relation Composition

Distributivity of Relation Composition over Union
Composition distributes over union from both sides:
(14.23) Q # (R∪S) = Q #R∪Q #S(P∪Q) #R = P #R∪Q #R

In control flow diagrams (NFA) — boxed variables are free; others existentially
quantified; alternative paths correspond to disjunction:

b1

�
�

�
���

Q
@

@
@

@@R

R

a Q - b

� �
?

R

� 6
S

c ≡ a c
@
@

@
@@R

Q

�
�
�

���
S

b2(∃ b ● a Q b R∪S c) ≡( ∃ b1 ● a Q b1 R c ) ∨ ( ∃ b2 ● a Q b2 S c )

Proving Distributivity of Relation Composition over Union
Theorem “Distributivity of # over ∪ ”∶ Q # (R ∪ S) = Q # R ∪ Q # S
Proof:

Using “Relation extensionality ”∶
For any `a`, `c`∶

a Q # (R ∪ S) c≡ ⟨ “Relation composition ” ⟩∃ b ● a Q b ∧ b R ∪ S c≡ ⟨ “Relation union ” ⟩∃ b ● a Q b ∧ (b R c ∨ b S c)
≡ ⟨ ? ⟩
(∃ b ● a Q b ∧ b R c) ∨ (∃ b ● a Q b ∧ b S c)≡ ⟨ “Relation composition ” ⟩
a Q # R c ∨ a Q # S c≡ ⟨ “Relation union ” ⟩
a Q # R ∪ Q # S c

Sub-Distributivity of Composition over Intersection
Composition sub-distributes over intersection from both sides:
(14.24) Q # (R∩S) ⊆ Q #R∩Q #S(P∩Q) #R ⊆ P #R∩Q #R

In constraint diagrams (boxed variables are free; others existentially quantified;
alternative paths are conjunction): b1
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Q
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R

a Q - b
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� 6
S

c ⇒ a c
@
@

@
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Q
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���
S

b2(∃ b ● a Q b R∩S c) ⇒( ∃ b1 ● a Q b1 R c ) ∧ ( ∃ b2 ● a Q b2 S c )
Counterexample for⇐: Q ∶= neighbour of R ∶= brother of S ∶= parent of

Proving Sub-Distributivity of Composition over Intersection
Theorem “Sub-distributivity of # over ∩ ”∶ Q # (R ∩ S) ⊆ Q # R ∩ Q # S
Proof:

Using “Relation inclusion ”∶
For any `a`, `c`∶

a Q # (R ∩ S) c≡ ⟨ “Relation composition ” ⟩∃ b ● a Q b ∧ b R ∩ S c≡ ⟨ “Relation intersection ” ⟩∃ b ● a Q b ∧ (b R c ∧ b S c)
⇒⟨ ? ⟩
(∃ b ● a Q b ∧ b R c) ∧ (∃ b ● a Q b ∧ b S c)≡ ⟨ “Relation composition ” ⟩
a Q # R c ∧ a Q # S c≡ ⟨ “Relation intersection ” ⟩
a Q # R ∩ Q # S c

Monotonicity of Relation Composition
Relation composition is monotonic in both arguments:

Q ⊆ R ⇒ Q #S ⊆ R #S
Q ⊆ R ⇒ P #Q ⊆ P #R

We could prove this via “Relation inclusion” and “For any”, but we don’t need to:

Assume Q ⊆ R, which by “Definition of ⊆ via ∪” is equivalent to Q∪R = R:

Proving Q #S ⊆ R #S:

R #S= ⟨ Assumption Q∪R = R ⟩(Q∪R) #S= ⟨ (14.23) Distributivity of # over ∪ ⟩
Q #S∪R #S⊇ ⟨ (11.31) Strengthening S ⊆ S∪T ⟩
Q #S
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Residuals of #. Relation Properties



Plan for Today

“Residuals”: Left- and right-division with respect to #

Some properties of homogeneous relations, e.g., “R is transitive”, “E is an order”

Some more properties of relations of arbitrary types, e.g., “R is univalent”, “F is
bijective”

Moving towards relation-algebraic formalisations and reasoning. . .
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Part 1: Residuals

Given: x ≤ z ≡ x ≤ 5

What do you know about z? Why? (Prove it!)

Given: X ⊆ A_B ≡ X∩A ⊆ B

Calculate the relative pseudocomplement A_B !

Given, for R ∶ A↔ B and S ∶ A↔ C: X ⊆ RzS ≡ R #X ⊆ S

RzS is the largest solution X ∶ B↔ C for R #X ⊆ S .

Calculate the right residual (“left division”) RzS !

A S - C
@
@

@@R
R

�
�
���
RzS

B

Same idea as for “_”:
Using extensionality, calculate b RzS c ≡ b ? c

Given, for R ∶ A↔ B and S ∶ A↔ C: X ⊆ RzS ≡ R #X ⊆ S

Calculate the right residual (“left division”) RzS !

A S - C
@
@

@@R
R

�
�
���
RzS

B
b RzS c

= ⟨ Similar to the calculation for relative pseudocomplement ⟩
(∀ a a R b ● a S c)

= ⟨ Generalised De Morgan, Relation conversions — Ex. 6.3 (R1) ⟩
b ∼ (R ⌣ #∼S) c

Therefore: RzS = ∼ (R⌣ #∼S)
— monotonic in second argument; antitonic in first argument

Proving b RzS c ≡ (∀ a a R b ● a S c):
b(RzS)c= ⟨ e ∈ S ≡ {e} ⊆ S — Exercise! ⟩{⟨b, c⟩} ⊆ (RzS)= ⟨ Def. z: X ⊆ RzS ≡ R # X ⊆ S ⟩
R #{⟨b, c⟩} ⊆ S= ⟨ (11.13r) Relation inclusion ⟩(∀ a, c′ a R #{⟨b, c⟩} c′ ● a S c′)= ⟨ (14.20) Relation composition ⟩(∀ a, c′ (∃ b′ ● a R b′ ∧ b′ {⟨b, c⟩} c′) ● a S c′)= ⟨ y ∈ {x} ≡ y = x — Exercise! ⟩(∀ a, c′ (∃ b′ ● a R b′ ∧ b′ = b∧ c = c′) ● a S c′)= ⟨ (9.19) Trading for ∃ ⟩(∀ a, c′ (∃ b′ b′ = b ● a R b′ ∧ c = c′) ● a S c′)= ⟨ (8.14) One-point rule ⟩(∀ a, c′ a R b∧ c = c′ ● a S c′)= ⟨ (8.20) Quantifier nesting ⟩(∀ a a R b ● (∀ c′ c = c′ ● a S c′))= ⟨ (1.3) Symmetry of =, (8.14) One-point rule ⟩(∀a a R b ● a S c)

Right Residual: X ⊆ RzS ≡ R #X ⊆ S
Proving RzS = ∼ (R⌣ #∼S):

b RzS c
= ⟨ previous slide ⟩(∀ a a R b ● a S c)
= ⟨ (9.18a) Generalised De Morgan ⟩¬(∃ a a R b ● ¬(a S c))
= ⟨ (11.17r) Relation complement ⟩¬(∃ a a R b ● a ∼S c)
= ⟨ (9.19) Trading for ∃, (14.18) Converse ⟩¬(∃ a ● b R⌣ a∧ a ∼S c)
= ⟨ (14.20) Relation composition ⟩¬(b R⌣ #∼S c)
= ⟨ (11.17r) Relation complement ⟩

b ∼ (R⌣ #∼S) c

Given, for R ∶ A↔ B and S ∶ A↔ C: X ⊆ RzS ≡ R #X ⊆ S

Calculate the right residual (“left division”) RzS ! (“R under S”)

A S - C
@
@

@@R
R

�
�
���
RzS

B
b RzS c

= ⟨ Similar to the calculation for relative pseudocomplement ⟩
(∀ a a R b ● a S c)

= ⟨ Generalised De Morgan, Relation conversions — Ex. 6.3 (R1) ⟩
b ∼ (R⌣ #∼S) c

Therefore: RzS = ∼ (R⌣ #∼S)
— monotonic in second argument; antitonic in first argument

Formalisations Using Residuals

Relationship via z:

b RzS c≡ (∀ a a R b ● a S c)

“Aos called only brothers of Jun.”
“Everybody called by Aos is a brother of Jun.”

(∀ p Aos C p ● p B Jun)≡ ⟨ (14.18) Relation converse ⟩(∀ p p C⌣ Aos ● p B Jun)≡ ⟨ Right residual ⟩
Aos C⌣zB Jun

“Aos called every brother of Jun.”
“Every brother of Jun has been called by Aos.”

(∀ p p B Jun ● Aos C p)≡ ⟨ (14.18) Relation converse ⟩(∀ p p B Jun ● p C⌣ Aos)≡ ⟨ Right residual ⟩
Jun BzC⌣ Aos

Some Properties of Right Residuals

Characterisation of right residual: ∀ R ∶ A↔ B; S ∶ A↔ C ● X ⊆ RzS ≡ R #X ⊆ S

Two sub-cancellation properties follow easily: R #(RzS) ⊆ S(QzR) #(RzS) ⊆ (QzS)
Theorem “ I z”∶ I z R = R
Proof:

Using “Mutual inclusion ”∶
Subproof:

I z R= ⟨ “Identity of # ” ⟩
I # ( I z R)⊆ ⟨ “Cancellation of z” ⟩
R

Subproof:
R ⊆ I z R≡ ⟨ “Characterisation of z” ⟩
I # R ⊆ R≡ ⟨ “Identity of # ”, “Reflexivity of ⊆ ” ⟩
true

Translating between Relation Algebra and Predicate Logic
R = S ≡ (∀ x,y ● x R y ≡ x S y)
R ⊆ S ≡ (∀ x,y ● x R y ⇒ x S y)

u {} v ≡ false
u A × B v ≡ u ∈ A ∧ v ∈ B

u ∼S v ≡ ¬(u S v)
u S∪T v ≡ u S v ∨ u T v
u S∩T v ≡ u S v ∧ u T v
u S − T v ≡ u S v ∧ ¬(u T v)
u S_T v ≡ u S v ⇒ u T v
u id A v ≡ u = v ∈ A

u I v ≡ u = v
u R ⌣ v ≡ v R u
u R #S v ≡ (∃ x ● u R x S v)
u RzS v ≡ (∀ x x R u ● x S v)
u SMR v ≡ (∀ x v R x ● u S x)



Translating between Relation Algebra and Predicate Logic
R = S ≡ (∀ x,y ● x R y ≡ x S y)
R ⊆ S ≡ (∀ x,y ● x R y⇒x S y)

u {} v ≡ false
u A × B v ≡ u ∈ A ∧ v ∈ B

u ∼S v ≡ ¬(u S v)
u S∪T v ≡ u S v ∨ u T v
u S∩T v ≡ u S v ∧ u T v
u S − T v ≡ u S v ∧ ¬(u T v)
u S_T v ≡ u S v ⇒ u T v
u id A v ≡ u = v ∈ A

u I v ≡ u = v
u R ⌣ v ≡ v R u
u R #S v ≡ (∃ x u R x ● x S v)
u RzS v ≡ (∀ x x R u ● x S v)
u SMR v ≡ (∀ x v R x ● u S x)

Translating between Relation Algebra and Predicate Logic
R = S ≡ (∀ x,y ● x R y ≡ x S y)
R ⊆ S ≡ (∀ x,y ● x R y⇒x S y)

u {} v ≡ false
u A × B v ≡ u ∈ A ∧ v ∈ B

u ∼S v ≡ ¬(u S v)
u S∪T v ≡ u S v ∨ u T v
u S∩T v ≡ u S v ∧ u T v
u S − T v ≡ u S v ∧ ¬(u T v)
u S_T v ≡ u S v ⇒ u T v
u id A v ≡ u = v ∈ A

u I v ≡ u = v
u R ⌣ v ≡ v R u
u R #S v ≡ (∃ x ● u R x ∧ x S v)
u RzS v ≡ (∀ x ● x R u ⇒ x S v)
u SMR v ≡ (∀ x ● v R x ⇒ u S x)

Symmetric Difference

Symmetric difference is usually defined on sets: S ⊖ T = (S − T) ∪ (T − S)
Theorem “Membership in ⊖”: x ∈ (S ⊖ T) ≡ x ∈ S /≡ x ∈ T

We can define it also on numbers, e.g., on Z or N: k ⊖ m = (k − m) ↑ (m − k)
Then we have:

Theorem “Size of symmetric set difference”: (# S) ⊖ (# T) ≤ # (S ⊖ T)
Proof: — Exercise!

Let the following sets be given:

S1 ∶ all students who normally attended lectures up to Midterm 1
Ss ∶ all students who achieved a grade of at least 50% in Midterm 1

Observation: (# S1) ⊖ (# S2) ≤ 20

Conjecture: # (S1 ⊖ S2) ≤ 20
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Part 2: Relation Properties

Properties of Homogeneous Relations (Table 14.1)

A relation R ∶ B↔ C is called homogeneous iff B = C.

A (homogeneous) relation R ∶ B↔ B is called:

reflexive I ⊆ R (∀ b ∶ B ● b R b)
irreflexive I∩R = {} (∀ b ∶ B ● ¬(b R b))
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
antisymmetric R∩R⌣ ⊆ I (∀ b, c ● b R c∧ c R b ⇒ b = c)
asymmetric R∩R⌣ = {} (∀ b, c ∶ B ● b R c ⇒ ¬(c R b))
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

7

6

5

4

3

2

1

7654321

7

6

5

4

3

2

1

7654321

0

2

1

9

Properties of Homogeneous Relations (ctd.)

reflexive I ⊆ R (∀ b ∶ B ● b R b)
irreflexive I∩R = {} (∀ b ∶ B ● ¬(b R b))
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
antisymmetric R∩R⌣ ⊆ I (∀ b, c ● b R c∧ c R b⇒ b = c)
asymmetric R∩R⌣ = {} (∀ b, c ∶ B ● b R c⇒¬(c R b))
transitive R #R ⊆ R (∀b, c,d ● b R c∧ c R d⇒ b R d)

R is an equivalence (relation) on B iff it is reflexive, transitive, and symmetric.

R is a (partial) order on B iff it is reflexive, transitive, and antisymmetric.
(E.g., ≤, ≥, ⊆, ⊇, ∣)

R is a strict-order on B iff it is irreflexive, transitive, and asymmetric.
(E.g., <, >, ⊂, ⊃)

Divisibility Order with Hasse Diagram
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23 5 7 11 13 17 19

46 10 149 15

812 2018

16

Hasse diagram for an order:
Edge direction is upwards — antisymmetric
Loops not drawn — reflexive
Transitive edges not drawn — transitive

Inclusion Order on Power Set of {1,2,3,4}

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

Hasse diagram for an order:
Edge direction is upwards — antisymmetric
Loops not drawn — reflexive
Transitive edges not drawn — transitive

Properties of Heterogeneous Relations
A relation R ∶ B↔ C is called:

univalent
determinate

R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

total
Dom R = U
Dom R = ⌞ B ⌟

I ⊆ R #R⌣
∀ b ∶ B ● (∃ c ∶ C ● b R c)

injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

surjective
Ran R = U
Ran R = ⌞ C ⌟

I ⊆ R⌣ #R
∀ c ∶ C ● (∃ b ∶ B ● b R c)

a mapping iff it is univalent and total
bijective iff it is injective and surjective

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

Properties of Heterogeneous Relations — Examples 1

univalent R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

total
Dom R = U

I ⊆ R #R⌣ ∀ b ∶ B ● (∃ c ∶ C ● b R c)
a mapping iff it is univalent and total
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Properties of Heterogeneous Relations — Examples 2

injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

surjective
Ran R = U

I ⊆ R⌣ #R
∀ c ∶ C ● (∃ b ∶ B ● b R c)

bijective iff it is injective and surjective
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More Quantification Calculations, Relation Properties, . . .

Interchange

(9.29) Interchange of quantifications:: Provided ¬occurs(‘y’, ‘R’)∧¬occurs(‘x’, ‘Q’),
(∃ x R ● (∀ y Q ● P)) ⇒ (∀ y Q ● (∃ x R ● P))

One direction only!

(9.29) Interchange of quantifications:: Provided ¬occurs(‘y’, ‘R’)∧¬occurs(‘x’, ‘Q’),(∃ x R ● (∀ y Q ● P)) ⇒ (∀ y Q ● (∃ x R ● P))
One direction only!

Understanding Interchange

Formalise: Every real number has an additive inverse.
true

= ⟨ Every real number does have an additive inverse ⟩(∀ y ∶ R ● (∃ x ∶ R ● y + x = 0))
⇐ ⟨ (9.29) Interchange of quantifications ⟩(∃ x ∶ R ● (∀ y ∶ R ● y + x = 0))

= ⟨ Different numbers have different additive inverses . . . ⟩
false

This says: “There is a real number x
which is an additive inverse for all real numbers”.

Interchange — Proof

(9.29) Interchange of quantifications:: Provided ¬occurs(‘y’, ‘R’)∧¬occurs(‘x’, ‘Q’),
(∃ x R ● (∀ y Q ● P)) ⇒ (∀ y Q ● (∃ x R ● P))

Proof of simpler case (R ≡ true):

(∃ x ● (∀ y ● P)) ⇒ (∀ y ● (∃ x ● P))
= ⟨ (3.57) Definition of⇒ ⟩
(∃ x ● (∀ y ● P)) ∨ (∀ y ● (∃ x ● P)) ≡ (∀ y ● (∃ x ● P))

= ⟨ (9.5) Distributivity of ∨ over ∀ ⟩
(∀ y ● (∃ x ● (∀ y ● P)) ∨ (∃ x ● P)) ≡ (∀ y ● (∃ x ● P))

= ⟨ (8.15) Distributivity of ∃ over ∨ ⟩
(∀ y ● (∃ x ● (∀ y ● P) ∨ P)) ≡ (∀ y ● (∃ x ● P))

= ⟨ (9.13.1) Instantiation (∀ y ● P) ⇒ P, with (3.57): (∀ y ● P) ∨ P ≡ P ⟩
(∀ y ● (∃ x ● P)) ≡ (∀ y ● (∃ x ● P))

— This is (3.5) Reflexivity of ≡

with3: Rewriting Theorems before Rewriting

ThmA with ThmB
If ThmB gives rise to an equality/equivalence L = R:
Rewrite ThmA with L↦ R
E.g.: Assumption `Q ⊆ R` with “Relation inclusion”:

Q ⊆ R rewrites via Q ⊆ R ↦ ∀x ● ∀y ● x Q y⇒x R y

to: ∀x ● ∀y ● x Q y⇒x R y

which can be instantiated to: to: a Q b⇒ a R b

7KHRUHP�!0RQRWRQLFLW\�RI�¨"��4���5��æ��4�¨�6���5�¨�6�

3URRI��
��$VVXPLQJ�C4���5C��
����8VLQJ�!5HODWLRQ�LQFOXVLRQ"��
������6XESURRI�IRU�C��D�'���F�'�D���4�¨�6���F�æ�D���5�¨�6���FC��

��������)RU�DQ\�CDC��CFC��
������������D���4�¨�6���F�

����������e{�!5HODWLRQ�FRPSRVLWLRQ"�|�
��������������E�'�D���4���E�4�E���6���F�
����������æ{�!%RG\�PRQRWRQLFLW\�RI��"�ZLWK�!0RQRWRQLFLW\�RI�4"�
��������������ZLWK�DVVXPSWLRQ�C4���5C�ZLWK�!5HODWLRQ�LQFOXVLRQ"�|�
��������������E�'�D���5���E�4�E���6���F�
����������e{�!5HODWLRQ�FRPSRVLWLRQ"�|�
������������D���5�¨�6���F

with2 and with3: Example

7KHRUHP�!0RQRWRQLFLW\�RI�¨"��4���5��æ��4�¨�6���5�¨�6�

3URRI��
��$VVXPLQJ�C4���5C��
����8VLQJ�!5HODWLRQ�LQFOXVLRQ"��
������6XESURRI�IRU�C��D�'���F�'�D���4�¨�6���F�æ�D���5�¨�6���FC��

��������)RU�DQ\�CDC��CFC��
������������D���4�¨�6���F�

����������e{�!5HODWLRQ�FRPSRVLWLRQ"�|�
��������������E�'�D���4���E�4�E���6���F�
����������æ{�!%RG\�PRQRWRQLFLW\�RI��"�ZLWK�!0RQRWRQLFLW\�RI�4"�
��������������ZLWK�DVVXPSWLRQ�C4���5C�ZLWK�!5HODWLRQ�LQFOXVLRQ"�|�
��������������E�'�D���5���E�4�E���6���F�
����������e{�!5HODWLRQ�FRPSRVLWLRQ"�|�
������������D���5�¨�6���Fassumption ‘Q ⊆ R‘ gives you Q ⊆ R

assumption ‘Q ⊆ R‘ with “Relation inclusion”
gives you via with3: ∀x ● ∀y ● x Q y⇒x R y
and then via implicit “Instantiation” triggered by the next with2:

a Q b ⇒ a R b
“Monotonicity of ∧” with
assumption ‘Q ⊆ R‘ with “Relation inclusion”

gives you via with2: a Q b ∧ b S c ⇒ a R b ∧ b S c

“Body monotonicity of ∃” with “Monotonicity of ∧” with
assumption ‘Q ⊆ R‘ with “Relation inclusion”

gives you via with2: (∃ b ● a Q b ∧ b S c) ⇒ (∃ b ● a R b ∧ b S c)

Modal Rules— Converse as Over-Approximation of Inverse

Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Useful to “make information available locally” (Q is replaced with Q∩S #R⌣)
for use in further proof steps.

In constraint diagrams (boxed variables are free; others existentially quantified;
alternative paths are conjunction):

b c′ R� b

�
�

���Q
@
@

@@R

R ⇒
@

@
@@I S

�
�
���Q

@
@

@@R

R

a S - c a c

(∃b ● a Q b R c∧ a S c) ⇒(∃b ● ∃c′ ● a Q b R c∧ b R c′ ∧ a S c′)
Properties of Heterogeneous Relations

A relation R ∶ B↔ C is called:
univalent
determinate

R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

total
Dom R = U
Dom R = ⌞ B ⌟

I ⊆ R #R⌣
∀ b ∶ B ● (∃ c ∶ C ● b R c)

injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

surjective
Ran R = U
Ran R = ⌞ C ⌟

I ⊆ R⌣ #R
∀ c ∶ C ● (∃ b ∶ B ● b R c)

a mapping iff it is univalent and total
bijective iff it is injective and surjective

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

Properties of Heterogeneous Relations — Examples 1

univalent R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

total
Dom R = U

I ⊆ R #R⌣ ∀ b ∶ B ● (∃ c ∶ C ● b R c)
a mapping iff it is univalent and total
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Properties of Heterogeneous Relations — Examples 2

injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

surjective
Ran R = U

I ⊆ R⌣ #R
∀ c ∶ C ● (∃ b ∶ B ● b R c)

bijective iff it is injective and surjective
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Function Types versus Sets of Univalent Relations
A relation R ∶ B↔ C is called:

univalent R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

total Dom R = U ∀ b ∶ B ● (∃ c ∶ C ● b R c)
a mapping iff it is univalent and total

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

— These are of different type than functions of function type B→ C!

The distinction corresponds to the way in which elements of the Haskell datatype
Data.Map.Map a b are distinct from Haskell functions of type a → b.

A (set-theoretic) relation R ∶ B↔ C is a set of pairs — “data”
A function f ∶ B→ C is a different kind of entity — in Haskell, “computation”.
In most logics, including CALCCHECK, if f ∶ B→ C and b ∶ B, then f b is never undefined.
(But may be unspecified, such as head

>

in Ex7.3.)

Properties of Heterogeneous Relations — Remarks

univalent R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

surjective R⌣ #R ⊇ I ∀ c ∶ C ● (∃ b ∶ B ● b R c)
total R #R⌣ ⊇ I ∀ b ∶ B ● (∃ c ∶ C ● b R c)
injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

R is univalent and surjective
iff R ⌣ # R = I
iff R ⌣ is a left-inverse of R

R is total and injective
iff R # R ⌣ = I
iff R ⌣ is a right-inverse of R
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Properties of Heterogeneous Relations — Notes

univalent R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

surjective R⌣ #R ⊇ I ∀ c ∶ C ● (∃ b ∶ B ● b R c)
total R #R⌣ ⊇ I ∀ b ∶ B ● (∃ c ∶ C ● b R c)
injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

All these properties are defined for arbitrary relations! (Not only for functions!)

R is univalent and surjective
iff R⌣ #R = I
iff R⌣ is a left-inverse of R

R is total and injective
iff R #R⌣ = I
iff R⌣ is a right-inverse of R

It is convenient to have abbreviations, for example:

f is a partial function from X to Y: f ∈ X → Y
f is an injective mapping from X to Y: f ∈ X ↣ Y
f is a partial surjection from X to Y: f ∈ X →→ Y

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Ð→ Z arrows!

The Z Specification Notation

Mathematical notation intended for software specification

Used for requirements contracts with customers who would be given a two-page
“Z Reference Card”

Very influential in Formal Methods; ISO-standardised

Two parts:

Z is a typed set theory in first-order predicate logic

— very close to the logic and set theory you are using in CALCCHECK

— except that in Z:
types are maximal sets
sets can be used in variable declarations: ∀ x ∶ S . . . ● . . .,
— which makes quantifier reasoning harder.
functions are univalent relations

(CALCCHECK and Haskell are type theories with embedded typed set theories.)

“Schemas” modelling of states and state transitions

AvenueÐ→ Resources Ð→ Links Ð→ Z Specification Notation
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Z Operators and Arrows, Ghosts. . .

The Z Specification Notation

Mathematical notation intended for software specification

Used for requirements contracts with customers who would be given a two-page
“Z Reference Card”

Very influential in Formal Methods; ISO-standardised

Two parts:

Z is a typed set theory in first-order predicate logic

— very close to the logic and set theory you are using in CALCCHECK

— except that in Z:
types are maximal sets
sets can be used in variable declarations: ∀ x ∶ S . . . ● . . .,
— which makes quantifier reasoning harder.
functions are univalent relations

(CALCCHECK and Haskell are type theories with embedded typed set theories.)

“Schemas” modelling of states and state transitions

AvenueÐ→ Resources Ð→ Links Ð→ Z Specification Notation

More Z Symbols: Domain-Restriction and -Antirestriction

Given types t1, t2 ∶ Type, a sets A ∶ set t1, and a relation R ∶ t1 ↔ t2:
Domain restriction: A◁R = R ∩ (A ×U)
Domain antirestriction: A −◁R = R − (A ×U) = ∼A◁R = R ∩ (∼A ×U)
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More Z Symbols: Domain- and Range-Restriction and -Antirestriction

Given types t1, t2 ∶ Type, sets A ∶ set t1 and B ∶ set t2, and relation R ∶ t1 ↔ t2:
Domain restriction: A◁R = R ∩ (A ×U)
Domain antirestriction: A −◁R = R − (A ×U) = R ∩ (∼A ×U)
Range restriction: R▷ B = R ∩ (U × B)
Range antirestriction: R −▷ B = R − (U × B) = R ∩ (U × ∼B)

B # ({Jun} ×U) ∩ (C #C⌣) ⊆ I

≡ ⟨ Domain- and range restriction properties ⟩
Dom(B▷ {Jun})◁ (C #C⌣) ⊆ I

Still no quantifiers, and no x,y of element type — but not only relations, also sets!

(The abstract version of this is called Peirce algebra, after Charles Sanders Peirce.)

Also in Z: Relational Image

Given types t1, t2 ∶ Type, sets A ∶ set t1 and B ∶ set t2, and relations R,S ∶ t1 ↔ t2:

Relational image: R (∣A ∣) = Ran(A◁R)
“Relational image of set A under relation R

Notation as “generalised function application”. . .

B # ({Jun} ×U) ∩ (C #C⌣) ⊆ I

≡ ⟨ Domain- and range restriction properties ⟩
Dom(B▷ {Jun})◁ (C #C⌣) ⊆ I

≡ ⟨ Relational image ⟩
(B⌣ (∣ {Jun} ∣))◁ (C #C⌣) ⊆ I



Also in Z: Relation Overriding ⊕
Given types t1, t2 ∶ Type, sets A ∶ set t1 and B ∶ set t2, and relations R,S ∶ t1 ↔ t2:

Relation overriding: R⊕ S = (Dom S −◁R)∪S

“Updating R exactly where S relates with anything”
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In the relation C⊕ {⟨Aos, Jun⟩} , Aos called only Jun.

Function Sets — Z Definition and Description [Spivey 1992]

In Z, X↔ Y = P(X ×Y) , and x↦ y = (x,y) is an abbreviation for pairs.

4.3 Functions 105

4.3 Functions

Name

� – Partial functions

� – Total functions

� – Partial injections

	 – Total injections


 – Partial surjections

� – Total surjections

� – Bijections

Definition

X � Y == { f : X � Y | (∀ x : X ; y1, y2 : Y •
(x 7→ y1) ∈ f ∧ (x 7→ y2) ∈ f ⇒ y1 = y2) }

X � Y == { f : X � Y | dom f = X }
X � Y == { f : X � Y | (∀ x1, x2 : dom f • f (x1) = f (x2)⇒ x1 = x2) }
X 	 Y == (X � Y ) ∩ (X � Y )

X 
 Y == { f : X � Y | ran f = Y }
X � Y == (X 
 Y ) ∩ (X � Y )

X � Y == (X � Y ) ∩ (X 	 Y )

Description

If X and Y are sets, X � Y is the set of partial functions from X to Y .
These are relations which relate each member x of X to at most one member
of Y . This member of Y , if it exists, is written f (x ). The set X � Y is the
set of total functions from X to Y . These are partial functions whose domain
is the whole of X ; they relate each member of X to exactly one member of
Y . An alternative definition of X � Y was given on page 88. It is equivalent
to the one given here.

The arrows � , 	 , and � with barbed tails make sets of functions that
are injective. X � Y is the set of partial injections from X to Y . These are
partial functions from X to Y which map different elements of their domain
to different elements of their range. X 	 Y is the set of total injections from
X to Y , the partial injections that are also total functions.

The arrows 
 , � , and � with double heads make sets of functions that
are surjective. X 
 Y is the set of partial surjections from X to Y . These
are partial functions from X to Y which have the whole of Y as their range.

4.3 Functions 105
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are injective. X � Y is the set of partial injections from X to Y . These are
partial functions from X to Y which map different elements of their domain
to different elements of their range. X 	 Y is the set of total injections from
X to Y , the partial injections that are also total functions.

The arrows 
 , � , and � with double heads make sets of functions that
are surjective. X 
 Y is the set of partial surjections from X to Y . These
are partial functions from X to Y which have the whole of Y as their range.

If X and Y are sets, X → Y is the set of partial functions from X to Y. These
are relations which relate each member x of X to at most one member of Y.
This member of Y, if it exists, is written f (x). The set X → Y is the set of total
functions from X to Y. These are partial functions whose domain is the whole
of X; they relate each member of X to exactly one member of Y.

Function Sets — Z Definition and Laws (1) [Spivey 1992]

In Z, X↔ Y = P(X ×Y) , and x↦ y = (x,y) is an abbreviation for pairs, and S ○R = R #S.
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Name

� – Partial functions

� – Total functions

� – Partial injections

	 – Total injections


 – Partial surjections

� – Total surjections

� – Bijections

Definition

X � Y == { f : X � Y | (∀ x : X ; y1, y2 : Y •
(x 7→ y1) ∈ f ∧ (x 7→ y2) ∈ f ⇒ y1 = y2) }

X � Y == { f : X � Y | dom f = X }
X � Y == { f : X � Y | (∀ x1, x2 : dom f • f (x1) = f (x2)⇒ x1 = x2) }
X 	 Y == (X � Y ) ∩ (X � Y )

X 
 Y == { f : X � Y | ran f = Y }
X � Y == (X 
 Y ) ∩ (X � Y )

X � Y == (X � Y ) ∩ (X 	 Y )

Description

If X and Y are sets, X � Y is the set of partial functions from X to Y .
These are relations which relate each member x of X to at most one member
of Y . This member of Y , if it exists, is written f (x ). The set X � Y is the
set of total functions from X to Y . These are partial functions whose domain
is the whole of X ; they relate each member of X to exactly one member of
Y . An alternative definition of X � Y was given on page 88. It is equivalent
to the one given here.

The arrows � , 	 , and � with barbed tails make sets of functions that
are injective. X � Y is the set of partial injections from X to Y . These are
partial functions from X to Y which map different elements of their domain
to different elements of their range. X 	 Y is the set of total injections from
X to Y , the partial injections that are also total functions.

The arrows 
 , � , and � with double heads make sets of functions that
are surjective. X 
 Y is the set of partial surjections from X to Y . These
are partial functions from X to Y which have the whole of Y as their range.

Laws:
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X � Y is the set of total surjections from X to Y , the functions which have
the whole of X as their domain and the whole of Y as their range.

The set X � Y is the set of bijections from X to Y . These map the elements
of X onto the elements of Y in a one-to-one correspondence. As suggested
by its shape, X � Y contains exactly those total functions that are both
injective and surjective.

Laws

f ∈ X � Y ⇔ f ◦ f ∼ = id(ran f )

f ∈ X � Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X 	 Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X � Y ⇒ f � S ∩ T � = f � S � ∩ f � T �
f ∈ X � Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X 
 Y ⇒ f ◦ f ∼ = idY

Function Sets — Z Definition and Laws [Spivey 1992]

In Z, X↔ Y = P(X ×Y) , and x↦ y = (x,y) is an abbreviation for pairs, and S ○R = R #S.

4.3 Functions 105

4.3 Functions

Name

� – Partial functions

� – Total functions

� – Partial injections

	 – Total injections


 – Partial surjections

� – Total surjections

� – Bijections

Definition

X � Y == { f : X � Y | (∀ x : X ; y1, y2 : Y •
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X 	 Y == (X � Y ) ∩ (X � Y )

X 
 Y == { f : X � Y | ran f = Y }
X � Y == (X 
 Y ) ∩ (X � Y )

X � Y == (X � Y ) ∩ (X 	 Y )

Description

If X and Y are sets, X � Y is the set of partial functions from X to Y .
These are relations which relate each member x of X to at most one member
of Y . This member of Y , if it exists, is written f (x ). The set X � Y is the
set of total functions from X to Y . These are partial functions whose domain
is the whole of X ; they relate each member of X to exactly one member of
Y . An alternative definition of X � Y was given on page 88. It is equivalent
to the one given here.

The arrows � , 	 , and � with barbed tails make sets of functions that
are injective. X � Y is the set of partial injections from X to Y . These are
partial functions from X to Y which map different elements of their domain
to different elements of their range. X 	 Y is the set of total injections from
X to Y , the partial injections that are also total functions.

The arrows 
 , � , and � with double heads make sets of functions that
are surjective. X 
 Y is the set of partial surjections from X to Y . These
are partial functions from X to Y which have the whole of Y as their range.
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X � Y == (X 
 Y ) ∩ (X � Y )

X � Y == (X � Y ) ∩ (X 	 Y )

Description

If X and Y are sets, X � Y is the set of partial functions from X to Y .
These are relations which relate each member x of X to at most one member
of Y . This member of Y , if it exists, is written f (x ). The set X � Y is the
set of total functions from X to Y . These are partial functions whose domain
is the whole of X ; they relate each member of X to exactly one member of
Y . An alternative definition of X � Y was given on page 88. It is equivalent
to the one given here.

The arrows � , 	 , and � with barbed tails make sets of functions that
are injective. X � Y is the set of partial injections from X to Y . These are
partial functions from X to Y which map different elements of their domain
to different elements of their range. X 	 Y is the set of total injections from
X to Y , the partial injections that are also total functions.

The arrows 
 , � , and � with double heads make sets of functions that
are surjective. X 
 Y is the set of partial surjections from X to Y . These
are partial functions from X to Y which have the whole of Y as their range.

Laws:
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X � Y is the set of total surjections from X to Y , the functions which have
the whole of X as their domain and the whole of Y as their range.

The set X � Y is the set of bijections from X to Y . These map the elements
of X onto the elements of Y in a one-to-one correspondence. As suggested
by its shape, X � Y contains exactly those total functions that are both
injective and surjective.

Laws

f ∈ X � Y ⇔ f ◦ f ∼ = id(ran f )

f ∈ X � Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X 	 Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X � Y ⇒ f � S ∩ T � = f � S � ∩ f � T �
f ∈ X � Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X 
 Y ⇒ f ◦ f ∼ = idY

Totality and Surjectivity for Relations Between Sets
Recall: A relation R ∶ t1 ↔ t2 is called:

total
Dom R = U
Dom R = ⌞ t1 ⌟

I ⊆ R #R⌣
∀ b ∶ t1 ● (∃ c ∶ t2 ● b R c)

surjective
Ran R = U
Ran R = ⌞ t2 ⌟

I ⊆ R⌣ #R
∀ c ∶ t2 ● (∃ b ∶ t1 ● b R c)

A relation R with R ∈ B ○←→ C is called:

total on B
Dom R = B

id B ⊆ R #R⌣ ∀ b b ∈ B ● (∃ c c ∈ C ● b R c)
surjective onto C

Ran R = C
id C ⊆ R⌣ #R

∀ c c ∈ C ● (∃ b b ∈ B ● b R c)
Note: If B ≠ U, then no relation in B ○←→ C is total.

Z Function Sets in CALCCHECK

For two sets X ∶ set t1 and Y ∶ set t2, we define the following function sets:

CALCCHECK Z

f ∈ X ○Ð→ Y /tfun total function Dom f = X ∧ f ⌣ # f ⊆ id Y f ∈ X → Y

f ∈ X → Y /pfun partial function Dom f ⊆ X ∧ f ⌣ # f ⊆ id Y f ∈ X → Y

f ∈ X ↣ Y /tinj total injection f # f ⌣ = id X ∧ f ⌣ # f ⊆ id Y f ∈ X ↣ Y

f ∈ X ↣ Y /pinj partial injection f # f ⌣ ⊆ id X ∧ f ⌣ # f ⊆ id Y f ∈ X ↣ Y

f ∈ X →→ Y /tsurj total surjection Dom f = X ∧ f ⌣ # f = id Y f ∈ X →→ Y

f ∈ X →→ Y /psurj partial surjection Dom f ⊆ X ∧ f ⌣ # f = id Y f ∈ X →→ Y

f ∈ X ↣→ Y /tbij total bijection f # f ⌣ = id X ∧ f ⌣ # f = id Y f ∈ X ↣→ Y

f ∈ X ↣→ Y /pbij partial bijection f # f ⌣ ⊆ id X ∧ f ⌣ # f = id Y

Counting . . .

Let X and Y be finite sets with # X = a and # Y = b:
# (X ×Y) = ? — pairs

# (X ○←→ Y) = # (P (X ×Y)) = ? — relations

# (X ○Ð→ Y) = ? — total functions

# (X → Y) = ? — partial functions

# (X ↣→ X) = ? — homogeneous total bijections

# (X ↣→ Y) = ? — total bijections

# (X ↣ Y) = ? — total injections

# (X ↣→ Y) = ? — partial bijections

# (X ↣ Y) = ? — partial injections

# (X →→ Y) = ? — total surjections

# { S S ⊆ Y∧# S = k } = ? — k-combinations of Y
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Part 2: Correctness Variations: Ghost Variables

Recall: The “While” Rule
The constituents of a while loop “while B do C od” are:

The loop condition B ∶ B
The (loop) body C ∶ Cmd

The conventional while rule allows to infer only correctness statements for while loops
that are in the shape of the conclusion of this inference rule, involving an invariant
condition Q ∶ B:

�����������������C%�<�4��î?�&�@��4C�
��������1��������������������������������������
����������C4��î?�ZKLOH�%�GR�&�RG�@��n�%�<�4C�

This rule reads:
If you can prove that execution of the loop body C starting in states
satisfying the loop condition B preserves the invariant Q,
then you have proof that the whole loop also preserves the invariant
Q, and in addition establishes the negation of the loop condition.

Recall: The “While” Rule — Induction for Partial Correctness

�����������������C%�<�4��î?�&�@��4C�
��������1��������������������������������������
����������C4��î?�ZKLOH�%�GR�&�RG�@��n�%�<�4C�

The invariant will need to hold
immediately before the loop starts,
after each execution of the loop body,
and therefore also after the loop ends.

The invariant will typically mention all variables that are changed by
the loop, and explain how they are related.

Frequent pattern: Generalised postcondition using the negated loop
condition



Recall: Using the “While” Rule

Theorem “While-example ”∶
Pre⇒ INIT ;

while B
do

C
od ;

FINAL

Post

Proof:
Pre Precondition⇒ INIT ⟨ ? ⟩
Q Invariant⇒ while B do

C
od ⟨ “While ” with subproof:

B ∧ Q Loop condition and invariant⇒ C ⟨ ? ⟩
Q Invariant⟩¬ B ∧ Q Negated loop condition, and invariant⇒ FINAL ⟨ ? ⟩

Post Postcondition

Using the “While” Rule — Closer Look

`B ∧ Q ⇒ C Q`⊢
`Q ⇒ while B do C od ¬ B ∧ Q`

⋮
Q Invariant⇒ while B do

C
od ⟨ “While ” with subproof:

B ∧ Q Loop condition and invariant⇒ C ⟨ ? ⟩
Q Invariant⟩¬ B ∧ Q Negated loop condition, and invariant⋮

Exercise 7.3: Correctness of a Program Containing a while-Loop

Theorem “Correctness of `elem` ”∶
true⇒ xs ∶ = xs0 ;

b ∶ = false ;
while xs ≠ > do

if head xs = x
then b ∶ = true
else skip
fi ;
xs ∶ = tail xs

od

(b ≡ x ∈ xs0) Parentheses!

Proof:
true⇒ xs ∶ = xs0 ;

b ∶ = false⟨ “Initialisation for `elem` ” ⟩(∃ us ● (us ⌢ xs = xs0) ∧ (b ≡ x ∈ us))⇒ while xs ≠ > do
if head xs = x
then b ∶ = true
else skip
fi ;
xs ∶ = tail xs

od ⟨ “While ” with “Invariant for `elem` ” ⟩¬ (xs ≠ >) ∧ (∃ us ● (us ⌢ xs = xs0) ∧ (b ≡ x ∈ us))⇒ ⟨ “Postcondition for `elem` ” ⟩(b ≡ x ∈ xs0)
Invariant involves quantifier: Good for practice with quantifier reasoning. . .

Easier to Prove than Exercise 7.3: With Ghost Variable — Ex9.1
Theorem “Correctness of `elem` ”∶

true⇒ xs ∶ = xs0 ;
us ∶ = > ; Ghost variable: Does not influence program flow or result
b ∶ = false ;

Invariant: (us ⌢ xs = xs0) ∧ (b ≡ x ∈ us)
while xs ≠ > do

if head xs = x then b ∶ = true else skip fi ;
us ∶ = us ▹ head xs ; Ghost assignment
xs ∶ = tail xs

od

(b ≡ x ∈ xs0) Parentheses needed because of precedences!

“Ghost variables” can make proofs easier: They can be used to keep track of values that
are important for understanding the logic of the program.

With language support for “ghost variables”, they are compiled away, to avoid run-time
cost.
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Relation-Algebraic Calculational Proofs

Plan for Today

Relation-algebraic calculational proofs — “abstract relation algebra”

Relation-algebraic proof . . .

. . . is what you started in the fill-in-the-blanks questions of H12

. . . will be the main topic of Exercises 9.*

. . . will be on Midterm 2

(in addition to predicate logic reasoning, in particular about relations in set theory,
etc. . . . )

. . . is easier than quantifier reasoning

Recall: Translating between Relation Algebra and Predicate Logic
R = S ≡ (∀ x,y ● x R y ≡ x S y)
R ⊆ S ≡ (∀ x,y ● x R y⇒x S y)

u {} v ≡ false
u A × B v ≡ u ∈ A ∧ v ∈ B

u ∼S v ≡ ¬(u S v)
u S∪T v ≡ u S v ∨ u T v
u S∩T v ≡ u S v ∧ u T v
u S − T v ≡ u S v ∧ ¬(u T v)
u S_T v ≡ u S v ⇒ u T v
u id A v ≡ u = v ∈ A

u I v ≡ u = v
u R ⌣ v ≡ v R u
u R #S v ≡ (∃ x ● u R x ∧ x S v)
u RzS v ≡ (∀ x ● x R u ⇒ x S v)
u SMR v ≡ (∀ x ● v R x ⇒ u S x)

Using Extensionality/Inclusion and the Translation Table, you Proved:

Theorem “Self-inverse of ⌣ ”∶ R ⌣ ⌣ = R
Theorem “Converse of ∩ ”∶ (R ∩ S) ⌣ = R ⌣ ∩ S ⌣
Theorem “Converse of # ”∶ (R # S) ⌣ = S ⌣ # R ⌣
Theorem “Converse of I ”∶ I ⌣ = I
Theorem “Isotonicity of ⌣ ”∶ R ⊆ S ≡ R ⌣ ⊆ S ⌣
Theorem “Converse of ∪ ”∶ (R ∪ S) ⌣ = R ⌣ ∪ S ⌣
Theorem “Distributivity of # over ∪ ”∶ Q # (R ∪ S) = Q # R ∪ Q # S
Theorem “Sub-distributivity of # over ∩ ”∶ Q # (R ∩ S) ⊆ Q # R ∩ Q # S
Theorem “Left-identity of # ” “Identity of # ”∶ I # R = R
Theorem “Right-identity of # ” “Identity of # ”∶ R # I = R
Theorem “Associativity of # ”∶ (Q # R) # S = Q # (R # S)
Theorem “Distributivity of # over ∪ ”∶ (Q ∪ R) # S = Q # S ∪ R # S
Theorem “Sub-distributivity of # over ∩ ”∶ (Q ∩ R) # S ⊆ Q # S ∩ R # S
Theorem “Monotonicity of # ”∶ Q ⊆ R ⇒ Q # S ⊆ R # S
Theorem “Converse of {} ”∶ {} ⌣ = {}
Theorem “Co-difunctionality ” “Hesitation ”∶ R ⊆ R # R ⌣ # R
Theorem “Modal rule ”∶ (Q # R) ∩ S ⊆ Q # (R ∩ Q ⌣ # S)
Theorem “Dedekind rule ”∶ (Q # R) ∩ S ⊆ (Q ∩ S # R ⌣) # (R ∩ Q ⌣ # S)
Theorem “Schröder ”∶ Q # R ⊆ S ≡ ∼ S # R ⌣ ⊆ ∼ Q

All subexpressions have B or ↔ types!

Equations of relational expressions:
Relation algebra

(Inclusions “are” equations: R ⊆ S ≡ R∪S = S)

Relation Algebra — Overview of Important Operatioons and Laws
For any two types B and C, on the type B↔ C of relations between B and C we have
the ordering ⊆with:

binary minima ∩ and maxima ∪ (which are monotonic)
least relation {} and largest (“universal”) relation U
complement operation ∼ such that R∩∼R = {} and R∪∼R = U
relative pseudo-complement R_S = ∼R∪S

The composition operation #
is defined on any two relations R ∶ B↔ C1 and S ∶ C2 ↔ D iff C1 = C2
is associative, monotonic, and has identities I
distributes over union: Q #(R∪S) = Q #R∪Q #S

The converse operation ⌣
maps relation R ∶ B↔ C to R⌣ ∶ C↔ B
is self-inverse (R⌣⌣ = R) and monotonic
is contravariant wrt. composition: (R #S)⌣ = S⌣ #R⌣

The Dedekind rule holds: Q #R∩S ⊆ (Q∩S #R⌣) #(R∩Q⌣ #S)
The Schröder equivalences hold:

Q #R ⊆ S ≡ Q⌣ #∼S ⊆ ∼R and Q #R ⊆ S ≡ ∼S #R⌣ ⊆ ∼Q
# has left-residuals SMR = ∼ (∼S #R⌣) and right-residuals QzS = ∼ (Q⌣ #∼S)

Recall: Monotonicity of Relation Composition
Relation composition is monotonic in both arguments:

Q ⊆ R ⇒ Q #S ⊆ R #S
Q ⊆ R ⇒ P #Q ⊆ P #R

We could prove this via “Relation inclusion” and “For any”, but we don’t need to:

Assume Q ⊆ R, which by (11.45) is equivalent to Q∪R = R:

Proving Q #S ⊆ R #S:

R #S= ⟨ Assumption Q∪R = R ⟩(Q∪R) #S= ⟨ (14.23) Distributivity of # over ∪ ⟩
Q #S∪R #S⊇ ⟨ (11.31) Strengthening S ⊆ S∪T ⟩
Q #S



Relation-Algebraic Proof of Sub-Distributivity

Use set-algebraic properties and Monotonicity of #: Q ⊆ R ⇒ P #Q ⊆ P #R

to prove: Subdistributivity of # over ∩: Q #(R∩S) ⊆ (Q #R)∩(Q #S)
Q #(R∩S)

= ⟨ Idempotence of ∩ (11.35) ⟩
(Q #(R∩S))∩(Q #(R∩S))

⊆ ⟨Mon. of ∩ with Mon. of # with Weakening X∩Y ⊆ X ⟩
(Q #(R∩S))∩(Q #S)

⊆ ⟨Mon. of ∩ with Mon. of # with Weakening X∩Y ⊆ X
— without two-sided monotonicity,

separate ⊆-steps are needed in CALCCHECK!
⟩

(Q #R)∩(Q #S)

Recall: Properties of Heterogeneous Relations

A relation R ∶ B↔ C is called:

univalent
determinate

R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

total
Dom R = B

I ⊆ R #R⌣ ∀ b ∶ B ● (∃ c ∶ C ● b R c)
injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

surjective
Ran R = C

I ⊆ R⌣ #R
∀ c ∶ C ● (∃ b ∶ B ● b R c)

a mapping iff it is univalent and total
bijective iff it is injective and surjective

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

For Univalent Relations, Sub-distributivity turns into Distributivity

If F ∶ A↔ B is univalent, then F #(R∩S) = (F #R)∩(F #S)
Proof: From sub-distributivity we have ⊆; because of antisymmetry of ⊆ (11.57) we only
need to show ⊇:
Assume that F is univalent, that is, F⌣ #F ⊆ I

(F #R)∩(F #S)
⊆ ⟨ “Modal rule” Q #R ∩ S ⊆ Q #(R ∩ Q⌣ #S) ⟩

F #(R∩(F⌣ #F #S))
⊆ ⟨ “Mon. of #” with “Mon. of ∩” with “Mon. of #” with assumption `F⌣ #F ⊆ I` ⟩

F #(R∩( I #S))
= ⟨ “Identity of #” ⟩

F #(R∩S)

Composition with Univalent Distributes over Intersection: In Diagrams(F #R)∩(F #S)
⊆ ⟨ “Modal rule” Q #R ∩ S ⊆ Q #(R ∩ Q⌣ #S) ⟩

F #(R∩(F⌣ #F #S))
⊆ ⟨ “Mon. of #” with “Mon. of ∩” with “Mon. of #” with assumption `F⌣ #F ⊆ I` ⟩

F #(R∩( I #S))
= ⟨ “Identity of #” ⟩

F #(R∩S)
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New Keywords: Monotonicity and Antitonicity

If F ∶ A↔ B is univalent, then F #(R∩S) = (F #R)∩(F #S)
Proof: From sub-distributivity we have ⊆; because of antisymmetry of ⊆ (11.57) we only
need to show ⊇:
Assume that F is univalent, that is, F⌣ #F ⊆ I

(F #R)∩(F #S)
⊆ ⟨ “Modal rule” Q #R ∩ S ⊆ Q #(R ∩ Q⌣ #S) ⟩

F #(R∩(F⌣ #F #S))
⊆ ⟨Monotonicity with assumption `F⌣ #F ⊆ I` ⟩

F #(R∩( I #S))
= ⟨ “Identity of #” ⟩

F #(R∩S)

Inverses are Defined from Composition and Identities

Definition: Let B and C be types, and f ∶ B↔ C be a relation.

An inverse of f is a relation g ∶ C↔ B such that f #g = I and g # f = I .

Theorems:

f has an inverse iff f is a bijective mapping.

The inverse of a bijective mapping f is its converse f ⌣.

Note:

“Inverse” should always be defined this way, based on an associative composition with identities.

In such a context, if f has an inverse, it is also called an isomorphism.

(Ad-hoc “definitions of inverse” produce a moral proof obligation of the inverse properties.
Without these, one runs the risk of inducing strange theories. . . )

In particular: Converse of relations does in general not produce inverses.

Inverses of Total Functions — Between Sets
We write “f ∈ S1 ○Ð→ S2” for “f is a mapping fron S1 to S2” — Dom f = S1 ∧ f ⌣ # f ⊆ id S2

(14.43) Definition: Let f with f ∈ S1 ○Ð→ S2 be a mapping from S1 to S2.
An inverse of f is a mapping g from S2 to S1 such that f #g = id S1 and g # f = id S2.

Still:
f has an inverse iff f is a bijective mapping.

The inverse of a bijective mapping f is its converse f ⌣.
A homogeneous bijective mapping is also called a permutation.
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Inverses of Total Functions — Between Types
(14.43t) Definition: Let B and C be types, and f ∶ B↔ C be a mapping.

An inverse of f is a mapping g ∶ C↔ B such that f #g = I = id ⌞ B ⌟ and g # f = I = id ⌞ C ⌟.
Theorem: If g is an inverse of a mapping f ∶ B→ C, then g = f ⌣.
Proof: (Using antisymmetry of ⊆)

f ⌣= ⟨ Identity of # ⟩
f ⌣ # I= ⟨ g is an inverse of f ⟩
f ⌣ # f #g⊆ ⟨Mon. of # with f is univalent, that is, f ⌣ # f ⊆ I ⟩
I #g= ⟨ Identity of # ⟩
g⊆ ⟨ Identity of #, Mon. of # with f is total, that is, I ⊆ f # f ⌣ ⟩
g # f # f ⌣= ⟨ g is an inverse of f ; Identity of # ⟩
f ⌣

C f� B

C f� B I- B

C f� B f-C g- B

C I-C g- B

C g- B

C g-B f-C f� B

C f� B
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Relation-Algebraic Calculational Proofs (ctd.)

Recall: Properties of Homogeneous Relations

reflexive I ⊆ R (∀ b ∶ B ● b R b)
irreflexive I∩R = {} (∀ b ∶ B ● ¬(b R b))
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
antisymmetric R∩R⌣ ⊆ I (∀ b, c ● b R c∧ c R b⇒ b = c)
asymmetric R∩R⌣ = {} (∀ b, c ∶ B ● b R c⇒¬(c R b))
transitive R #R ⊆ R (∀b, c,d ● b R c∧ c R d⇒ b R d)

R is an equivalence (relation) on B iff it is reflexive, transitive, and symmetric. (E.g., =, ≡)
R is a (partial) order on B

iff it is reflexive, transitive, and antisymmetric.
(E.g., ≤, ≥, ⊆, ⊇, ∣)

R is a strict-order on B
iff it is irreflexive, transitive, and asymmetric.
(E.g., <, >, ⊂, ⊃)



Homogeneous Relation Properties are Preserved by Converse
reflexive I ⊆ R (∀ b ∶ B ● b R b)
irreflexive I∩R = {} (∀ b ∶ B ● ¬(b R b))
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
antisymmetric R∩R⌣ ⊆ I (∀ b, c ● b R c∧ c R b ⇒ b = c)
asymmetric R∩R⌣ = {} (∀ b, c ∶ B ● b R c ⇒ ¬(c R b))
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Theorem: If R ∶ B↔ B is reflexive/irreflexive/symmetric/antisymmetric/asymmetric/
transitive/idempotent, then R⌣ has that property, too.
Proof: Reflexivity:

R⌣
⊇ ⟨Mon. ⌣ with Reflexivity of R ⟩

I ⌣
= ⟨ Symmetry of I ⟩

I

Transitivity:
R⌣ #R⌣

= ⟨ Converse of # ⟩
(R #R)⌣

⊆ ⟨Mon. ⌣ with Trans. of R ⟩
R⌣

Reflexive and Transitive Implies Idempotent

reflexive I ⊆ R (∀ b ∶ B ● b R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Theorem: If R ∶ B↔ B is reflexive and transitive, then it is also idempotent.

Reflexive and Transitive Implies Idempotent — Direct Approach

reflexive I ⊆ R
transitive R #R ⊆ R
idempotent R #R = R

Theorem “Idempotency from reflexive and transitive ”∶
reflexive R ⇒ transitive R ⇒ idempotent R

Proof:
Assuming `reflexive R`, `transitive R`∶

idempotent R≡ ⟨ “Definition of idempotency ” ⟩
R # R = R≡ ⟨ “Mutual inclusion ” ⟩
R # R ⊆ R ∧ R ⊆ R # R≡ ⟨ “Definition of transitivity ”, assumption `transitive R`, “Identity of ∧ ” ⟩
R ⊆ R # R≡ ⟨ “Identity of # ” ⟩
R # I ⊆ R # R⇐⟨ “Monotonicity of # ” ⟩
I ⊆ R≡ ⟨ Assumption `reflexive R` with “Definition of reflexivity ” ⟩
true

Reflexive and Transitive Implies Idempotent — “and using with”

reflexive I ⊆ R
transitive R #R ⊆ R
idempotent R #R = R

Theorem “Idempotency from reflexive and transitive ”∶
reflexive R ⇒ transitive R ⇒ idempotent R

Proof:
Assuming `reflexive R` and using with “Definition of reflexivity ”,

`transitive R` and using with “Definition of transitivity ”∶
idempotent R≡ ⟨ “Definition of idempotency ” ⟩
R # R = R≡ ⟨ “Mutual inclusion ” ⟩
R # R ⊆ R ∧ R ⊆ R # R≡ ⟨ Assumption `transitive R`, “Identity of ∧ ” ⟩
R ⊆ R # R≡ ⟨ “Identity of # ” ⟩
R # I ⊆ R # R⇐⟨ “Monotonicity of # ” ⟩
I ⊆ R≡ ⟨ Assumption `reflexive R` ⟩
true

Reflexive and Transitive Implies Idempotent — Semi-formal

reflexive I ⊆ R (∀ b ∶ B ● b R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Theorem: If R ∶ B↔ B is reflexive and transitive, then it is also idempotent.

Proof: By mutual inclusion and transitivity of R, we only need to show R ⊆ R #R:

R

= ⟨ Identity of # ⟩
R # I

⊆ ⟨Mon. # with Reflexivity of R ⟩
R # R

Reflexive and Transitive Implies Idempotent — Cyclic ⊆-chain Proving ` = `

reflexive I ⊆ R
transitive R #R ⊆ R
idempotent R #R = R

Theorem “Idempotency from reflexive and transitive ”∶
reflexive R ⇒ transitive R ⇒ idempotent R

Proof:
Assuming `reflexive R` and using with “Definition of reflexivity ”,

`transitive R` and using with “Definition of transitivity ”∶
Using “Definition of idempotency ”∶

Subproof for `R # R = R`∶
R # R⊆ ⟨ Assumption `transitive R` ⟩
R= ⟨ “Identity of # ” ⟩
R # I⊆ ⟨ “Monotonicity of # ” with assumption `reflexive R` ⟩
R # R

Using cyclic ⊑-chains to prove equalities requires activation of antisymmetry of ⊑.
Most Homogeneous Relation Properties are Preserved by Intersection

reflexive I ⊆ R
irreflexive I∩R = {}
transitive R #R ⊆ R
idempotent R #R = R

symmetric R⌣ = R
antisymmetric R∩R⌣ ⊆ I
asymmetric R∩R⌣ = {}

Theorem: If R,S ∶ B↔ B are reflexive/irreflexive/symmetric/antisym-
metric/asymmetric/transitive, then R∩S has that property, too.

Proof: Reflexivity:
R∩S

⊇ ⟨Mon. of ∩ with Refl. S ⟩
R∩ I

⊇ ⟨Mon. of ∩ with Refl. R ⟩
I∩ I

= ⟨ Idempotence of ∩ ⟩
I

Transitivity:(R∩S) #(R∩S)
⊆ ⟨ Sub-distributivity of # over ∩ ⟩(R #R)∩(R #S)∩(S #R)∩(S #S)
⊆ ⟨Weakening X∩Y ⊆ X ⟩(R #R)∩(S #S)
⊆ ⟨Mon. ∩ with transitivity of R and S ⟩

R∩S

Most Homogeneous Relaton Properties are Preserved by Intersection
reflexive I ⊆ R
irreflexive I∩R = {}
transitive R #R ⊆ R
idempotent R #R = R

symmetric R⌣ = R
antisymmetric R∩R⌣ ⊆ I
asymmetric R∩R⌣ = {}

Theorem: If R,S ∶ B↔ B are reflexive/irreflexive/symmetric/antisym-
metric/asymmetric/transitive, then R∩S has that property, too.

Counter-example for preservation of idempotence:

c e

R

c e

S

c e

R S

Some Homogeneous Relation Properties are Preserved by Union

reflexive I ⊆ R
irreflexive I∩R = {}
transitive R #R ⊆ R
idempotent R #R = R

symmetric R⌣ = R
antisymmetric R∩R⌣ ⊆ I
asymmetric R∩R⌣ = {}

Theorem: If R,S ∶ B↔ B are reflexive/irreflexive/symmetric, then R∪S has that
property, too.

Proof:

Reflexivity:
I

⊆ ⟨ Reflexivity of R ⟩
R

⊆ ⟨Weakening X ⊆ X∪Y ⟩
R∪S

Irreflexivity:
I∩(R∪S)

= ⟨ Distributivity of ∩ over ∪ ⟩
( I∩R)∪( I∩S)

= ⟨ Irreflexivity of R and S ⟩
{}∪{}

= ⟨ Idempotence of ∪ ⟩
{}

Some Homogeneous Relation Properties are Preserved by Union

reflexive I ⊆ R
irreflexive I∩R = {}
transitive R #R ⊆ R
idempotent R #R = R

symmetric R⌣ = R
antisymmetric R∩R⌣ ⊆ I
asymmetric R∩R⌣ = {}

Theorem: If R,S ∶ B↔ B are reflexive/irreflexive/symmetric, then R∪S has that
property, too.

Counter-example for preservation of transitivity:

c e

R

c e

S

c e

R Sq

q

q



Weaker Formulation of Symmetry

reflexive I ⊆ R
irreflexive I∩R = {}
transitive R #R ⊆ R
idempotent R #R = R

symmetric R⌣ = R
antisymmetric R∩R⌣ ⊆ I
asymmetric R∩R⌣ = {}

For proving symmetry of R,S ∶ B↔ B, it is sufficient to prove R⌣ ⊆ R.

In other words:

Theorem: If R⌣ ⊆ R, then R⌣ = R.

Proof: By mutual inclusion, we only need to show R ⊆ R⌣:
R

= ⟨ Self-inverse of converse ⟩
(R⌣)⌣

⊆ ⟨Mon. of ⌣ with Assumption R⌣ ⊆ R ⟩
R⌣

Symmetric and Transitive Implies Idempotent
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Modal rule:
Q #R ∩ S ⊆ Q #(R ∩ Q⌣ #S)

Theorem: A symmetric and transitive R ∶ B↔ B is also idempotent.
Proof: By mutual inclusion and transitivity of R, we only need to show R ⊆ R #R:

R= ⟨ Idempotence of ∩, Identity of # ⟩
R # I ∩ R⊆ ⟨Modal rule Q #R ∩ S ⊆ Q #(R ∩ Q⌣ #S) ⟩
R #( I ∩ R⌣ #R)⊆ ⟨Mon. # with Weakening X∩Y ⊆ X ⟩
R #R⌣ #R= ⟨ Symmetry of R ⟩
R #R #R⊆ ⟨Mon. # with Transitivity of R ⟩
R #R

Symmetric and Transitive Implies Idempotent
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Theorem: A symmetric and transitive R ∶ B↔ B is also idempotent.
Proof: By mutual inclusion and transitivity of R, we only need to show R ⊆ R #R:

R= ⟨ Idempotence of ∩, Identity of # ⟩
I #R ∩ R⊆ ⟨Modal rule Q #R ∩ S ⊆ (Q ∩ S #R⌣) #R) ⟩( I ∩ R #R⌣) #R⊆ ⟨Mon. # with Weakening X∩Y ⊆ X ⟩
R #R⌣ #R= ⟨ Symmetry of R ⟩
R #R #R⊆ ⟨Mon. # with Transitivity of R ⟩
R #R

Modal Rule for “Symmetric and Transitive Implies Idempotent”

b c′ R� b

�
�

���Q
@

@
@@R

R ⇒
@

@
@@I S

�
�

���Q
@
@

@@R

R

a S - c a c

I #R ∩ R⊆ ⟨Modal rule Q #R ∩ S ⊆ (Q ∩ S #R⌣) #R) ⟩( I ∩ R #R⌣) #R

b c′ R� b

�
�

���I
@

@
@@R

R ⇒
@

@
@@I R

�
�

���I
@
@

@@R

R

a R - c a c

Modal Rules— Converse as Over-Approximation of Inverse

Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Useful to “make information available locally” (Q is replaced with Q∩S #R⌣)
for use in further proof steps.

In constraint diagrams (boxed variables are free; others existentially quantified;
alternative paths are conjunction):

b c′ R� b

�
�

���Q
@
@

@@R

R ⇒
@

@
@@I S

�
�
���Q

@
@

@@R

R

a S - c a c

(∃b ● a Q b R c∧ a S c) ⇒(∃b, c′ ● a Q b R c∧ b R c′ ∧ a S c′)

Modal Rules modulo Inclusion via Intersection
Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)

Q #R∩S ⊆ (Q∩S #R⌣) #R

Equivalently, using M ⊆ N ≡ M =M∩N etc.: Q #R∩S = Q #(R∩Q⌣ #S)∩S

Q #R∩S = (Q∩S #R⌣) #R∩S

In constraint diagrams:

b c′ R� b

�
�
���Q

@
@

@@R

R ≡
@

@
@@I S

�
�

���Q
@

@
@@R

R

a S - c a S - c

(∃b ● a Q b R c∧ a S c) ≡≡ (∃b, c′ ● a Q b R c′ ∧ a S c′ ∧ b R c∧ a S c)

Modal Rules and Dedekind Rule

Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Equivalent: Dedekind Rule: Q #R∩S ⊆ (Q∩S #R⌣) #(R∩Q⌣ #S)
b c′ R� b Q� a′

�
�

���Q
@
@

@@R

R ⇒
@

@
@@I S

�
�
���Q

@
@

@@R

R �
�

��	

S

a S - c a c

Dedekind Rule modulo Inclusion via Intersection

Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Equivalent: Dedekind Rule: Q #R∩S ⊆ (Q∩S #R⌣) #(R∩Q⌣ #S)
Equivalently, via M ⊆ N ≡ M =M∩N:

Q #R∩S = (Q∩S #R⌣) #(R∩Q⌣ #S)∩(S∩Q #R)
b c′ R� b Q� a′

�
�

���Q
@
@

@@R

R ≡
@

@
@@I S

�
�
���Q

@
@

@@R

R �
�

��	

S

a S - c a S - c
@

@
@@R

Q

�
�

���R

b′

Modal Rules and Dedekind Rule: Summary with Sharp Versions
For all Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C:

Modal rules: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Modal rules (sharp versions): Q #R∩S = Q #(R∩Q⌣ #S) ∩ S
Q #R∩S = (Q∩S #R⌣) #R ∩ S

Dedekind: Q #R∩S ⊆ (Q∩S #R⌣) #(R∩Q⌣ #S)
Dedekind (sharp version): Q #R∩S = (Q∩S #R⌣) #(R∩Q⌣ #S) ∩ S

Proofs: Exercise!

Remember: How to construct these rules from the triangle diagram set-up!

b c′ R� b

�
�

���Q
@
@

@@R

R ⇒
@

@
@@I S

�
�
���Q

@
@

@@R

R

a S - c a c

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2024

Wolfram Kahl

2024-11-08

Part 1: Equivalence Relations



Recall: Equivalence Relations

Recall: A (homogeneous) relation R ∶ t↔ t is called:

reflexive I ⊆ R (∀ b ∶ t ● b R b)
symmetric R⌣ = R (∀ b, c ∶ t ● b R c ≡ c R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R
equivalence I ⊆ R = R #R = R⌣ reflexive, transitive, symmetric
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Equivalence Relations on a Set

Recall: B ○←→ B = P (B × B) is the set of relations on the set B.

Given a set B, a (homogeneous) relation R with R ∈ B ○←→ B is called:

reflexive on B id B ⊆ R (∀ b b ∈ B ● b R b)
symmetric R⌣ = R (∀ b, c ● b R c ≡ c R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R
equivalence on B id B ⊆ R = R #R = R⌣ reflexive on B, transitive, symmetric∧ R ⊆ B × B restricted to B
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— is an equivalence on {1,2,3,4,5,6,7}
— is not reflexive on Z or int

Note: If B ≠ U, then no R from B ○←→ B is reflexive in the sense of “ I ⊆ R”!

Equivalence Classes, Partitions
Definition (14.34): Let Ξ be an equivalence relation on B. Then [b]Ξ. the equivalence
class of b, is the subset of elements of B that are equivalent (under Ξ) to b:

x ∈ [b]Ξ ≡ x Ξ b Equivalently: [b]Ξ = Ξ (∣ {b} ∣)
Theorem: For an equivalence relation Ξ on B, the set B∣Ξ = { b b ∈ B ● Ξ (∣ {b} ∣) } of
equivalence classes of Ξ is a partition of B.

{ {1}, {2,3}, {4,5,6,7} }
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Definition (11.76): If T ∶ set t and S ∶ set (set t), then:

S is a partition of T ≡ (∀u,v u ∈ S∧v ∈ S∧u ≠ v ● u∩v = {})∧ (⋃u u ∈ S ● u) = T

Theorem: B∣ is a bijective mapping
between equivalence relations on B and partitions of B.

The partition view can be useful for implementing equivalence relations.

Equivalence Quotients

For an equivalence relation Ξ on B, the set B∣Ξ = { b ∶ B ● [b]Ξ } of equivalence classes of
Ξ is also called quotient of B via Ξ.

The mapping χ = { b b ∈ B ● ⟨b, [b]Ξ⟩ } is the quotient projection.

For Ξ =
7
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, χ ∈ {1,2,3,4,5,6,7} ○Ð→ { {1}, {2,3}, {4,5,6,7} } χ = {1↦ {1}
, 2↦ {2, 3}
, 3↦ {2, 3}
, 4↦ {4, 5, 6, 7}
, 5↦ {4, 5, 6, 7}
, 6↦ {4, 5, 6, 7}
, 7↦ {4, 5, 6, 7} }

χ satisfies:

χ⌣ #χ = id B∣Ξ — univalent, and surjective onto B∣Ξ
χ #χ⌣ = Ξ — therefore total on B, since Ξ is reflexive on B

The quotient together with the quotient projection is determined uniquely up to
isomorphism by these two properties. . .

Specification of Quotient Projections Up To Isomorphism
For an equivalence relation Ξ on B, consider:

the quotient set B∣Ξ = { b b ∈ B ● [b]Ξ}
the quotient projection χ ∈ B ○Ð→ B∣Ξ with χ = { b b ∈ B ● ⟨b, [b]Ξ⟩ }

Then we have χ⌣ #χ = id B∣Ξ and χ #χ⌣ = Ξ.

χ ∈ {1,2,3,4,5,6,7} ○Ð→ { {1}, {2,3}, {4,5,6,7} }
γ ∈ {1,2,3,4,5,6,7} ○Ð→ { ′a′,′ b′,′ c′} χ = {1↦ {1}

, 2↦ {2, 3}
, 3↦ {2, 3}
, 4↦ {4, 5, 6, 7}
, 5↦ {4, 5, 6, 7}
, 6↦ {4, 5, 6, 7}
, 7↦ {4, 5, 6, 7} }

γ = {1↦ ′a′
, 2↦ ′b′
, 3↦ ′b′
, 4↦ ′c′
, 5↦ ′c′
, 6↦ ′c′
, 7↦ ′c′ }

Also consider:

an “alternate quotient set candidate” Q
an “alternate quotient projection candidate” γ ∶ B ○←→ Q
satisfying γ⌣ #γ = id Q and γ #γ⌣ = Ξ

Then φ = χ⌣ #γ is an isomorphism between B∣Ξ and Q:

φ #φ⌣ = χ⌣ #γ #γ⌣ #χ = χ⌣ #Ξ #χ = χ⌣ #χ #χ⌣ #χ = id B∣Ξ # id B∣Ξ = id B∣Ξ — total and injective

φ⌣ #φ = γ⌣ #χ #χ⌣ #γ = γ⌣ #Ξ #γ = γ⌣ #γ #γ⌣ #γ = id Q # id Q = id Q — univalent and surjective
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Part 2: Relational Formalisation of Graph Properties

Recall: Simple Graphs

A simple graph (N,E) is a pair consisting of
a set N, the elements of which are called “nodes”, and
a relation E with E ∈ N ○←→ N, the element pairs of which are called “edges”.

Example: G1 = ({2,0,1,9},{⟨2,0⟩, ⟨9,0⟩, ⟨2,2⟩})
Graphs are normally visualised via graph drawings:

0

2

1

9

Simple graphs are exactly relations!

Reasoning with relations is reasoning about graphs!

Simple Reachability Statements in Graph G = (V,E)

QB

CF

RP

HS

DU

AD

NPKO

VUEZ SW

HL

XJSQ

PB

No edge ends at node s
s ∉ Ran E or s ∈ ∼ (Ran E) — s is called a source of G
No edge starts at node s
s ∉ Dom E or s ∈ ∼ (Dom E) — s is called a sink of G
Node n2 is reachable from node n1 via a three-edge path
n1 E #E #E n2

Simple Reachability Statements in Graph GN = (⌞ N ⌟, ⌜suc⌝)

0 Ð→ 1 Ð→ 2 Ð→ 3 Ð→ 4 Ð→ 5 Ð→ 6 Ð→ 7 Ð→ . . .

No edge ends at node 0
0 ∉ Ran ⌜suc⌝ or 0 ∈ ∼ (Ran ⌜suc⌝) — 0 is a source of GN

0 is the only source of GN: ∼ (Ran ⌜suc⌝) = {0}
s is a sink iff no edge starts at node s
s ∉ Dom ⌜suc⌝ or s ∈ ∼ (Dom ⌜suc⌝)
GN has no sinks: Dom ⌜suc⌝ = ⌞ N ⌟ or ∼ (Dom ⌜suc⌝) = {}
Node 5 is reachable from node 2 via a three-edge path:

2 ⌜suc⌝ #⌜suc⌝ #⌜suc⌝ 5

Directed versus Undirected Graphs
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Edges in simple undirected graphs can be considered as “unordered pairs”
(two-element sets, or one-to-two-element sets)
The associated relation of an undirected graph relates two nodes
iff there is an edge between them
The associated relation of an undirected graph is always symmetric

In a simple graph, no two edges have the same source and the same target.
(No “parallel edges”.)
Relations directly represent simple directed graphs.



Symmetric Closure
Relation Q ∶ B↔ B is the symmetric closure of R ∶ B↔ B
iff Q is the smallest symmetric relation containing R,
or, equivalently, iff R ⊆ Q

Q = Q ⌣
(∀ P ∶ B↔ B R ⊆ P = P ⌣ ● Q ⊆ P)

Theorem: The symmetric closure of R ∶ B↔ B is R ∪ R ⌣.
Fact: If R represents a simple directed graph, then the symmetric closure of R is the
associated relation of the corresponding simple undirected graph.
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We may draw a symmetric siumple graph as an undirected graph.
(Implicitly representing two symmetric arrows by a single edge without arrow tips.)

Reflexive Closure

Relation Q ∶ B↔ B is the reflexive closure of R ∶ B↔ B
iff Q is the smallest reflexive relation containing R,

or, equivalently, iff
R ⊆ Q
I ⊆ Q(∀P ∶ B↔ B R ⊆ P ∧ I ⊆ P ● Q ⊆ P)

Theorem: The reflexive closure of R ∶ B↔ B is R∪ I.

Fact: If R represents a graph, then the reflexive closure of R
“ensures that each node has a loop edge”.
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Transitive Closure

Relation Q ∶ B↔ B is the transitive closure of R ∶ B↔ B
iff Q is the smallest transitive relation containing R,

or, equivalently, iff
R ⊆ Q
Q #Q ⊆ Q(∀P ∶ B↔ B R ⊆ P ∧ P #P ⊆ P ● Q ⊆ P)

Definition: The transitive closure of R ∶ B↔ B is written R+.

Theorem: R+ = (⋂ P R ⊆ P ∧ P #P ⊆ P ● P).

Transitive Closure via Powers
Powers of a homogeneous relation R ∶ B↔ B:

R0 = I
R1 = R
Rn+1 = Rn #R

R2 = R #R
R3 = R #R #R
R4 = R #R #R #R

Ri is reachability via exactly i many R-steps
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R0 R1 R2 R3 R+
Theorem: R+ = (⋃ i ∶ N i > 0 ● Ri)
This means:

R+ = R∪R2 ∪R3 ∪R4 ∪ . . .
Transitive closure R+ is reachability via at least one R-step

Reflexive Transitive Closure

Q ∶ B↔ B is the reflexive transitive closure of R ∶ B↔ B
iff Q is the smallest reflexive transitive relation containing R,

or, equivalently, iff
R ⊆ Q
I ⊆ Q ∧ Q #Q ⊆ Q(∀P ∶ B↔ B R ⊆ P ∧ I ⊆ P ∧ P #P ⊆ P ● Q ⊆ P)

Definition: The reflexive transitive closure of R is written R∗.
Theorem: R∗ = (⋂ P R ⊆ P ∧ I ⊆ P ∧ P #P ⊆ P ● P).
Theorem: R∗ = (⋃ i ∶ N ● Ri)
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Reachability, Closures

Reachability: Transitive and Reflexive Transitive Closure via Powers

Ri is reachability via exactly i many R-steps
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R0 R1 R2 R3 R∗
R+ = (⋃ i ∶ N i > 0 ● Ri)
R+ = R∪R2 ∪R3 ∪R4 ∪ . . .
Transitive closure R+ is reachability via at least one R-step

R∗ = (⋃ i ∶ N ● Ri)
R∗ = I∪R∪R2 ∪R3 ∪R4 ∪ . . .
Reflexive transitive closure R∗
is reachability via any number of R-steps

Variants of the Warshall algorithm calculate these closures in cubic time.

Reachability in graph G = (V,E) — 1 (ctd.)
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No edge ends at node s
s ∉ Ran E or s ∈ ∼ (Ran E) — s is called a source of G
No edge starts at node s
s ∉ Dom E or s ∈ ∼ (Dom E) — s is called a sink of G
Node n2 is reachable from node n1 via a three-edge path
n1 E3 n2 or n1 E #E #E n2

Node y is reachable from node x
x E∗ y — reachability

Reachability in graph G = (V,E) — 2
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Node y is reachable from node x
x E∗ y — reachability
Every node is reachable from node r{r} ×V ⊆ E∗ or E∗ (∣ {r} ∣) = V — r is called a root of G
Node y is reachable via a non-empty path from node x: x E+ y
Nodes x lies on a cycle: x E+ x or x E+ ∩ I x or x ∈ Dom(E+ ∩ I)

Reachability in graph G = (V,E) — 3
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From every node, each node is reachable
V ×V ⊆ E∗ — G is strongly connected
From every node, each node is reachable by traversing edges in either direction
V ×V ⊆ (E∪E⌣)∗ — G is connected
Nodes n1 and n2 reachable from each other both ways
n1 E∗ ∩(E∗)⌣ n2 — n1 and n2 are strongly connected
S is an equivalence class of strong connectedness between nodes

S × S ⊆ E∗ ∧ (E∗ ∩(E∗)⌣) (∣S ∣) = S — S is a strongly connected component (SCC) of G



Reachability in graph G = (V,E) — 4
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A node n is said to “lie on a cycle” if there is a non-empty path from n to n

cycleNodes ∶= Dom(E+ ∩ I)
No node lies on a cycle
Dom(E+ ∩ I) = {}
E+ ∩ I = {}
E+ is irreflexive — G is called acyclic or cycle-free or a DAG

Reachability in graph G = (V,E) — 5 — DAGs
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No node lies on a cycle: E+ ∩ I = {} — G is a directed acyclic graph, or DAG
Each node has at most one predecessor: E #E⌣ ⊆ I or E is injective

— if G is also acyclic, then G is called a (directed) forest
Every node is reachable from node r{r} ×V ⊆ E∗ — if G is also a forest, then G is called a (directed) tree, and r is its root
For undirected graphs: A tree is a graph where for each pair of nodes there is exactly
one path connecting them.

— graph-theoretic tree concept
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Part 2: Closures Generalised

Recall: Reflexive Closure

Relation Q ∶ B↔ B is the reflexive closure of R ∶ B↔ B
iff Q is the smallest reflexive relation containing R,

or, equivalently, iff
R ⊆ Q
I ⊆ Q(∀P ∶ B↔ B R ⊆ P ∧ I ⊆ P ● Q ⊆ P)

Theorem: The reflexive closure of R ∶ B↔ B is R∪ I.

Fact: If R represents a graph, then the reflexive closure of R
“ensures that each node has a loop edge”.
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Reflexive Closure Operator `reflClos`

Axiom “Definition of `reflClos` ”∶ reflClos R = R ∪ I

Theorem “Closure properties of `reflClos`∶ Expanding ”∶
R ⊆ reflClos R

Proof:

?

Theorem “Closure properties of `reflClos`∶ Reflexivity ”∶
reflexive (reflClos R)

Proof:

?

Theorem “Closure properties of `reflClos`∶ Minimality ”∶
R ⊆ S ∧ reflexive S ⇒ reflClos R ⊆ S

Proof:

?

Relation Q ∶ B↔ B is the
reflexive closure of R ∶ B↔ B
iff Q is the smallest reflexive relation
containing R, or, equivalently, iff

R ⊆ Q
I ⊆ Q(∀P ∶ B↔ B R ⊆ P ∧ I ⊆ P● Q ⊆ P)

Closures

Let pred (for “predicate”) be a
property on relations, i.e., for some type B and C:

pred ∶ (B↔ C)→ B

Relation Q ∶ B↔ C is the pred-closure of R ∶ B↔ C iff
Q is the smallest relation
that contains R
and has property pred

or, equivalently, iff
R ⊆ Q
pred Q(∀P ∶ B↔ C R ⊆ P ∧ pred P ● Q ⊆ P)

(For some properties, closures are not defined, or not always defined.)

Relation Q ∶ B↔ B is the
reflexive closure of R ∶ B↔ B
iff Q is the smallest reflexive rela-
tion containing R, or, equivalently,
iff

R ⊆ Q

I ⊆ Q

(∀P ∶ B↔ B R ⊆ P ∧ I ⊆ P● Q ⊆ P)

Formalising General Relation Closures
Let pred (for “predicate”) be a property on relations, i.e.: pred ∶ (B↔ C)→ B

Relation Q ∶ B↔ C is the pred-closure of R ∶ B↔ C iff
Q is the smallest relation that contains R and has property pred,

or, equivalently, iff
R ⊆ Q and pred Q and (∀P ∶ B↔ C R ⊆ P ∧ pred P ● Q ⊆ P)

General Relation Closures in Ref9.5:

Precedence 50 for: is closure − of
Conjunctional∶ is closure − of
Declaration∶ is closure − of ∶(A ↔ B) → ((A ↔ B) → B) → (A ↔ B) → B

Axiom “Relation closure ”∶
Q is pred closure-of R≡ R ⊆ Q ∧ pred Q ∧ (∀ P ● R ⊆ P ∧ pred P ⇒ Q ⊆ P)

Theorem “Well-definedness of `reflClos` ”∶
Declaration∶ is closure − of ∶(A ↔ B) → ((A ↔ B) → B) → (A ↔ B) → B

Axiom “Relation closure ”∶
Q is pred closure-of R≡ R ⊆ Q ∧ pred Q ∧ (∀ P ● R ⊆ P ∧ pred P ⇒ Q ⊆ P)

Theorem “Well-definedness of `reflClos` ”∶
reflClos R is reflexive closure-of R

Proof:
By “Relation closure ”

with “Closure properties of `reflClos`∶ Expanding ”
and “Closure properties of `reflClos`∶ Reflexivity ”
and “Closure properties of `reflClos`∶ Minimality ”

Theorem “Well-definedness of `reflClos` ”∶
Declaration∶ is closure − of ∶(A ↔ B) → ((A ↔ B) → B) → (A ↔ B) → B

Axiom “Relation closure ”∶
Q is pred closure-of R≡ R ⊆ Q ∧ pred Q ∧ (∀ P ● R ⊆ P ∧ pred P ⇒ Q ⊆ P)

Theorem “Well-definedness of `reflClos` ”∶
reflClos R is reflexive closure-of R

Proof:
Using “Relation closure ”∶

Subproof for `R ⊆ reflClos R`∶
?

Subproof for `reflexive (reflClos R)`∶
?

Subproof for `∀ P ● R ⊆ P ∧ reflexive P ⇒ reflClos R ⊆ P`∶
For any `P`∶

Assuming `R ⊆ P`, `reflexive P`∶
?
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Part 3: More Quantification Calculations: Change of Dummy



Changing the Quantified Domain

(∑ i 2 ≤ i < 10 ● i2)
= ⟨ (8.22) with `( + 2) hasAnInverse` ⟩
(∑ k 0 ≤ k < 8 ● (k + 2)2)

(8.22) Change of dummy: Provided f has an inverse and ¬occurs(‘y’, ‘R,P’)
(that is, “y is fresh”), then:

(⋆ x R ● P) = (⋆ y R[x ∶= f y] ● P[x ∶= f y])
Above: f y = 2 + y and f−1 x = x − 2

A function f has an inverse f−1 iff x = f y ≡ y = f−1 x

Inverses of Functions from Function Types
LADM for (8.22): “A function f has an inverse f−1 iff x = f y ≡ y = f−1 x”

This is not a definition of a new inverse concept . . .
. . . but a theorem about the proper inverse concept for functions between types:

Equality of functions can be proven via “Function extensionqality”:
Axiom “Function extensionality axiom ”∶ (∀ x ● f x = g x) ⇒ f = g
Composition is conventional mathematical function composition ○ (read “after”):
Declaration∶ ○ ∶ (B → C) → (A → B) → (A → C)
Axiom “Function composition ”∶ (g ○ f ) x = g (f x)
Theorem “Associativity of ○ ”∶ h ○ (g ○ f ) = (h ○ g) ○ f
This composition has identities at every type:
Declaration∶ Id ∶ A → A
Axiom “Identity function ”∶ Id x = x
Theorem “Identity of ○ ”∶ Id ○ f = f = f ○ Id
This gives rise to the conventional inverse concept:
Declaration∶ isInverseOf ∶ (B → A) → (A → B) → B
Axiom “Inverse function ”∶ g isInverseOf f ≡ g ○ f = Id ∧ f ○ g = Id
. . . and we can prove:
Theorem “Inverse function connection ”∶ g isInverseOf f ≡ (∀ x ● ∀ y ● y = f x ≡ x = g y)

Assume f has an inverse and ¬occurs(‘y’, ‘x,R,P’)
(⋆ y R[x ∶= f y] ● P[x ∶= f y])= ⟨ (8.14) One-point rule: ¬occurs(‘x’, ‘f y’) ⟩(⋆ y R[x ∶= f y] ● (⋆ x x = f y ● P))= ⟨ (8.20) Nesting: ¬occurs(‘x’, ‘R[x ∶= f y]’), Dummy permutation ⟩(⋆ x,y R[x ∶= f y]∧x = f y ● P)= ⟨ (3.84a) Replacement (e = f )∧E[z ∶= e] ≡ (e = f )∧E[z ∶= f ] ⟩(⋆ x,y R[x ∶= x]∧x = f y ● P)= ⟨ R[x ∶= x] = R; (8.20) Nesting: ¬occurs(‘y’, ‘R’) ⟩(⋆ x R ● (⋆ y x = f y ● P))= ⟨ Assumption “Inverse” `∀x,y ● x = f y ≡ y = f−1 x` ⟩(⋆ x R ● (⋆ y y = f−1 x ● P))= ⟨ (8.14) One-point rule: ¬occurs(‘y’, ‘f−1 x’) ⟩(⋆ x R ● P[y ∶= f−1 x])= ⟨ Textual substitution, ¬occurs(‘y’, ‘P’) ⟩(⋆ x R ● P)
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Part 1: Functions, Change of Dummy

Changing the Quantified Domain

(∑ i 2 ≤ i < 10 ● i2)
= ⟨ (8.22) with `( + 2) hasAnInverse` ⟩
(∑ k 0 ≤ k < 8 ● (k + 2)2)

(8.22) Change of dummy: Provided f has an inverse and ¬occurs(‘y’, ‘R,P’)
(that is, “y is fresh”), then:

(⋆ x R ● P) = (⋆ y R[x ∶= f y] ● P[x ∶= f y])
Above: f y = 2 + y and f−1 x = x − 2

A function f has an inverse f−1 iff x = f y ≡ y = f−1 x

Recall: Inverses of Functions from Function Types
LADM for (8.22): “A function f has an inverse f−1 iff x = f y ≡ y = f−1 x”

This is not a definition of a new inverse concept . . .
. . . but a theorem about the proper inverse concept for functions between types:

Equality of functions can be proven via “Function extensionqality”:
Axiom “Function extensionality axiom ”∶ (∀ x ● f x = g x) ⇒ f = g
Composition is conventional mathematical function composition ○ (read “after”):
Declaration∶ ○ ∶ (B → C) → (A → B) → (A → C)
Axiom “Function composition ”∶ (g ○ f ) x = g (f x)
Theorem “Associativity of ○ ”∶ h ○ (g ○ f ) = (h ○ g) ○ f
This composition has identities at every type:
Declaration∶ Id ∶ A → A
Axiom “Identity function ”∶ Id x = x
Theorem “Identity of ○ ”∶ Id ○ f = f = f ○ Id
This gives rise to the conventional inverse concept:
Declaration∶ isInverseOf ∶ (B → A) → (A → B) → B
Axiom “Inverse function ”∶ g isInverseOf f ≡ g ○ f = Id ∧ f ○ g = Id
. . . and we can prove:
Theorem “Inverse function connection ”∶ g isInverseOf f ≡ (∀ x ● ∀ y ● y = f x ≡ x = g y)

Some More “Prelude” Functions and Some of Their Properties

Declaration∶ flip ∶ (A → B → C) → (B → A → C)
Axiom “flip ”∶ flip f y x = f x y

Declaration∶ curry ∶ (⟨⟨⟨⟨⟨⟨⟨ A, B ⟩⟩⟩⟩⟩⟩⟩ → C) → (A → B → C)
Declaration∶ uncurry ∶ (A → B → C) → (⟨⟨⟨⟨⟨⟨⟨ A, B ⟩⟩⟩⟩⟩⟩⟩ → C)
Axiom “curry ”∶ curry g x y = g ⟨ x, y ⟩
Axiom “uncurry ”∶ uncurry f ⟨ x, y ⟩ = f x y

Theorem “curry○uncurry ”∶ curry (uncurry f ) = f

Declaration∶ swap ∶ ⟨⟨⟨⟨⟨⟨⟨ A, B ⟩⟩⟩⟩⟩⟩⟩ → ⟨⟨⟨⟨⟨⟨⟨ B, A ⟩⟩⟩⟩⟩⟩⟩
Axiom “swap ”∶ swap ⟨ x, y ⟩ = ⟨ y, x ⟩
Theorem “flip○curry ”∶ flip (curry f ) = curry (f ○ swap)

How to Prove that flip is Self-inverse?
Declaration∶ flip ∶ (A → B → C) → (B → A → C)
Axiom “flip ”∶ flip f y x = f x y

Theorem “Self-inverse `flip` ”∶ flip (flip f ) = f
Proof:

flip (flip f ) x y= ⟨ “flip ” ⟩
flip f y x= ⟨ “flip ” ⟩
f x yN

ot
a pro

of
!

The missing piece:

Theorem “Function extensionality ”∶ f = g ≡ ∀ x ● f x = g x

Proving that flip is Self-inverse

Declaration∶ flip ∶ (A → B → C) → (B → A → C)
Axiom “flip ”∶ flip f y x = f x y

Theorem “Function extensionality ”∶ f = g ≡ ∀ x ● f x = g x

Theorem “Self-inverse `flip` ”∶ flip (flip f ) = f
Proof:

Using “Function extensionality ”∶
Subproof for `∀ x ● flip (flip f ) x = f x`∶

For any `x`∶
Using “Function extensionality ”∶

For any `y`∶
flip (flip f ) x y= ⟨ “flip ” ⟩
flip f y x= ⟨ “flip ” ⟩
f x y

More Conveniently Proving that flip is Self-inverse
Declaration∶ flip ∶ (A → B → C) → (B → A → C)
Axiom “flip ”∶ flip f y x = f x y

Theorem “Function extensionality ”∶ f = g ≡ ∀ x ● f x = g x

Theorem “Function extensionality 2 ”∶ f = g ≡ ∀ x, y ● f x y = g x y
Proof:

By “Function extensionality ”, “Nesting for ∀ ”

Theorem “Self-inverse `flip` ”∶ flip (flip f ) = f
Proof:

Using “Function extensionality 2 ”∶
For any `x, y`∶

flip (flip f ) x y= ⟨ “flip ” ⟩
flip f y x= ⟨ “flip ” ⟩
f x y



Assume f has an inverse and ¬occurs(‘y’, ‘x,R,P’)
(⋆ y R[x ∶= f y] ● P[x ∶= f y])= ⟨ (8.14) One-point rule: ¬occurs(‘x’, ‘f y’) ⟩(⋆ y R[x ∶= f y] ● (⋆ x x = f y ● P))= ⟨ (8.20) Nesting: ¬occurs(‘x’, ‘R[x ∶= f y]’), Dummy permutation ⟩(⋆ x,y R[x ∶= f y]∧x = f y ● P)= ⟨ (3.84a) Replacement (e = f )∧E[z ∶= e] ≡ (e = f )∧E[z ∶= f ] ⟩(⋆ x,y R[x ∶= x]∧x = f y ● P)= ⟨ R[x ∶= x] = R; (8.20) Nesting: ¬occurs(‘y’, ‘R’) ⟩(⋆ x R ● (⋆ y x = f y ● P))= ⟨ Assumption “Inverse” `∀x,y ● x = f y ≡ y = f−1 x` ⟩(⋆ x R ● (⋆ y y = f−1 x ● P))= ⟨ (8.14) One-point rule: ¬occurs(‘y’, ‘f−1 x’) ⟩(⋆ x R ● P[y ∶= f−1 x])= ⟨ Textual substitution, ¬occurs(‘y’, ‘P’) ⟩(⋆ x R ● P)

Changing the Quantified Domain — occurs(‘y’, ‘x’)
In LADM:

(8.22) Change of dummy: Provided f has an inverse and ¬occurs(‘y’, ‘R,P’),
(⋆ x R ● P) = (⋆ y R[x ∶= f y] ● P[x ∶= f y])

We might have that occurs(‘y’, ‘x’).
(Note that x and y are metavariables for variables!)

Then x is the same variable as y, and ¬occurs(‘x’, ‘R,P’).
Therefore R[x ∶= f y] = R and P[x ∶= f y] = P.

So the theorem’s consequence becomes trivial: (⋆ x R ● P) = (⋆ x R ● P)
So (8.22) as stated in LADM is valid, but the proof covers only the case ¬occurs(‘y’, ‘x’).

Changing the Quantified Domain — Variants — see Ref. 4.2

Theorem (8.22) “Change of dummy in ★ ”∶∀ f ● ∀ g ●(∀ x ● ∀ y ● x = f y ≡ y = g x)⇒ ( (★ x R ● P )= (★ y R[x ∶= f y] ● P[x ∶= f y]))
Theorem (8.22.1) “Change of dummy in ★ ¯ variant ”∶(∀ x ● ∀ y ● x = f y ⇒ y = g x)⇒ ( (★ x R ∧ x = f (g x) ● P)= (★ y R[x ∶= f y] ● P[x ∶= f y]))
Theorem (8.22.3) “Change of restricted dummy in ★ ”∶∀ f ● ∀ g ●(∀ x R ● (∀ y ● x = f y ≡ y = g x))⇒ ( (★ x R ● P )= (★ y R[x ∶= f y] ● P[x ∶= f y]))
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Part 2: Kleene Algebra

Recall: Reflexive Transitive Closure

Q ∶ B↔ B is the reflexive transitive closure of R ∶ B↔ B
iff Q is the smallest reflexive transitive relation containing R,

or, equivalently, iff
R ⊆ Q
I ⊆ Q ∧ Q #Q ⊆ Q(∀P ∶ B↔ B R ⊆ P ∧ I ⊆ P ∧ P #P ⊆ P ● Q ⊆ P)

Definition: The reflexive transitive closure of R is written R∗.
Theorem: R∗ = (⋂ P R ⊆ P ∧ I ⊆ P ∧ P #P ⊆ P ● P).
Theorem: R∗ = (⋃ i ∶ N ● Ri)

Ri is reachability via exactly i many R-steps
Reflexive transitive closure R∗ is reachability via any number of R-steps

Transitive closure R+ = (⋃ i ∶ N i > 0 ● Ri) is reachability via at least one R-step

Kleene Algebra

The transitive and reflexive-transitive closure operators satisfy many useful algebraic
properties, e.g.:(R∗)⌣ = (R⌣)∗ (R+)⌣ = (R⌣)+

R∗ = I∪R∪R∗ #R∗(R∪S)∗ = (R∗ #S)∗ #R∗ — Remember this!(R∪S)+ = R+ ∪(R∗ #S)+ #R∗
R∗ ∪S∗ ⊆ (R∪S)∗

On can prove such properties via reasoning about arbitrary unions ⋃ of relation powers
— see Ex10.2 . . .

One can also derive these properties from a simple axiomatisation starting from ⊆. #, I, ∪:

Axiom (KA.1) “Definition of * ”∶ R * = I ∪ R ∪ R * # R *

Axiom (KA.2) “Left-induction for * ”∶ R # S ⊆ S ⇒ R * # S ⊆ S
Axiom (KA.3) “Right-induction for * ”∶ Q # R ⊆ Q ⇒ Q # R * ⊆ Q

Axiom (KA.4) “Definition of + ”∶ R + = R # R *

Kleene Algebra — Example for Using the Induction Axioms
“Left-ind. * ”∶ R # S ⊆ S ⇒ R * # S ⊆ S “Right-ind. * ”∶ Q # R ⊆ Q ⇒ Q # R * ⊆ Q

Theorem (KA.14) “Shuffle * ”∶ R # R * = R * # R
Proof:

R # R *⊆ ⟨ “Identity of # ”, “Monotonicity of # ” with “Reflexivity of * ” ⟩
R * # R # R *⊆ ⟨ “Right-induction for * ” with `Q ∶= R * # R` and subproof:

R * # R # R⊆ ⟨Monotonicity with “* increases ”, “#-idempotency of * ” ⟩
R * # R⟩

R * # R⊆ ⟨ “Identity of # ”, “Monotonicity of # ” with “Reflexivity of * ” ⟩
R * # R # R *⊆ ⟨ “Left-induction for * ” with `S ∶= R # R *` and subproof:

R # R # R *⊆ ⟨Monotonicity with “* increases ”, “#-idempotency of * ” ⟩
R # R *⟩

R # R *

Kleene Algebra — Not Only Relations: Formal Languages

Definition: A word over “alphabet” A is a sequence of elements of A.

Definition: A formal language over “alphabet” A is a set of words over A.

Interpret:
I as the language containing only the empty word∪ as language union
# as language concatenation: L1 # L2 = { u,v u ∈ L1 ∧ v ∈ L2 ● u ⌢ v }∗ as language iteration: L∗ = (⋃ i ∶ N ● Li )

Then:
Formal languages over A form a Kleene algebra.
Regular languages over A form a Kleene algebra.
(A regular language is generated by a regular grammar, and accepted by a finite
automaton — COMPSCI 2AC3.)
Each regular language over A is denoted by a Kleene algebra expressions built from
only I, and the one-letter-word languages {a ◃

>

} for letters a ∈ A as constants.

Kleene Algebra — Not Only Relations: Control Flow Semantics

Definition: A trace is a sequence of commands,

Interpret:
I as the singleton trace set containing the empty trace∪ as trace set union
# as trace set concatenation
∗ as trace set iteration

Then:
Kleene algebra can be used for reasoning about traces (possible executions) of
imperative programs
Kleene algebra provides semantics for control flow

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2024

Wolfram Kahl

2024-11-15

Part 1: Bags/Multisets



“Multisets” or “Bags” — LADM Section 11.7
A bag (or multiset) is “like a set, but each element can occur any (finite) number of times”.
Bag comprehension and enumeration: Written as for sets, but with delimiters }and ~.
Sets versus bags example:{ x ∶ Z − 2 ≤ x ≤ 2 ● x ⋅ x } = {4,1,0} = {0,1,4} = {0,0,0,1,1,4}

}x ∶ Z − 2 ≤ x ≤ 2 ● x ⋅ x ~ = }4,1,0,1,4~ = }0,1,1,4,4~ ≠ }0,1,4~

The operator # ∶ t→ Bag t→ N counts the number of occurrences of an element in a bag:
1 # }0,0,0,1,1,4~ = 2

Bag extensionality and bag inclusion are defined via all occurrence counts:
B = C ≡ (∀ x ● x # B = x # C) B ⊆ C ≡ (∀ x ● x # B ≤ x # C)

Bag operations: x # (B∪C) = (x # B) + (x # C)
x # (B∩C) = (x # B) ↓ (x # C)
x # (B −C) = (x # B) − (x # C)

Bag Product and Bag Reconstitution
Recall: A bag is “like a set, but each element can occur any (finite) number of times”.

}x ∶ Z − 2 ≤ x ≤ 2 ● x ⋅ x ~ = }4,1,0,1,4~ = }0,1,1,4,4~ ≠ }0,1,4~

# ∶ t→ Bag t→ N counts the number of occurrences: 1 # }0,0,0,1,1,4~= 2

� ∶ t→ Bag t→ B is membership, with x � B ≡ x # B ≠ 0: 1 �}0,0,0,1,1,4~≡ true

Calculate: }x x �}0,0,0,1,1,4~~ = ?

Define bagProd ∶ Bag N→ N such that: bagProd } e1, e2, . . . , en ~ = e1 ⋅ e2 ⋅ . . . ⋅ en

e.g., bagProd }2,2,3,3,5 ~ = 180
Easy with exponentiation ∗∗ : bagProd B =∏ ?
Without exponentiation: ?

Related question: For sets, we have (11.5): S = {x x ∈ S ● x}
What is the corresponding theorem for bags?

Bag reconstitution: B = } ? ? ● ? ~

Pigeonhole Principle — LADM section 16.4
The pigeonhole principle is usually stated as follows.

(16.43) If more than n pigeons are placed in n holes, at least one hole will contain more
than one pigeon.

Assume:
S ∶ Bag R is a bag of real numbers
av S is the average of the elements of S
max S is the maximum of the elements of S

Reformulating the pigeonhole principle: (16.44) av S > 1 ⇒ max S > 1

Generalising:

(16.45) Pigeonhole principle:
If S ∶ Bag R is non-empty, then: av S ≤max S

Stronger on integers:

(16.46) Pigeonhole principle:
If S ∶ Bag Z is non-empty, then: ⌈av S⌉ ≤max S

Generalised Pigeonhole Principle — Application

(16.46) Pigeonhole principle: If S ∶ Bag Z is non-empty, then ⌈av S⌉ ≤max S

(16.47) Example: In a room of eight people, at least two of them have birthdays on the
same day of the week.
Proof: Let bag S contain, for each day of the week, the number of people in the room
whose birthday is on that day. The number of people is 8 and the number of days is 7.

S = }d ∶ Weekday ● # { p p inRoom r0 ∧ p HasBirthdayOnA d } ~
Then:

max S

≥ ⟨ Pigeonhole principle (16.46) — S contains integers ⟩
⌈av S⌉

= ⟨ S has 7 values that sum to 8 ⟩
⌈8/7⌉

= ⟨ Definition of ceiling ⟩
2
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Part 2: Programming with Arrays

Modelling Arrays as Partial Functions
Precedence 100 for: ○Ð→
Associating to the right: ○Ð→
Declaration∶ ○Ð→ ∶ set A → set B → set (A ↔ B) — type “/tfun” for ○Ð→
Axiom “Definition of ○Ð→ ”∶

X ○Ð→ Y = { f f ⌣ # f ⊆ id Y ∧ Dom f = X }
Useful for the domain of arrays:

Precedence 100 for: ..

Non-associating: ..

Declaration∶ .. ∶ N → N → set N type: \..
Axiom “Definition of .. ”∶ m .. n = { i m ≤ i ≤ n }
Theorem “Membership in .. ”∶ i ∈ m .. n ≡ m ≤ i ≤ n
Theorem “Membership in 0 .. ”∶ i ∈ 0 .. n ≡ i ≤ n

Array access: a[i] Ô⇒ a @ i
Array update: a[i] := E Ô⇒ a : = a⊕ { ⟨ i, E ⟩ }

Swapping Two Elements of an Array: Specification

i ≤ k ≥ j ∧ xs = xs0 ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒
Swap

xs = xs0 ⊕ { ⟨ i , xs0 @ j ⟩, ⟨ j , xs0 @ i ⟩ }

Swapping Two Elements of an Array: Implementation

z := xs[ i ] ;
xs[ i ] := xs[ j ] ;
xs[ j ] := z

Theorem “Array swap ”∶
i ≤ k ≥ j ∧ xs = xs0 ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ z ∶ = xs @ i ;
xs ∶ = xs ⊕ { ⟨ i, xs @ j ⟩ } ;
xs ∶ = xs ⊕ { ⟨ j, z ⟩ }

xs = xs0 ⊕ { ⟨ i , xs0 @ j ⟩, ⟨ j , xs0 @ i ⟩ }

Sortedness

Declaration∶ sorted ∶ (N ↔ N) → B
Axiom “Definition of `sorted` ”∶

sorted R ≡ R ⌣ # ⌜ < ⌝ # R ⊆ ⌜ ≤ ⌝
Note: No assumption that R is univalent or contiguous!

m
⌜ ≤ ⌝- n

R
6 ⇑ R

6

i ⌜ < ⌝- j

Theorem “Sortedness ”∶
sorted R ≡ ∀ i ● ∀ j i < j ●∀ m ● ∀ n i R m ∧ j R n ● m ≤ n

Theorem “Sortedness of functions ”∶ univalent A⇒ (sorted A ≡ ∀ i ● ∀ j {i, j} ⊆ Dom A ∧ i < j ● A @ i ≤ A @ j)

Specification of Sorting — First Attempt

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ SORT

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs



A Program Satisfying the Sorting
Specification from the Previous Slide:

p := 0 ;
while p ≠ k + 1 do

xs[p] := 42 ;
p := p + 1

Theorem “Sorting 0 ”∶
xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ p ∶ = 0 ;

while p ≠ k + 1 do
xs ∶ = xs ⊕ { ⟨ p, 42 ⟩ } ;
p ∶ = p + 1

od

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs
Proof:

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒⟨ ? ⟩
xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ Ran ((0 .. 0) ◁ xs) = { xs @ 0 }⇒ p ∶ = 0 ⟨ “Assignment ” with substitution ⟩
xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ Ran ((0 .. p) ◁ xs) = { xs @ 0 }⇒ while p ≠ k + 1 do xs ∶ = xs ⊕ { ⟨ p, 42 ⟩ } ; p ∶ = p + 1 od⟨ “While ” with subproof:

?⟩¬ (p ≠ k + 1) ∧ xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ Ran ((0 .. p) ◁ xs) = { xs @ 0 }⇒⟨ ? ⟩
xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs

Permutation-based Specification of Sorting

xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ SORT

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ (∃ f f ∈ (0 .. k) ↣→ (0 .. k) ● xs = f # xs0)

You have some experience with ∃-quantifications in invariants in Ex7.3. . .

Moving f into a ghost variable would make verification easier here as well.

Bag-based Specification of Sorting

xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ SORT

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~

A Verified Sorting Algorithm

while true do
xs[0] := 42

Theorem “Sorting 0’ ”∶
xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ while true do

xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }
od

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~

Proof structure?

You need to be able to write down the proof structure without help, e.g., in M2!

A Verified Sorting Algorithm

while true do
xs[0] := 42

Theorem “Sorting 0’ ”∶
xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ while true do

xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }
od

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~
Proof:

xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒⟨ ? ⟩
?⇒ while true do xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ } od⟨ “While ” with subproof:

?⇒ xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }⟨ ? ⟩
?⟩

?⇒⟨ ? ⟩
xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~

Where do we flag the invariant?

A Verified Sorting Algorithm

while true do
xs[0] := 42

Theorem “Sorting 0’ ”∶
xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ while true do

xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }
od

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~
Proof:

xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒⟨ ? ⟩
Q — Invariant⇒ while true do xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ } od⟨ “While ” with subproof:

?⇒ xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }⟨ ? ⟩
?⟩

?⇒⟨ ? ⟩
xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~

Which other conditions ere
determined by the invariant?

A Verified Sorting Algorithm

while true do
xs[0] := 42

Theorem “Sorting 0’ ”∶
xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ while true do

xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }
od

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~
Proof:

xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒⟨ ? ⟩
Q — Invariant⇒ while true do xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ } od⟨ “While ” with subproof:

true ∧ Q⇒ xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }⟨ ? ⟩
Q⟩¬ true ∧ Q⇒⟨ ? ⟩

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~

Can we already complete some
proof obligations now, without
even fixing the invariant?

A Verified Sorting Algorithm

while true do
xs[0] := 42

Theorem “Sorting 0’ ”∶
xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ while true do

xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }
od

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~
Proof:

xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒⟨ ? ⟩
Q — Invariant⇒ while true do xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ } od⟨ “While ” with subproof:

true ∧ Q⇒ xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }⟨ ? ⟩
Q⟩¬ true ∧ Q⇒⟨ “Definition of `false` ”, “Zero of ∧ ”, “ex falso quodlibet ” ⟩

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~

How can we choose the invariant to make
the remaining proof obligations easy?

A Verified Sorting Algorithm

while true do
xs[0] := 42

Theorem “Sorting 0’ ”∶
xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ while true do

xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }
od

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~
Proof:

xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒⟨ “Right-zero of⇒ ” ⟩
true — Invariant⇒ while true do xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ } od⟨ “While ” with subproof:

true ∧ true⇒ xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }⟨ “Idempotency of ∧ ”, “Assignment ” with substitution ⟩
true⟩¬ true ∧ true⇒⟨ “Contradiction ”, “ex falso quodlibet ” ⟩

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~

This program has herewith been
proven partially correct with respect to
our sorting algorithm specification.
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Program Correctness Statements P ⇒ C Q and Their Meaning

In Exercise 6.6 you proved:

Theorem “Adding2 ”∶
m = m0 ∧ n = n0⇒ while m ≠ 0

do

m ∶ = m − 1 ;

n ∶ = n + 1

od

n = m0 + n0

What does this correctness statement imply
for start states satisfying

m = m0 = −3 ∧ n = n0 = 3 ?

Answer:

“This program then only terminates
in states satisfying n = 0.”

What does this program “do” when started
in such a state?

H14: Domain and Range Relation-algebraically
In the abstract relation-algebraic setting, we are only dealing with relation types A↔ B
No set types, and therefore no direct way to express Dom, ◁, (∣ ∣), etc.
One candidate for “relations representing sets” are subidentities, q ⊆ I
In set theory, id A is a relation that can just serve as a representation of set A
id allows us to define ◁:

Theorem (14.237) “Domain restriction via #”: A ◁ R = id A # R
In the abstract relation-algebraic setting, the role of the operation

Dom ∶ (A ↔ B) → set A
is taken by the new operation

dom ∶ (A ↔ B) → (A ↔ A)
dom R = R # R ⌣ ∩ I

taking each relation R to the subidentity relation representing the set Dom R
In set theory:

dom R = id (Dom R)
Ô⇒ Ref11.2, Ref11.3, H14
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Relational Semantics: Partial Correctness

Formalising Partial Correctness — Syntax Types

So far, we have been using the dynamic logic notation:

P ⇒[ C ] Q
with its partial correctness meaning:

If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

What are P, Q, C?
P and Q are some kind of Boolean expressions — of type ExprB
C is a command — of type Cmd
We also need expression e for assignment RHSs, “x ∶=e” — of type ExprV

The Programming Language: Expressions and Commands

The types Cmd, ExprV, and ExprB are abstract syntax tree (AST) types

Declaration∶ ExprV, ExprB ∶ Type
Declaration∶ Var′ ∶ Var → ExprV
Declaration∶ Int′ ∶ Z → ExprV
Declaration∶ +′ ∶ ExprV → ExprV → ExprV
Declaration∶ true′, false′ ∶ ExprB
Declaration∶ ¬′ ∶ ExprB → ExprB
Declaration∶ ∧′ ∶ ExprB → ExprB → ExprB
Declaration∶ =′ ∶ ExprV → ExprV → ExprB

Declaration∶ Cmd ∶ Type
Declaration∶ ; ∶ Cmd → Cmd → Cmd
Declaration∶ ∶ = ∶ Var → ExprV → Cmd
Declaration∶ if then else fi ∶ ExprB → Cmd → Cmd → Cmd
Declaration∶ while do od ∶ ExprB → Cmd → Cmd

Formalising Partial Correctness — Semantics Types

So far, we have been using the dynamic logic notation:

P ⇒[ C ] Q
with its partial correctness meaning:

If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

What does “state” mean? “starts”? “holds”? “terminates”? . . .
States assign variable to values
here we simply model states as function — of type Var → Value
“P holds in state s”: semantics of Boolean expressions: sat ∶ ExprB → set State
(s ∈ sat P iff “condition P is satisfied in state s”)
(Alternatively, start from evalB ∶ State → ExprB → B and define sat P = { s evalB s P })

Types for Semantics of Expressions and Commands

What does “state” mean? “holds”? . . .

Imperative programs, such as Cmd, transform a State that assigns values to variables.

Declaration∶ Var ∶ Type — variables
Declaration∶ Value ∶ Type — storable values
Declaration∶ State ∶ Type

Axiom “Definition of `State` ”∶ State = Var → Value

Declaration∶ eval ∶ State → ExprV → Value — value expression semantics
Declaration∶ sat ∶ ExprB → set State — Boolean expression semantics

Declaration∶ ⊕′ ∶ (A → B) → ⟨⟨⟨⟨⟨⟨⟨ A , B ⟩⟩⟩⟩⟩⟩⟩ → (A → B) — state update
Axiom “Definition of function override ”∶(x = z ⇒ (f ⊕′ ⟨ x, y ⟩) z = y)∧ (x ≠ z ⇒ (f ⊕′ ⟨ x, y ⟩) z = f z)

Semantics of Commands

What does “starts” mean? “terminates”? . . .

Program execution induces a state transformation relation.

Declaration∶ J K ∶ Cmd → (State ↔ State)
s1 J C K s2 iff “when started in state s1, command C can terminate in state s2”.

Inductive definition of J K over the structure of Cmd:

Axiom “Semantics of := ”∶ J x ∶ = e K = { s ∶ State ● ⟨ s , s ⊕′ ⟨ x , eval s e ⟩ ⟩ }
Axiom “Semantics of ; ”∶ J C1 ; C2 K = J C1 K # J C2 K
Axiom “Semantics of `if` ”∶

J if B then C1 else C2 fi K = (sat B ◁ J C1 K) ∪ (sat B −◁ J C2 K)
Axiom “Semantics of `while` ”∶

J while B do C od K = (sat B ◁ J C K) * −▷ sat B

Formalising Partial Correctness

So far, we have been using the dynamic logic notation:

P ⇒[ C ] Q
with its partial correctness meaning:

If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

Declaration∶ ⇒ ∶ ExprB → Cmd → ExprB → B
Axiom “Partial Correctness ”∶(P ⇒ C Q) ≡ J C K (∣ sat P ∣) ⊆ sat Q

Theorem “Partial Correctness ”∶(P ⇒ C Q) ≡ ∀ s1, s2 ● s1 ∈ sat P ∧ s1 J C K s2 ⇒ s2 ∈ sat Q
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Relational Semantics: Partial Correctness



How to Finish this Hoare Logic Proof for Arbitrary Loop Body C ?

Theorem “while true ”∶ P ⇒ while true do C od Q
Proof:

P Precondition⇒ ⟨ “Right-zero of⇒ ” ⟩
true Invariant⇒ while true do C od ⟨ “While ” with subproof:

true ∧ true Loop condition and invariant≡ ⟨ “Identity of ∧ ” ⟩
true⇒ C ⟨ ? ⟩
true Invariant⟩¬ true ∧ true Negated loop condition, and invariant⇒⟨ “Contradiction ”, “ex falso quodlibet ” ⟩

Q Postcondition

Separation of Concerns. . .
Derived inference rule “while true ”∶ `true ⇒ C true`⊢ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

`P ⇒ while true do C od Q`Proof:
Assuming “Inv ” `true ⇒ C true`∶

P Precondition⇒ ⟨ “Right-zero of⇒ ” ⟩
true Invariant⇒ while true do C od ⟨ “While ” with subproof:

true ∧ true Loop cond. and inv.≡ ⟨ “Identity of ∧ ” ⟩
true⇒ C ⟨ Assumption “Inv ” ⟩
true Invariant⟩¬ true ∧ true Negated loop cond. and inv.⇒⟨ “Contradiction ”, “ex falso quodlibet ” ⟩

Q Postcondition

How to prove `true ⇒ C true` ?

(Or even X ⇒ C true ?)

By structural induction over
C ∶ Cmd, using the command
correctness proof rules
(“Hoare logic”)

Or: Using the definition of⇒ in terms of the semantics
J K

Recall: Types for Semantics of Expressions and Commands

What does “state” mean? “holds”? . . .

Imperative programs, such as Cmd, transform a State that assigns values to variables.

Declaration∶ Var ∶ Type — variables
Declaration∶ Value ∶ Type — storable values
Declaration∶ State ∶ Type

Axiom “Definition of `State` ”∶ State = Var → Value

Declaration∶ evalV ∶ State → ExprV → Value — value expression semantics
Declaration∶ sat ∶ ExprB → set State — Boolean expression semantics

Declaration∶ ⊕′ ∶ (A → B) → ⟨⟨⟨⟨⟨⟨⟨ A , B ⟩⟩⟩⟩⟩⟩⟩ → (A → B) — state update
Axiom “Definition of function override ”∶(x = z ⇒ (f ⊕′ ⟨ x, y ⟩) z = y)∧ (x ≠ z ⇒ (f ⊕′ ⟨ x, y ⟩) z = f z)

Recall: Semantics of Commands

What does “starts” mean? “terminates”? . . .

Program execution induces a state transformation relation.

Declaration∶ J K ∶ Cmd → (State ↔ State)
s1 J C K s2 iff “when started in state s1, command C can terminate in state s2”.

Inductive definition of J K over the structure of Cmd:

Axiom “Semantics of := ”∶ J x ∶ = e K = { s ∶ State ● ⟨ s , s ⊕′ ⟨ x , evalV s e ⟩ ⟩ }
Axiom “Semantics of ; ”∶ J C1 ; C2 K = J C1 K # J C2 K
Axiom “Semantics of `if` ”∶

J if B then C1 else C2 fi K = (sat B ◁ J C1 K) ∪ (sat B −◁ J C2 K)
Axiom “Semantics of `while` ”∶

J while B do C od K = (sat B ◁ J C K) * −▷ sat B

Formalising Partial Correctness

So far, we have been using the dynamic logic notation:

P ⇒[ C ] Q
with its partial correctness meaning:

If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

Declaration∶ ⇒ ∶ ExprB → Cmd → ExprB → B
Axiom “Partial Correctness ”∶(P ⇒ C Q) ≡ J C K (∣ sat P ∣) ⊆ sat Q

Theorem “Partial Correctness ”∶(P ⇒ C Q) ≡ ∀ s1, s2 ● s1 ∈ sat P ∧ s1 J C K s2 ⇒ s2 ∈ sat Q

Proving “Postcondition `true` ” is now Easy

Declaration∶ ⇒ ∶ ExprB → Cmd → ExprB → B

Axiom “Partial Correctness ”∶ (P ⇒ C Q) ≡ J C K (∣ sat P ∣) ⊆ sat Q

Theorem “Postcondition `true` ” “Right-zero of⇒ ”∶
P ⇒ C true′

Proof:

P ⇒ C true′
≡ ⟨ “Partial correctness ” ⟩
J C K (∣ sat P ∣) ⊆ sat true′

≡ ⟨ “sat true′ ” ⟩
J C K (∣ sat P ∣) ⊆ U

— This is “Universal set is greatest ”

Partial Correctness: “Terminate Only in States Satisfying Postcondition”
Axiom “Partial Correctness ”∶ (P ⇒ C Q) ≡ J C K (∣ sat P ∣) ⊆ sat Q

Axiom “Semantics of `while` ”∶ J while B do C od K = (sat B ◁ J C K) * −▷ sat B

Theorem “Partial correctness of `while true` ”∶ P ⇒ while true′ do C od Q
Proof:

P ⇒ while true′ do C od Q≡ ⟨ “Partial correctness ” ⟩
J while true′ do C od K (∣ sat P ∣) ⊆ sat Q≡ ⟨ “Semantics of `while` ” ⟩((sat true′ ◁ J C K) * −▷ sat true′) (∣ sat P ∣) ⊆ sat Q≡ ⟨ “sat true′ ” ⟩((U ◁ J C K) * −▷ U) (∣ sat P ∣) ⊆ sat Q≡ ⟨ “ −▷ U ” ⟩{} (∣ sat P ∣) ⊆ sat Q≡ ⟨ “Relational image under {} ” ⟩{} ⊆ sat Q — This is “Empty set is least ”

That is:

Any “while true” loop
is partially correct
with respect to any
pre-post-condition
specification.

Soundness of the Inference Rules for Correctness

Since partial correctness statements (P ⇒ C Q) are now defined via the relational
semantics, we can prove soundness of the Hoare logic proof rules by deriving them, e.g.:

Derived inference rule “Sequence ”∶ `P ⇒ C1 Q`, `Q ⇒ C2 R`⊢ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

`P ⇒ C1 ; C2 R`
Proof:

Assuming (C1) `P ⇒ C1 Q` and using with “Partial correctness ”,(C2) `Q ⇒ C2 R` and using with “Partial correctness ”∶
P ⇒ C1 ; C2 R≡ ⟨ “Partial correctness ” ⟩
J C1 ; C2 K (∣ sat P ∣) ⊆ sat R≡ ⟨ “Semantics of ; ”, “Relational image of # ” ⟩
J C2 K (∣ J C1 K (∣ sat P ∣) ∣) ⊆ sat R⇐⟨ Antitonicity with assumption (C1) ⟩
J C2 K (∣ sat Q ∣) ⊆ sat R≡ ⟨ Assumption (C2) ⟩
true

Soundness of the Inference Rules for Correctness (ctd.)

Derived inference rule “Conditional ”∶
`B ∧′ P ⇒ C1 Q`, `¬′ B ∧′ P ⇒ C2 Q`⊢ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

`P ⇒ if B then C1 else C2 fi Q`

Derived inference rule “While ”∶
`B ∧′ Q ⇒ C Q`⊢ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

`Q ⇒ while B do C od ¬′ B ∧′ Q`

“Operational Semantics”, “Axiomatic Semantics”

For a command C ∶ Cmd, we introduced it relational semantics J C K ∶ State↔ State.

This semantics only captures the terminating behaviours of C, in the shape of an
“input-output relation”.

This is also called “big-step operational semantics”, or “natural semantics”.

“Small-step operational semantics” maps C to a relation of type State↔ (State∗ ∪State∞):
Each start state s0 is related to all possible execution sequences starting from s0.
All intermediate states (after each assignment) are recorded.
Non-terminating behaviours give rise to infinite state sequences.
Terminating behaviours give rise to finite sequences s0, . . . , sn, with s0 J C K sn

— this is either a proof obligation, or a way to define J C K.
“Axiomatic semantics” is the set of correctness statements (P ⇒ C Q) that can be
derived about C in a “Hoare logic” inference system of the kind we have used.

As seen on the previous slides, such an inference system can (and should!) be justified
against the operational semantics.

— More in COMPSCI 3MI3!
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Total Correctness

Precondition-Postcondition Specifications
Program correctness statement in LADM (and much current use): “Hoare triple”:{ P } C { Q }
Meaning (LADM ch. 10): “Total correctness”:
If command C is started in a state in which the precondition P holds
then it will terminate in a state in which the postcondition Q holds.

So far, we have been using the dynamic logic notation:
P ⇒[ C ] Q

with its partial correctness meaning:
If command C is started in a state in which the precondition P holds
then it will terminate only in states in which the postcondition Q holds.

Differences between partial and total correctness:
Total correctness forbids commands that do not terminate (properly):

Infinite loops
Commands that crash — evaluating “undefined” expressions

Undefined Behaviours in C

Spatial memory safety violations — int a [5]; int k = a [6];

Temporal memory safety violations — free (p); k = *p;

Integer overflow — k = maxint + 2; m = minint − 3;

Strict aliasing violations

Alignment violations

Unsequenced modifications — printf ("%d %d", a++, a++);

Data races

Loops that neither perform I/O nor terminate

Homework 3 Lemma 5

In Homework 3, you proved, for variables x and y of type Z:

Lemma (5)∶ p = p0 ∧ q = q0⇒ p ∶ = p + q ;

q ∶ = p − q ;

p ∶ = p − q

p = q0 ∧ q = p0

The proof typically used “Subtraction”, “Unary minus”, “Identity of +”, and (implicitly)
“Associativity of +”.

What Do These C Program Fragments Do?

Let p and q be variables of type int.

p = p + q;
q = p - q;
p = p - q;

int overflow is undefined
behaviour!
(Going below minint is still
called “integer overflow”.)
this swap “works” only if none
of the operations overflows

Let k and n be variables of type unsigned int.

k = k + n;
n = k - n;
k = k - n;

unsigned int has “wrap-around
arithmetic” (e.g., modulo 264) –
totally defined
this swap “works”

Let c and d be variables of type double.

c = c + d;
d = c - d;
c = c - d;

“+” at floating-point types is not
even associative. . .
floating-point arithmetic is hard
to reason about. . .

Recall: Total Correctness

Program correctness statement in LADM (and much current use): “Hoare triple”:

{ P } C { Q }
Meaning (LADM ch. 10): “Total correctness”:

If command C is started in a state in which the precondition P holds
then it will terminate in a state in which the postcondition Q holds.

Differences between partial and total correctness:
Total correctness forbids commands that do not terminate (properly):

Infinite loops
Commands that crash — evaluating “undefined” expressions

What difference does this make for the rules of Hoare logic?

Rules That Work for Both Partial and Total Correctness

Sequential composition:
3ULPLWLYH�LQIHUHQFH�UXOH�'6HTXHQFH(��
����C3��î?�&U�@��4C���C4��î?�&V�@��5C�
���1���������������������������������
������C3��î?�&U�)�&V�@��5C

Strengthening the precondition:

�����C3U�î�3VC����C3V�î?�&�@�4C�
���1������������������������������
����������C3U�î?�&�@�4C

Weakening the postcondition:

�����C3�î?�&�@�4UC����C4U�î�4VC�
���1������������������������������
����������C3�î?�&�@�4VC�

Total Correctness Rule for Assignment

Used so far: Dynamic Logic Partial Correctness Assignment Axiom:

Q[x ∶= E] ⇒[ x : = E ] Q

LADM Total Correctness Assignment Axiom (10.1):

{ dom ‘E’ ∧ Q[x ∶= E] } x : = E { Q }
For each programming-language expression E, the predicate

dom ‘E’
is satisfied exactly in the states in which E is defined.
(dom is a meta-function taking expressions to Boolean conditions.)

Examples:
dom ‘sqrt (x / y)’ ≡ y ≠ 0∧x / y ≥ 0
dom ‘a @ i’ ≡ i ∈ Dom a
For int-variables i and j:
dom ‘i + j’ ≡ minint ≤ toZ i + toZ j ≤maxint

Assignment “ : = ”:
Two characters;
type “:=”

Substitution “∶=”:
One Unicode character;
type “/:=”

Conditional Rule

Each evaluation of an expression E needs to be guarded by a precondition dom ‘E’:

{ B ∧ P } C1 { Q } { ¬ B ∧ P } C2 { Q }
{ dom ‘B’ ∧ P } if B then C1 else C2 fi { Q }

“While” Rule

So far for partial correctness: �����������������C%�<�4��î?�&�@��4C�
��������1��������������������������������������
����������C4��î?�ZKLOH�%�GR�&�RG�@��n�%�<�4C�

Now two additional ingredients (besides B and C):
Invariant: Q ∶ B — as before, ensuring functional correctness
Variant (or “bound function”): T ∶ Z — ensuring termination

{ B ∧ Q } C { dom ‘B’ ∧ Q } { B ∧ Q ∧ T = t0 } C { T < t0 } B ∧ Q ⇒ T > 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
In each iteration:

The invariant Q is preserved.
The loop condition B can be evaluated again.
The variant T decreases.

Termination: The relation < on the subset {t ∶ Z t > 0} is well-founded.



“Merged” While Rule

Now two additional ingredients:
Invariant: Q ∶ B — as before, ensuring functional correctness
Variant (or “bound function”): T ∶ Z — ensuring termination

{ B ∧ Q ∧ T = t0 } C { dom ‘B’ ∧ Q ∧ T < t0 } B ∧ Q ⇒ T > 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
provided ¬occurs(‘t0’, ‘B,C,Q,T’)

In each iteration:
The invariant Q is preserved.
The loop condition B can be evaluated again.
The variant T decreases.

Relation-Algebraic Total and Partial Correctness

Program correctness statement in LADM (and much current use): “Hoare triple”:{ P } C { Q }
Meaning (LADM ch. 10): “Total correctness”:
If command C is started in a state in which the precondition P holds
then it will terminate in a state in which the postcondition Q holds.

Axiom “Total Correctness ”∶(P ⇒ C Q) ≡ J C K (∣ sat P ∣) ⊆ sat Q ∧ sat P ⊆ Dom J C K
(So far not modelling “undefined” expressions, only non-termination.)

So far, we have been using the dynamic logic notation:
P ⇒[ C ] Q

with its partial correctness meaning:
If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

Axiom “Partial Correctness ”∶(P ⇒ C Q) ≡ J C K (∣ sat P ∣) ⊆ sat Q

Total and Partial Correctness in Predicate Logic
Program correctness statement in LADM (and much current use): “Hoare triple”:{ P } C { Q }
Meaning (LADM ch. 10): “Total correctness”:
If command C is started in a state in which the precondition P holds
then it will terminate in a state in which the postcondition Q holds.

Theorem “Total Correctness ”∶(P ⇒ C Q)≡ (∀ s1, s2 ● s1 ∈ sat P ∧ s1 J C K s2 ⇒ s2 ∈ sat Q)∧ (∀ s1 s1 ∈ sat P ● ∃ s2 s1 J C K s2 ● s2 ∈ sat Q)
So far, we have been using the dynamic logic notation:

P ⇒[ C ] Q
with its partial correctness meaning:
If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

Theorem “Partial Correctness ”∶(P ⇒ C Q)≡ ∀ s1, s2 ● s1 ∈ sat P ∧ s1 J C K s2 ⇒ s2 ∈ sat Q
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Temporal Logic: PLTL

Fast Version of Syntax and Semantics of Propositional Logic in Ex11.3

Given: A set E of expressions e1, e2, . . . (for example: “x + 5”, “3 ⋅ (y + 2)”
An atomic proposition in Ex11.3 is an equation “e1 = e2”, for example, “2 ⋅ x + 5 = 89”
A formula φ,ψ, . . . is (an abstract syntax tree) generated by the following
“grammar” (informal):

φ ∶∶= e1 = e2 ∣ ¬φ ∣ φ∧ψ ∣ φ∨ψ
A state is a function α ∶ V → Z
The semantics of propositional formula φ is the function JφK ∶ (V → Z)→ B
that maps each state α to a truth value, the “value of φ in α”:
Je1 = e2K α = (Je1K α = Je2K α)

J¬φK α = ¬(JφK α)
Jφ∧ψK α = JφK α ∧ JψK α ∧: Formula constructor; ∧: Boolean operator

α satisfies φ iff JφK α = true ; this is also written: α ⊧ φ
φ is valid iff (∀α ● JφK α = true) ; this is also written: ⊧ φ

Syntax and Semantics of Traditional Propositional Logic

Given: A type P of proposition symbols p, q, . . . to be used as atomic propositions
A propositional formula φ,ψ, . . . is (an abstract syntax tree) generated by the
following “grammar” (informal):

φ ∶∶= T ∣ F ∣ p ∣ ¬φ ∣ φ∧ψ ∣ φ∨ψ ∣ φ⇒ψ

A state is a function α ∶ P → B
The semantics of propositional formula φ is the function

JφK ∶ (P → B)→ B
that maps each state α to a truth value, the “value of φ in α”:

JTK α = true
J¬φK α = ¬(JφK α)

Jφ∧ψK α = JφK α ∧ JψK α
α satisfies φ iff JφK α = true; this is also written: α ⊧ φ
φ is valid iff (∀α ● JφK α = true); this is also written: ⊧ φ

Syntax and Semantics of Propositional Logic — Applications
Define a (Haskell) datatype for propositional formule: data PropForm p = ...
Write functions that takes each formula to its disjunctive/conjunctive normal form

toCNF, toDNF :: PropForm p → PropForm p

Use CALCCHECK to prove that your implementations are correct
Define the semantics as an evaluation function

evalPropForm :: PropForm p → State p → Bool

Define a representation of truth tables
Write a truth table generation fucntion
Write a validity checker using truth tables

validPropForm :: PropForm p → Bool

Write a satisfiability checker using truth tables

satPropForm :: PropForm p →Maybe (State p)

Look up the DPLL algorithm and write a more efficient satisfiability solver

Syntax and Semantics of Predicate Logic
Given: A vocabulary/signature Σ consisting of

a countably infinite set V of variable symbols v,v1,v2, . . .
a countable set of function symbols f ,g, . . . (with arity information) — fact, + , 42
a countable set of predicate symbols p, q, . . . (with arity information) — odd, = , >

A term t, t1, t2 is (an abstract syntax tree) generated by the following “grammar”:
t ∶∶= v ∣ f (t1, . . . , tn) — “fact(5)”, “42”, “x + 2”

A predicate-logic/first-order-logic formula φ,ψ, . . . is (an abstract syntax tree)
generated by the following “grammar”:

φ ∶∶= p(t1, . . . , tn) ∣ ¬φ ∣ φ∧ψ ∣ φ∨ψ ∣ φ⇒ψ ∣ (∀ v ● φ) ∣ (∃ v ● φ)
An interpretation of Σ, also called a “Σ-structure”, A, consists of

a domain D
a mapping that maps each n-ary function symbol f to a function fA ∶ Dn → D
a mapping that maps each n-ary predicate symbol p to a function pA ∶ Dn → B

A variable assignment for A is a function α ∶ V → D
Semantics of terms: JtKA ∶ (V → D)→ D
Semantics of formulae: JφKA ∶ (V → D)→ B; we write “A, α ⊧ φ” for JφKA α = true
. . . Ð→ RSD chapters 3, 4

Intended Infinite Program Executions

Even simple imperative programming languages have programs that do not
terminate — while true do . . .
Not all programs are expected to terminate:

Operating systems
Bank databases
Online shops

Pre-postcondition specifications are useless for programs that are expected to not
terminate!
Different patterns of specification are used for such systems:

Each request will generate a response
The ledger is always balanced
Shipping commands are sent to the warehouse only after payment is confirmed

Central concept: Time
System behaviour: Different states at different time points
Plausible abstraction: Discrete time, with time points taken from N
Infinite state sequences: Functions of type N→ State

How to Reason About Infinite State Sequences?

Infinite state sequences: Functions of type N→ State

Specification example sketches in predicate logic:

∀ t0, rId,din request(rId,din, t0)● ∃ t1,dout t0 < t1 ● response(rId,dout, t1)∧ appropriate(dout,din)
∀ t ● (∑ a ∶ Account ● balance a t) = 0

. . .

Lots of quantification about time points!

Quantification about time points follows relatively few patterns!

Temporal logics “internalise” these time point quantification patterns
and allow to express them without bound variables for time points.



Important Temporal Modalities

Quantification about time points follows relatively few patterns!

Temporal logics “internalise” these time point quantification patterns
and allow to express them without bound variables for time points.

Consider the following timeline:

x=3
y=5

Ð→ x=2
y=5

Ð→ x=1
y=7

Ð→ x=2
y=7

Ð→ x=5
y=8

Ð→ x=3
y=8

Ð→ x=0
y=7

Ð→ ⋯
We have:

F (y = 3 ⋅ x + 1) —- “eventually (y = 3 ⋅ x + 1)”; “at some time in the future, (y = 3 ⋅ x + 1)”
G (y > x) —- “always (y > x)”. “at all times in the future, (y > x)”
(x < 4) U (y = 8) —- “(x < 4) until (y = 8)”
X (x = 2) —- “in the next state, (y = 2)”
(x = 3) —- “(in the current state,) (x = 3)”

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL)
Given: A set A of atomic propositions p, q, . . .

A PLTL formula φ,ψ, . . . is (an abstract syntax tree) generated by the following
“grammar” (informal):

φ ∶∶= T ∣ F ∣ p ∣ ¬φ ∣ φ∧ψ ∣ φ∨ψ ∣ φ⇒ψ ∣ F φ ∣ G φ ∣ X φ ∣ φ U ψ

A state associates a truth value with each atom: State = A → B

A time line α associates a state with each time point — for simplicity, we use N for
time points:

α ∶ N → A → B

Given an LTL formula φ and a time line α, the semantics of φ in α, written “J φ K α”,
is a function that associates with each time point t ∶ N the truth value “J φ K α t”:

Declaration∶ J K ∶ LTL A → (N → A → B) → N → B

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 1
J φ K α t = true iff LTL formula φ holds in
time line α ∶ N → A → B at time t:

Declaration∶ J K ∶ LTL A → (N → A → B) → N → B

An atomic proposition p is true at time t iff the
time line contains, at time t, a state in which p is
true:

“Semantics of LTL atoms ”∶ J ‘ p K α t ≡ α t p

“Semantics of LTL ¬ ”∶ J ¬′ φ K α t ≡ ¬ J φ K α t
“Semantics of LTL ∧ ”∶ J φ ∧′ ψ K α t ≡ J φ K α t ∧ J ψ K α t
“Semantics of LTL ∨ ”∶ J φ ∨′ ψ K α t ≡ J φ K α t ∨ J ψ K α t
“Semantics of LTL⇒ ”∶ J φ ⇒′ ψ K α t ≡ J φ K α t ⇒ J ψ K α t

J p K α 0 = ?

J p K α 3 = ?

J q K α 0 = ?

J p∧ q K α 0 = ?

J p∨¬q K α 3 = ?

J q⇒ r K α 42 = ?

α = Time p q r s
0 √ √
1 √ √
2 √ √
3 √
4 √ √
5 √ √ √
6,16,26, . . . √ √ √
7,17,27, . . . √ √
8,18,28, . . . √ √
9,19,29, . . . √ √ √
10,20,30, . . . √ √
11,21,31, . . . √ √
12,22,32, . . . √ √
13,23,33, . . . √ √
14,24,34, . . . √ √
15,25,35, . . . √ √

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 2
J φ K α t = true iff LTL formula φ holds in
time line α ∶ N → A → B at time t:

Declaration∶ J K ∶ LTL A → (N → A → B) → N → B

F φ is true at time t if φ is true at some time t′ ≥ t:

“Semantics of `F` ”∶
J F φ K α t ≡ ∃ t′ ∶ N t ≤ t′ ● J φ K α t′

G φ is true at time t if φ is true at all times t′ ≥ t.

“Semantics of `G` ”∶
J G φ K α t ≡ ∀ t′ ∶ N t ≤ t′ ● J φ K α t′

J G p K α 0 = ?

J G p K α 5 = ?

J F q K α 0 = ?

J F s K α 7 = ?

J F ¬p K α 0 = ?

J F ¬p K α 100 = ?

α = Time p q r s
0 √ √
1 √ √
2 √ √
3 √
4 √ √
5 √ √ √
6,16,26, . . . √ √ √
7,17,27, . . . √ √
8,18,28, . . . √ √
9,19,29, . . . √ √ √
10,20,30, . . . √ √
11,21,31, . . . √ √
12,22,32, . . . √ √
13,23,33, . . . √ √
14,24,34, . . . √ √
15,25,35, . . . √ √

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 3
J φ K α t = true iff LTL formula φ holds in
time line α ∶ N → A → B at time t:

Declaration∶ J K ∶ LTL A → (N → A → B) → N → B

X φ is true at time t iff φ is true at time t + 1:

“Semantics of `X` ”∶
J X φ K α t ≡ J φ K α (suc t)

J X p K α 0 = ?

J X q K α 0 = ?

J q ∧ X r K α 1 = ?

J G F (q ∧ X r) K α 0 = ?

J F (s ∧ X s) K α 0 = ?

J F (s ∧ X s) K α 10 = ?

J G (q ≡ X r) K α 12 = ?

J G F (q ≡ X r) K α 12 = ?

α = Time p q r s
0 √ √
1 √ √
2 √ √
3 √
4 √ √
5 √ √ √
6,16,26, . . . √ √ √
7,17,27, . . . √ √
8,18,28, . . . √ √
9,19,29, . . . √ √ √
10,20,30, . . . √ √
11,21,31, . . . √ √
12,22,32, . . . √ √
13,23,33, . . . √ √
14,24,34, . . . √ √
15,25,35, . . . √ √

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 4
J φ K α t = true iff LTL formula φ holds in
time line α ∶ N → A → B at time t:

Declaration∶ J K ∶ LTL A → (N → A → B) → N → B

φ U ψ is true at time t if ψ is true at some time
t′ ≥ t, and for all times t′′ such that t ≤ t′′ < t′, φ is
true.

Axiom “Semantics of `U` ”∶ “until”
J φ U ψ K α t≡ ∃ t′ ∶ N t ≤ t′● J ψ K α t′∧ ∀ t′′ ∶ N t ≤ t′′ < t′ ● J φ K α t′′

J p U q K α 0 = ?

J p U s K α 0 = ?

J ¬ s U ¬ p K α 0 = ?

J p U (q ∧ r) K α 42 = ?

J p U (q ∧ s) K α 42 = ?

J (p ∨ r) U s K α 1 = ?

α = Time p q r s
0 √ √
1 √ √
2 √ √
3 √
4 √ √
5 √ √ √
6,16,26, . . . √ √ √
7,17,27, . . . √ √
8,18,28, . . . √ √
9,19,29, . . . √ √ √
10,20,30, . . . √ √
11,21,31, . . . √ √
12,22,32, . . . √ √
13,23,33, . . . √ √
14,24,34, . . . √ √
15,25,35, . . . √ √
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More About Temporal Logics, Model Checking

Temporal Logics for Specification of Reactive and Distributed Systems

Reactive Systems: No clear input-output relation

Operating systems

Embedded systems

Network protocols

Specification techniques: Temporal logics

Rich choice of temporal logics — multiple classification criteria

Some important logics are (polynomial-time) decidable — Model checking

Applications: Safety- and liveness properties

Safety property: “Something bad will never happen”

Liveness property: “Something good will eventually happen”

Application area: Concurrent systems, protocols, . . .

Modal Logics

Original philosophical motivation: Express different modalities:

The proposition “Napoleon was victorious at Waterloo”

is false in this world,

but could be true in another world.

Typical modal operators:

“possibly”: ◇ p — “it is imaginable that p holds” “diamond p”

“necessarily”: p — “it is not imaginable that p doesn’t hold” “box p”

Kripke (1963): “possible world semantics” (orig. Kanger 1957)

Temporal Logics

Prior (1955): Tense Logic — notation still customary today

instead of ◇ p now temporally: F p — “p will eventually be true”

instead of p now temporally: G p — “p will always be true”

Dynamic Logic [Pratt 1976 (originally developed for Hoare logic in course notes 1974)]:

Parameterised box modality: [ A ]φ means “after performing action A, the condition φ
will always hold”

Useful for pre-/post-condition correctness statements: P ⇒ ([ C ] Q)
Pnueli (1977): “The Temporal Logic of Programs”:

Argues for using temporal logics as tool for specification and verification, in
particular for reactive systems such as operating systems and network protocols

Two kinds of applications: Temporal logics are used

in software technology, to let the world reason about programs

in AI, to let programs reason about the world



Different Treatments of Time

Future Only versus Also Past
Philosophiscal approaches: Past at least as important as future
Software: Frequently only future
Past operators are frequently useful in compositional specifications.

Discrete Time versus Continuous Time
Continuous (or dense) time first considered in philosophy
Possible application in real time systems

Time Points versus Time Intervals
Some properties are easier to formulate using intervals.

The following distinction is mainly semantic, but also reflected in syntax:
Linear Time: At any point only one possible future
Branching Time: At any point multiple possible futures

Both approaches are used in software technology

Temporal Operators of Propositional Linear-Time Temporal Logic (PLTL)

F p — “eventually p”

G p — “always p”

X p — “in the next state p”

p U q — “eventually q, and until then p” (until)

Propositional Linear-Time Temporal Logic — Syntax

Definition: The set of formulae of propositional linear-time temporal logic is the
smallest set generated by the following rules:

every atomic proposition P ∶ AP is a formula;
if p and q are formulae, then p∧ q and ¬p are formulae, too;
if p and q are formulae, then p U q and X p formulae, too.

Abbreviations:
p∨ q ∶≡ ¬(¬p∧¬q)
p⇒ q ∶≡ ¬p∨ q
p⇔ q ∶≡ (p⇒ q)∧(q⇒p)
true ∶≡ p∨¬p
false ∶≡ ¬true

F p ∶≡ true U p
G p ∶≡ ¬F ¬p
F ∞ p ∶≡ G F p — “infinitely often”
G ∞ p ∶≡ F G p — “almost everywhere”
p B q ∶≡ ¬((¬p) U q) — “p before q”

Semantics of the Temporal Modalities in PLTL
J φ K α t = true iff LTL formula φ holds in time line

α ∶ N → A → B at time t

Declaration∶ J K ∶ LTL A → (N → A → B) → N → B

F φ is true at time t if φ is true at some time t′ ≥ t.

G φ is true at time t if φ is true at all times t′ ≥ t.

X φ is true at time t iff φ is true at time t + 1.

φ U ψ is true at time t if ψ is true at some time t′ ≥ t,
and for all times t′′ such that t ≤ t′′ < t′, φ is true.

J ¬ s U ¬ p K α 0 = ?

J p U (q ∧ r) K α 42 = ?

J p U (q ∧ s) K α 42 = ?

J (p ∨ r) U s K α 1 = ?

α = Time p q r s
0 √ √
1 √ √
2 √ √
3 √
4 √ √
5 √ √ √
6,16,26, . . . √ √ √
7,17,27, . . . √ √
8,18,28, . . . √ √
9,19,29, . . . √ √ √
10,20,30, . . . √ √
11,21,31, . . . √ √
12,22,32, . . . √ √
13,23,33, . . . √ √
14,24,34, . . . √ √
15,25,35, . . . √ √

Important Valid Formulae

⊧G ¬p⇔ ¬F p ⊧G ∞ ¬p⇔ ¬F ∞ p ⊧ X ¬p⇔ ¬X p

⊧ F ¬p⇔ ¬G p ⊧ F ∞ ¬p⇔ ¬G ∞ p ⊧ ((¬p) U q)⇔ ¬(p B q)
Idempotencies Implications

⊧ F F p⇔ F p ⊧ p⇒F p ⊧G p⇒p

⊧G G p⇔G p ⊧ X p⇒F p ⊧G p⇒X p

⊧ F ∞ F ∞ p⇔ F ∞ p ⊧G p⇒F p ⊧G p⇒X G p

⊧G ∞ G ∞ p⇔G ∞ p ⊧ p U q⇒F q ⊧G ∞ q⇒F ∞ q

⊧ X F p⇔ F X p ⊧ X G p⇔G X p ⊧ ((X p) U (X q))⇔ X (p U q)
⊧ F ∞ p ⇔ X F ∞ p ⇔ F F ∞ p ⇔ G F ∞ p ⇔ F ∞ F ∞ p ⇔ G ∞ F ∞ p

⊧ G ∞ p ⇔ X G ∞ p ⇔ F G ∞ p ⇔ G G ∞ p ⇔ F ∞ G ∞ p ⇔ G ∞ G ∞ p

(considering⇔ to be conjunctional)

Interplay between Junctors and Temporal Operators

⊧ F (p∨ q)⇔ (F p∨F q) ⊧G (p∧ q)⇔ (G p∧G q)
⊧ F ∞ (p∨ q)⇔ (F ∞ p∨F ∞ q) ⊧G ∞ (p∧ q)⇔ (G ∞ p∧G ∞ q)
⊧ p U (q∨ r)⇔ (p U q∨p U r) ⊧ (p∧ q) U r⇔ (p U r∧ q U r)
⊧ X (p∨ q)⇔ (X p∨X q) ⊧ X (p⇒ q)⇔ (X p⇒X q)
⊧ X (p∧ q)⇔ (X p∧X q) ⊧ X (p⇔ q)⇔ (X p⇔ X q)
⊧ (G p∨G q)⇒G (p∨ q) ⊧ F (p∧ q)⇒F p∧F q

⊧ (G ∞ p∨G ∞ q)⇒G ∞ (p∨ q) ⊧ F ∞ (p∧ q)⇒F ∞ p∧F ∞ q

⊧ ((p U r)∨(q U r))⇒((p∨ q) U r) ⊧ (p U (q∧ r))⇒((p U q)∧(p U r))

Monotonicity and Fixpoint Characterisations

⊧G (p⇒ q)⇒(F p⇒F q) ⊧G (p⇒ q)⇒(F ∞ p⇒F ∞ q)
⊧G (p⇒ q)⇒(G p⇒G q) ⊧G (p⇒ q)⇒(G ∞ p⇒G ∞ q)
⊧G (p⇒ q)⇒((p U r)⇒(q U r)) ⊧G (p⇒ q)⇒((r U p)⇒(r U q))
⊧G (p⇒ q)⇒(X p⇒X q)

Fixpoint Characterisations:

⊧ F p⇔ p∨X F p ⊧ (p U q)⇔ q∨(p∧X (p U q))
⊧G p⇔ p∧X G p ⊧ (p B q)⇔ ¬q∧(p∨X (p B q))

Variants of the Basic Temporal Operators

p U q, until now, is known as “strong until”:
There is a future state q, and until then p.

Alternative notations: p Us q or p U∃ q.

Weak until p Uw q or p U∀ q:
p holds as long as q does not hold — if necessary, forever.

x ⊧ p U∀ q iff for all j ∶ N we have xj ⊧ p as far as for all k ≤ j we have xk ⊧ ¬q.

We have:

⊧ p U∃ q⇔ p U∀ q∧F q

⊧ p U∀ q⇔ (p U∃ q∨G p)⇔ (p U∃ q∨G (p∧¬q))

Past
Until now, all operators are future-related — explicitly:

F+ p — “in the future, eventually p”
G+ p — “in the future, always p”
X+ p — “in the next state p”
p U+ q — “in the future, eventually q, and until then p”

Purely future-oriented propositional linear-time temporal logic —
Propositional Linear-time Temporal Logic / Future: PLTLF

Corresponding past-oriented operators (originally P, H, and S for since):

F− p — “in the past at some point p”
G− p — “in the past, always p”
p U− q — “in the past at some point q, and since then p”
X−∃ p — “in the previous state we had p”

Logic only with past-oriented operators: PLTLP; with both: PLTLB.

Safety

Safety properties: “nothing bad happens”

Safety properties are invariance properties:
Every finite prefix of the execution satisfies the invariance condition

In PLTLB: initially equivalent to G p for a past formula p:
“nothing bad has happened until now” must always be true.

Examples Safety Properties:

Partial correctness wrt. precondition φ and postcondition ψ:
If a program (with start label l0 and halting label lh) starts executing in a state satisfying
the precondition φ and terminates, the the terminating state satisfies the postcondition ψ:

atl0 ∧φ⇒G (atlh⇒ψ)
Mutual Exclusion: G (¬(atCS1 ∧atCS2))
Deadlock-freeness: G (enabled1 ∨ . . .∨ enabledm)



Liveness

Liveness: “Something good will still happen (often enough)”

p is an “invincible” past formula iff every finite sequence x has a finite extension x′
such that p holds in the last state of x′:

JpK x′ (lengthx′) ≡ true

A pure liveness property is a PLTLB formula that is initially equivalent to a formula
F p, G F p or F G p, where p is an invincible past formula

If p is a pure liveness property, then every finite sequence x can be extended to a
finite or infinite sequence x′ such that (x′,0) ⊧ p

Temporal implication G (p⇒F q) (where p and q are past formulae) is a generic
liveness property

Propositional Branching-time Temporal Logic

Semantic setting: A branching-time structure is a graph (N,E)with total edge
relation E (“no sinks”) and a node labelling with states L ∶ N → State

(This can in particular be an infinite “commputational tree”
or a cyclic finite graph.)
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“Path quantification”:

E φ means “φ holds in some future”, “φ holds on some infinite path”

A φ means “φ holds in all possible futures”, “φ holds on all infinite paths”

“Computational Tree Logic” CTL: Path quantifiers (E , A ) and temporal modalities (F ,
G , U , X ) only occur together.

CTL Specification Patterns

“Path quantification”:

E φ means “φ holds in some future”, “φ holds on some infinite path”

A φ means “φ holds in all possible futures”, “φ holds on all infinite paths”

“Computational Tree Logic” CTL: Path quantifiers (E , A ) and temporal modalities
(F , G , U , X ) only occur together.

Example CTL Specifications:

E F (started∧¬ready)
A G (requested⇒A F acknowledged)
A G (A F enabled)
A F (A G deadlock)
A G (E F restart) s
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A G (floor = 2∧direction = up∧ButtonPressed5⇒A [direction = up U floor = 5])
A G (floor = 3∧ idle∧door = closed⇒E G (floor = 3∧ idle∧door = closed))

Small Models Theorem for CTL

Theorem: Let p0 be a CTL formula of length n. Then the following statements are
equivalent:

p0 is satisfiable,that is, there is a branching-time structure in which p0 holds,
that is, a model of p0

p0 has an infinite tree model with finite branching degree in O(n).
p0 has a finite model of size ≤ n ⋅ 2n.

Why is this useful? — Synthesis of correct-by-construction automata!
(For satisfiable specifications. . . )

But:

Theorem: The satisfiability test for CTL is DEXPTIME complete.

Model Checking

The Model Checking Problem:

M
?⊧ p

I.e., is a given finite structure M a model for a given temporal logic formula p?

I.e., does a given implementation M satisfy the given temporal logic specification p?

The model checking problem for propositional temporal logics is decidable.

The model checking problem for PLTL(F,X) is PSPACE-complete.

The model checking problem for PLTL(F) ist NP-complete.

The model checking problem for CTL∗ is PSPACE-complete.

The model checking problem for CTL is solvable in deterministic polynomial time.

A CTL Model Checker: SMV

Developed since 1992 at Carnegie
Mellon University

OBDD-based symbolic model checking
for CTL

Finite datatypes: Booleans,
enumeration types, finite arrays

Model description: Arbitrary
propositional-logic formulae allowed

Safe model description: Parallel
assignments

Original motivation: hardware
description

MODULE main
VAR

request : boolean;
status : {ready, busy};

ASSIGN
init (status ) := ready;
next(status ) :=

case
request : busy;
1 : {ready, busy};

esac ;
SPEC

AG(request → AF status=busy)

SMV Example from [Huth, Ryan]: Mutual Exclusion

Two processes, each with three states: “n”: non-critical, “t”: trying, “c”: critical.
First protocol:
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1    2
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Safety Φ1 ∶≡ A G ¬(c1 ∧ c2)
Liveness Φ2 ∶≡ A G (t1⇒A F c1)
Non-blocking Φ3 ∶≡ A G (n1⇒E X t1)
No strict sequencing Φ4 ∶≡ E F (c1 ∧E [c1 U (¬c1 ∧E [¬c2 U c1])])

First Translation into SMV Input Language
MODULE main
VAR

p1 : {n, t , c };
p2 : {n, t , c };

ASSIGN
init (p1) := n;
init (p2) := n;

TRANS
(next(p2) = p2 & ((p1 = n → next(p1) = t ) &

(p1 = t → next(p1) = c) &
(p1 = c → next(p1) = n ))) |

(next(p1) = p1 & ((p2 = n → next(p2) = t ) &
(p2 = t → next(p2) = c) &
(p2 = c → next(p2) = n )))

TRANS next(p1) = c → next(p2) ≠ c

SPEC AG !(p1=c & p2=c)
SPEC AG (p1=t → AF p1=c)
SPEC AG (p1=n → EX p1=t)
SPEC EF (p1=c & E[p1=c U (p1≠c & E[ p2≠c U p1=c])])

SMV Output
−− specification AG (!(p1 = c & p2 = c)) is true
−− specification AG (p1 = t → AF p1 = c) is false
−− as demonstrated by the following execution sequence
state 1.1:
p1 = n, p2 = n

−− loop starts here −−
state 1.2:
p1 = t

state 1.3:
p2 = t

state 1.4:
p2 = c

state 1.5:
p2 = n

−− specification AG (p1 = n → EX p1 = t) is true
−− specification EF (p1 = c & E(p1 = c U (p1 ≠ c & E(p2 ... is true

Mutual Exclusion — continued

Safety Φ1 ∶≡ A G ¬(c1 ∧ c2)
Liveness Φ2 ∶≡ A G (t1⇒A F c1)
Non-blocking Φ3 ∶≡ A G (n1⇒E X t1)
No strict sequencing Φ4 ∶≡ E F (c1 ∧E [c1 U (¬c1 ∧E [¬c2 U c1])])
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That can even be synthesised from the specification!



Two Different Model Concepts

Logic Toys

Think: “implementation satisfies specifica-
tion”

“model airplane”

Context: a vocabulary / signature / API dec-
laration

(air transport) domain knowledge

What is a
model of X?

a structure/implementation that
satisfies specification X

some smaller/simpler/more-abstract
version of airplane/system X

(useful where an implementation of
X is needed)

“looks like X, may or may not fly like
X”

Important
derived
concepts

Model checking “Model-driven engineering” (MDE)

Reading More about Temporal Logics

E. Allen Emerson: Temporal and Modal Logic, pages 995–1072 of Jan van Leeuwen
(ed.): Handbook of Theoretical Computer Science, Volume B: Formal Models and
Semantics, Elsevier Science Publishers B. V., 1990
https://doi.org/10.1016/B978-0-444-88074-1.50021-4

Thode Library Bookstacks: QA 76 .H279 1990

“Post-print”? linked on Wikipedia:
https://profs.info.uaic.ro/~masalagiu/pub/handbook3.pdf

Michael R. A. Huth and Mark D. Ryan: Logic in Computer Science, Modelling and
Reasoning about Systems, 2nd edition, Cambridge University Press 2004,

Thode Library Bookstacks: QA 76.9 .L63H88 2004
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Part 1: Frama-C and ACSL

Frama-C: https://www.frama-c.com/

Frama-C is an open-source extensible and collaborative platform dedicated to source-
code analysis of C software. The Frama-C analyzers assist you in various source-code-
related activities, from the navigation through unfamiliar projects up to the certification
of critical software.

Platform with multiple plug-ins

Plug-in for total correctness proofs: WP

Specification language: ACSL “ANSI C Specification Language”
Similar to JML
Based on first-order predicate logic
Not all ACSL features are currently supported by Frama-C and WP

2024 Book: “Guide to Software Verification with Frama-C: Core Components, Usages,
and Applications” https://link.springer.com/book/10.1007/978-3-031-55608-1

WP tutorial: https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf

Frama-C and ACSL — https://www.frama-c.com/

Frama-C: An industrially-used framework for C code analysis and verification
Delegates “simple” proofs to external tools, mostly Satisfiability-Modulo-Theories
solvers (e.g., Z3)
Practical Program Proof = Verification Condition Generation (VCG) + SMT checking

ACSL: ANSI-C Specification Language
Similar to the JML — Java Modelling Language
But Java is more complex:
Statements that can raise exceptions need additional postconditions for those.
ACSL “is” standard first-order predicate logic in C syntax.
ACSL allows definition of inductive datatypes
— natural abstractions for specification, but rather clumsy in ACSL

— From discrete math to C: A big gap to bridge!

ACSL Function Contracts
Overall program correctness is based on function contracts, mainly:

“requires”: Procedure call precondition
“assigns”: Global variables that may be updated
(Much more economical that having pre- and post-conditions x = x0 for each global
variable x that must not be assigned)
“ensures”: Procedure call postcondition
May refer to /result for the return value.

Contracts of exported functions are part of the module interface, and therefore should be
in the module interface file (*.h).

all zeros.h:

/*@ requires n ≥ 0 ∧ \valid(t + (0.. n−1));
assigns \nothing;
ensures \result ≠ 0 ⇔ (∀ integer j ; 0 ≤ j < n ⇒ t [ j ] ≡ 0);

*/
int all_zeros (int *t , int n);

ACSL Loop Annotations

Support infrastructure for the total-correctness While rule:

{ B ∧ Q ∧ T = t0 } C { dom ‘B’ ∧ Q ∧ T < t0 } B ∧ Q ⇒ T > 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
“loop invariant Q”: Property always true in the following loop

true at loop entry, at each loop iteration, at loop exit
usually contains a generalisation of the post-condition
may need to contain additional “sanity” conditions

“loop assigns footprint”: What may be assigned to within the loop

“loop variant T”: To prove termination:
Integer metric T that is strictly decreasing at each iteration
and bounded by 0

all_zerosall zeros.c:

/*@ requires n ≥ 0 ∧ \valid(t + (0.. n−1));
assigns \nothing;
ensures \result ≠ 0 ⇔ (∀ integer j ; 0 ≤ j < n ⇒ t [ j ] ≡ 0);

*/
int all_zeros (int *t , int n) {

int k=0;
/*@ loop invariant 0 ≤ k ≤ n;

loop invariant ∀ integer j ; 0 ≤ j < k ⇒ t [ j ] ≡ 0;
loop assigns k;
loop variant n − k;

*/
while(k < n){

if ( t [k] ≠ 0)
return 0;

k++;
}
return 1;

}

findMax Attempt 1findMax1.c:

/*@ requires n > 0;
requires \valid(a + (0 .. n − 1));
ensures ∀ integer i ; 0 ≤ i < n ⇒ \result ≥ a[ i ];
ensures ∃ integer i ; 0 ≤ i < n ⇒ \result ≡ a[ i ];

*/
int findMax(int n, int a []) {

int i ;
/*@ loop invariant ∀ integer j ; 0 ≤ j < i ⇒ a[ j ] ≡ 0;

loop invariant 0 ≤ i ≤ n;
loop variant n − i ;

*/
for( i = 0; i < n; i++) a[ i ] = 0;
return 0;

}

frama-c-gui -wp findMax1.c

frama-c -wp findMax1.c

frama-c-gui -wp -wp-rte findMax1.c

frama-c -wp -wp-rte findMax1.c

“RTE”: Run-time exceptions (include undefined behaviour)

The findMax Attempt 1afindMax1a.c:

/*@ requires n > 0;
requires \valid(a + (0 .. n − 1));
ensures ∀ integer i ; 0 ≤ i < n ⇒ \result ≥ a[ i ];
ensures ∃ integer i ; 0 ≤ i < n ⇒ \result ≡ a[ i ];

*/
int findMax(int n, int a []) {

int i ;
/*@ loop invariant ∀ integer j ; 0 ≤ j < i ⇒ a[ j ] ≡ 0;

loop invariant 0 ≤ i ≤ n;
loop assigns i , a[0 .. n − 1];
loop variant n − i ;

*/
for( i = 0; i < n; i++) a[ i ] = 0;
return 0;

}



Reconsidering the findMax Specification

/*@ requires n ≥1;
requires \valid_read(a + (0 .. n − 1));
ensures ∀ integer i ; 0 ≤ i < n ⇒ a[ i ] ≤ \result;
ensures ∃ integer i ; 0 ≤ i < n ∧ a[ i ] ≡ \result;
assigns \nothing;

*/
int findMax(int n, int a []);

“requires \valid_read(a + (0 .. n − 1))” is necessary for array access
(pointer dereference)

“assigns \nothing” documents that findMax must not have memory side-effects

What if we wish to replace “requires n ≥1” with “requires n ≥0”?

“ensures ∃ integer i ; 0 ≤ i < n ∧ a[ i ] ≡ \result” would be unsatisfiable for
“n ≡ 0”!

A different specification for that case is needed: findMax then has two distict
behaviours, that can be specified separately:

“ACSL by Example”: The max_element Algorithm — Specificationmax element.h:

#include "typedefs.h"
/*@ requires valid: \valid_read(a + (0.. n−1));

assigns \nothing;
ensures result : 0 ≤ \result ≤ n;

behavior empty:
assumes n ≡ 0;
assigns \nothing;
ensures result: \result ≡ 0;

behavior not_empty:
assumes 0 < n;
assigns \nothing;
ensures result: 0 ≤ \result < n;
ensures upper: ∀ integer i ; 0 ≤ i < n ⇒ a[ i ] ≤ a[\result ];
ensures first : ∀ integer i ; 0 ≤ i < \result ⇒ a[ i ] < a[\result ];

complete behaviors; disjoint behaviors;
*/
size_type max_element(const value_type* a, size_type n);

#endif /* MAX_ELEMENT_H_INCLUDED */“ACSL by Example”: The max_element Algorithm — Implementationmax element.c:

#include "max_element.h"

size_type max_element(const value_type* a, size_type n)
{ if (0u < n) {

size_type max = 0u;
/*@ loop invariant bound: 0 ≤ i ≤ n;

loop invariant max: 0 ≤ max < n;
loop invariant upper: ∀ integer k; 0 ≤ k < i ⇒ a[k] ≤ a[max];
loop invariant first : ∀ integer k; 0 ≤ k < max ⇒ a[k] < a[max];
loop assigns max, i ;
loop variant n−i;

*/
for (size_type i = 1u; i < n; i++) {

if (a[max] < a[i ]) { max = i; }
}
return max;

}
return n;

}

“ACSL By Example” — Conventions
SizeValueTypes.h:

#ifndef SIZEVALUETYPES

typedef int value_type;
typedef unsigned int size_type;
typedef int bool;
#define false 0
#define true 1

#define SIZEVALUETYPES
#endif

IsValidRange.h:

#ifndef ISVALIDRANGE

#include "SizeValueTypes.h"
/*@ predicate IsValidRange(value_type* a, integer n)

= (0 ≤ n) ∧ \valid(a+(0.. n−1));
*/

#define ISVALIDRANGE
#endif

BISLs — See Also. . .
“BISL”: “Behavioural Interface Specification Language”

ACSL — supported by Frama-C
JML: The Java Modeling Language https://www.cs.ucf.edu/~leavens/JML/
KeY: “The core feature of KeY is a theorem prover for Java Dynamic Logic based on a
sequent calculus.” https://www.key-project.org/
SPARK 2014 — version of Ada with verification support
http://www.adacore.com/about-spark
Dafny: “designed as a verification-aware programming language, requiring
verification along with code development. [...] The general proof framework is that of
Hoare logic.” https://dafny.org/

Eiffel: First programming language supporting “Design by Contract” (1986)
LiquidHaskell: “refines Haskell’s types with logical predicates that let you enforce
important properties at compile time.”
http://ucsd-progsys.github.io/liquidhaskell/
Deal: “A Python library for design by contract”
https://deal.readthedocs.io/basic/verification.html
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Part 1: Loop Variants (demonstrated in ACSL)

ACSL Loop Annotations
Recall the total correctness While rule:

{ B ∧ Q } C {dom ‘B’ ∧ Q} {B ∧ Q ∧ T = t0 } C {T < t0 } B ∧ Q ⇒ T ≥ 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
“loop invariant Q”: Property “always” true in the following loop:

true at loop entry, at each loop iteration, at loop exit
usually contains a generalisation of the post-condition
may need to contain additional “sanity” conditions

“loop assigns footprint”: What may be assigned to within the loop
“loop variant T”: To prove termination:

Integer metric T that is strictly decreasing at each iteration and bounded by 0
Conceptually, this establishes a well-founded relation on the states encountered at
start and end of loop body executions.
s1 < s2 ≡ JT K s1 > JT K s2 — (using J K also for expression semantics evalV)
Any expression T for which the premises can be proven is acceptable.
Some expressions T may make these proofs easier than others. . .

Loop Variants 1{ B ∧ Q } C {dom ‘B’ ∧ Q} {B ∧ Q ∧ T = t0 } C {T < t0 } B ∧ Q ⇒ T ≥ 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
//@ assigns \nothing;
void f () {

int i = 10;
/*@ loop assigns i ;

loop variant i ; // `T`
*/

while (i > 0)
{

i−−;
}

}

T needs to be some upper bound for the “number of iterations still remaining”

Loop Variants 2{ B ∧ Q } C {dom ‘B’ ∧ Q} {B ∧ Q ∧ T = t0 } C {T < t0 } B ∧ Q ⇒ T ≥ 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
//@ assigns \nothing;
void f () {

int i = 10;
/*@ loop assigns i ;

loop variant i ; // `T`
*/

while (i ≥ 0)
{

i−−;
}

}

ACSL only requires B ∧ Q ⇒ T ≥ 0
ACSL def., section “Loop Variants”:

“its value at the beginning of the iteration must be nonnegative.”

Loop Variants 3{ B ∧ Q } C {dom ‘B’ ∧ Q} {B ∧ Q ∧ T = t0 } C {T < t0 } B ∧ Q ⇒ T ≥ 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
//@ assigns \nothing;
void f () {

int i = 10;
/*@ loop assigns i ;

loop variant i ; // `T`
*/

while (i ≥ −1)
{

i−−;
}

}

[wp] [Alt−Ergo ] Goal typed_f_loop_variant_positive : Timeout (Qed:1ms) (10s)

We need B ∧ Q ⇒ T ≥ 0 !



Loop Variants 4{ B ∧ Q } C {dom ‘B’ ∧ Q} {B ∧ Q ∧ T = t0 } C {T < t0 } B ∧ Q ⇒ T ≥ 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
//@ assigns \nothing;
void f () {

int i = 10;
/*@ loop assigns i ;

loop variant i ; // `T` */
while (i > 0) {

if ( i % 2 ≡ 0) { i−−; }
else { i = i − 3; }

}
}

T needs to be some upper bound for the “number of iterations still remaining”

T does not need to be a tight upper bound!

Simpler variants may have “faster proofs”

Loop Variants 5{ B ∧ Q } C {dom ‘B’ ∧ Q} {B ∧ Q ∧ T = t0 } C {T < t0 } B ∧ Q ⇒ T ≥ 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
//@ assigns \nothing;
void f () {

int i = 10;
/*@ loop assigns i ;

loop variant i / 2; // `T` */
while (i > 0) {

if ( i % 2 ≡ 0) { i−−; }
else { i = i − 3; }

}
}

T needs to be some upper bound for the “number of iterations still remaining”

T does not need to be a tight upper bound!

More complex variants may have “slower proofs”, or time-outs. . .

Loop Variants 6{ B ∧ Q } C {dom ‘B’ ∧ Q} {B ∧ Q ∧ T = t0 } C {T < t0 } B ∧ Q ⇒ T ≥ 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
#define N 1000
//@ assigns \nothing;
void f () {

int i = 0;
/*@ loop assigns i ;

loop variant N − i ; // `T`
*/

while (i ≤ N)
{

i++;
}

}

T needs to be decreasing, even if your counters are increasing!

Loop Variants 7{ B ∧ Q } C {dom ‘B’ ∧ Q} {B ∧ Q ∧ T = t0 } C {T < t0 } B ∧ Q ⇒ T ≥ 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
//@ assigns \nothing;
void f () {

int i = 100, k = 200;
/*@ loop assigns i , k;

loop variant i + k; // `T`
*/

while (i ≥ 0 ∧ k ≥ 0)
{

if ( ( i + k) % 2 ≡ 0 ) { i−−; }
else { k−−; }

}
}

If your loop is not a “plain for-loop”, several variables may be involved in the
variant.

Loop Variants 8{ B ∧ Q } C {dom ‘B’ ∧ Q} {B ∧ Q ∧ T = t0 } C {T < t0 } B ∧ Q ⇒ T ≥ 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
//@ assigns \nothing;
void f () {

int i = 0, k = 10;
/*@ loop assigns i , k;

loop invariant 0 ≤ i ≤ k + 1 ∧ 0 ≤ k;
loop variant k * (k + 1) + i ; // `T`

*/
while (k > 0)
{

if ( i > 0 ) { i−−; }
else { i = k; k−−; }

}}

Invariants may be needed to contribute to provability of the variant.
Finding appropropriate variants can be tricky. . .

Loop Variants 9{ B ∧ Q } C {dom ‘B’ ∧ Q} {B ∧ Q ∧ T = t0 } C {T < t0 } B ∧ Q ⇒ T ≥ 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
//@ assigns \nothing;
void f () {

int i = 0, k = 10;
/*@ loop assigns i , k;

loop invariant 0 ≤ i ≤ (k + 1) * (k + 1) ∧ 0 ≤ k;
loop variant k * k * (k + 1) + i ; // `T`

*/
while (k > 0)
{

if ( i > 0 ) { i−−; }
else { i = k * k; k−−; }

}
}

. . .
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Part 2: Graphs, Subgraphs, Lattices

Graphs

Definition: A graph is a tuple ⟨V,E,src, trg⟩ consisting of
a set V of vertices or nodes
a set E of edges or arrows
a mapping src ∶ E ○Ð→ V that assigns each edge its source node
a mapping trg ∶ E ○Ð→ V that assigns each edge its target node

Example graph:

⟨ {x,y, z}, {a, b, c,d}, {⟨a,x⟩, ⟨b,y⟩, ⟨c, z⟩, ⟨d,x⟩}, {⟨a,y⟩, ⟨b, z⟩, ⟨c, z⟩, ⟨d,y⟩} ⟩
x y z

a

d

b

c

Well-definedness condition expanded: Dom src = E ∧ Ran src ⊆ V ∧ univalent src∧ Dom trg = E ∧ Ran trg ⊆ V ∧ univalent trg

A graph implementation may guarantee univalence via choice of data structure (e.g.,
array), leaving the other conditions still to be verified.

Subgraphs, Induced Subgraphs
Definition: Let two graphs G1 = ⟨V1,E1,src1, trg1⟩ and G2 = ⟨V2,E2,src2, trg2⟩ be given.

G1 is called a subgraph of G2 iff V1 ⊆ V2 and E1 ⊆ E2 and src1 ⊆ src2 and trg1 ⊆ trg2.

Def. and Theorem: The subgraph relation is an order on graphs.

Def. and Theorem: Given a subset V0 ⊆ V of the vertex set of graph G = ⟨V,E,src, trg⟩,
define E0 and G0 by:

E0 = E∩Dom (src▷V0)∩Dom (trg▷V0)= E∩src⌣ (∣V0 ∣)∩ trg⌣ (∣V0 ∣) , the edges incident with only nodes in V0

G0 = ⟨V0, E0, E0 ◁ src, E0 ◁ trg⟩
x y z

a

d

b

c

a ∈ trg⌣ (∣ {y, z} ∣) ,
but a ∉ src⌣ (∣ {y, z} ∣)

Then: G0 is a well-defined graph.
G0 is a subgraph of G (by cobnstruction).
G0 is the largest subgraph of G with node set V0.
G0 is called the subgraph of G induced by V0.

Facts about Subgraphs
Definition: Let two graphs G1 = ⟨V1,E1,src1, trg1⟩ and G2 = ⟨V2,E2,src2, trg2⟩ be given.

G1 is called a subgraph of G2 iff V1 ⊆ V2 and E1 ⊆ E2 and src1 ⊆ src2 and trg1 ⊆ trg2.
We write SubgraphG for the set of all subgraphs of G.
For a given graph G, we write G1 ⊑G G2 if both G1 and G2 are subgraphs of G, and G1
is a subgraph of G2.

Theorem: ⊑G is an ordering on SubgraphG.

Theorem: ⊑G has greatest element ⊺ = G and least element � = ⟨{},{},{},{}⟩.
Theorem: ⊑G has binary meets defined by intersection.

Theorem: ⊑G has binary joins defined by union.

Theorem: ⊑G has pseudo-complements, but not complements.

x y z

a

d

b

c

The subgraph induced by {y, z} has the subgraph induced by {x} as pseudo-complement,
but their union is not the whole graph.



Pseudo- and Semi-Complements of a Subgraph

Pseudo-complement of S: The largest X such that X∩S = �:

Semi-complement of S: The smallest X such that X∪S = ⊺:

Joins and Meets

Given an order ⊑, z is an “upper bound” of two elements x and y iff x ⊑ z ∧ y ⊑ z
Given an order ⊑, the two elements x and y have j as “join” or “least upper bound”
(lub), iff ∀ z ● j ⊑ z ≡ x ⊑ z ∧ y ⊑ z
The order ⊑ “has binary joins” if for any two elements, there is a join — see
“Characterisation of ∪” for the inclusion order ⊆
Given an order ⊑, the set S of elements has j as “join” or “least upper bound” (lub),
iff ∀ z ● j ⊑ z ≡ (∀x x ∈ S ● x ⊑ z)
The order ⊑ “has arbitrary joins” if for any set of elements, there is a join — see
“Characterisation of ⋃”

Given an order ⊑, the set S of elements has m as “meet” or “greatest lower bound”
(glb), iff ∀ z ● z ⊑ m ≡ (∀x x ∈ S ● z ⊑ x)
The order ⊑ “has binary meets” if for any two-element set, there is a meet — see
“Characterisation of ∩”
The order ⊑ “has arbitrary meets” if for any set of elements, there is a meet.

Lattices
Definition: A lattice is a partial order with binary meets and joins.

Examples:
For every graph G, its subgraphs, that is, ⟨SubgraphG,⊑G⟩with ⊓G and ⊔G⟨Z,≤⟩with ↓ and ↑⟨Z,≥⟩with ↑ and ↓⟨N,≤⟩with ↓ and ↑⟨N, ∣⟩with gcd and lcm⟨℘A,⊆⟩with ∩ and ∪
Equivalence relations on A ordered wrt. ⊆, with ∩ and (E1 ∪E2)∗

Algebraic Definition: A lattice ⟨A,⊓,⊔⟩ consists of a set A with two binary operations ⊓,⊔ on A such that:⊓ and ⊔ each are idempotent, symmetric, and associative
The absorption laws hold: x ⊔ (x ⊓ y) = x = x ⊓ (x ⊔ y)

A Boolean lattice ⟨A,⊓,⊔,�,⊺,∼ ⟩ in addition has least and greatest elements � and ⊺,
and a unary complement operation ∼ satisfying ∼ x ⊓ x = � and ∼ x ⊔ x = ⊺.
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Part 1: Graph Homomorphisms, Categories

Recall: Graphs
Definition: A graph is a tuple ⟨V,E,src, trg⟩ consisting of

a set V of vertices or nodes
a set E of edges or arrows
a mapping src ∶ E ○Ð→ V that assigns each edge its source node
a mapping trg ∶ E ○Ð→ V that assigns each edge its target node

Example graph:

⟨ {x,y, z}, {a, b, c,d}, {⟨a,x⟩, ⟨b,y⟩, ⟨c, z⟩, ⟨d,x⟩}, {⟨a,y⟩, ⟨b, z⟩, ⟨c, z⟩, ⟨d,y⟩} ⟩

x y z

a

d

b

c

Graphs as Structures over Signature sigGraph

A signature is a tuple Σ = (S,F ,R) consisting of
a set S of sorts
a set F of function symbols f ∶ s1 ×⋯ × sn → t
a setR of relation symbols r ∶ s1 ×⋯ × sn ↔ t

A Σ-structure A consists of:
for every sort s ∶ S , a carrier sA, and
for every function symbol f ∶ s1 ×⋯ × sn → t a mapping fA ∶ sA1 ×⋯ × sAn → tA.
for every relation symbol r ∶ s1 ×⋯ × sn ↔ t a relation rA ∶ sA1 ×⋯ × sAn ↔ tA.

G ∶≡ ⟨ sorts: V,E
ops: src, trg ∶ E → V⟩

The signature graph of sigGraph: E src-V-
trg

Signatures, as mathematical objects, are of a similar kind as graphs!

Different Kinds of Graphs as Structures for Different Signatures
Graphs:G ∶≡ ⟨ sorts: N ,E

ops: src, trg ∶ E → N⟩
x y z

a

d

b

c

Node-labelled edge-weighted graphs:LWG ∶≡ ⟨ sorts: N ,E
ops: src, trg ∶ E → N

nLabel ∶ N → L
eWeight ∶ E → N⟩

Q A Q

1

2

1

2

Undirected hypergraphs:HG ∶≡ ⟨ sorts: N ,E
ops: incident ∶ E ↔ N⟩

94 5. Graphs: Associated Relation, Incidence, Adjacency 

p point-connecting :{=::} pc mup(M)L 
{=::} (M n MI)Tp"l= 0 {=::} r(p) ~ 2 
{=::} P is incident with at least 2 points. 0 

The proof of the equivalence of the various statements above follows from Defi
nition 4.2.8 and Propositions 4.2.9-4.2.12. Figure 5.3.3 contains examples of the 
special points and hyperedges just introduced. 

We now use Prop. 4.2.12 to characterize hypergraphs all of whose points are 
edge-connecting, and all of whose edges are point-connecting. 

5.3.6 Proposition. In a hypergraph with incidence M the following holds: 

i) MTI=L {=::} Every point is edge-connecting. 
MI=L {=::} Every edge is point-connecting. 

ii) MT c MTI {=::} There are no peaks. 
MCMI {=::} There are no drops. 

iii) MT=MTI {=::} Every point is a peak. 
M=MI {=::} Every edge is a drop. 0 

Furthermore, in a hypergraph the point set decomposes into free points MT L, 
peaks unp (MT)L, and edge-connecting points mup (MT)L. Analogously, the set 
of hyperedges decomposes into empty hyperedges ML, drops unp (M)L, and 
point-connecting edges mup (M)L. In Fig. 5.3.3 these decompositions are visu
alized. 

~m 
ML 

empty 
edges 

e 

m 
unp(M)L 

drops 

n-----ob 
p 

m ~m 
mup(M)L MTL 

point- free connecting points edges 

abc d e 

; (~ ~ i ~ :0
1

) 
s 0 0 0 0 

M 

m m 
unp(MT)L mup(MT)L 

peaks 
edge-

connecting 
points 

Fig. 5.3.3 Peaks, drops, connecting points and edges 

We want to carry our analysis one step further and introduce the following na
tions which will be useful for the treatment of matchings and covering problems. 

Graph Homomorphisms

Definition: Let two graphs G1 = ⟨V1,E1,src1, trg1⟩ and G2 = ⟨V2,E2,src2, trg2⟩ be given.
A pair Φ = ⟨ΦV,ΦE⟩ is called a graph homomorphism from G1 to G2 iff

ΦV ∈ V1 ○Ð→ V2 and ΦE ∈ E1 ○Ð→ E2

ΦE #src2 = src1 #ΦV and ΦE # trg2 = trg1 #ΦV

Homomorphisms are “structure-preserving mappings”.
(Mappings; Total and univalent)

Graph homomorphisms can:

Identify different structure elements
— if not injective

Not cover the target completely
— if not surjective
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d
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ca

1G
2G

Graph Homomorphisms Compose
Definition: Let two graphs G1 = ⟨V1,E1,src1, trg1⟩ and G2 = ⟨V2,E2,src2, trg2⟩ be given.
A pair Φ = ⟨ΦV,ΦE⟩ is called a graph homomorphism from G1 to G2 iff

ΦV ∈ V1 ○Ð→ V2 and ΦE ∈ E1 ○Ð→ E2

ΦE #src2 = src1 #ΦV and ΦE # trg2 = trg1 #ΦV

Definition and theorem: Let three graphs G0, G1, and G2 be given.
Let Φ = ⟨ΦV,ΦE⟩ be a graph homomorphism from G0 to G1 and Ψ = ⟨ΨV,ΨE⟩ be a graph
homomorphism from G1 to G2.
Then their composition Φ #Ψ = ⟨ΦV #ΨV,ΦE #ΨE⟩ is a graph homomorphism from G0 to G2.
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Definition and theorem: The identity graph homomorphism I = ⟨id V, id E⟩ is
well-defined, and is “the” identity for graph homomorphism composition.

Graph Homomorphisms Compose — and Form a Category

Graph homomorphisms have
source and target graphs,
associative composition # of consecutive homomorphisms,
identity homomorphisms I (satisfying the identity laws).

That is, graphs with graph homomorphisms form a category.

In particular:
Ψ is an inverse of Φ iff Φ #Ψ = I and Ψ #Φ = I.
Φ = ⟨ΦV,ΦE⟩ has an inverse iff it is bijective, that is, iff both ΦV and ΦE are bijective.
The inverse of Φ is then ⟨ΦV

⌣,ΦE
⌣⟩.

(Category theory is the source of the words “functor”, “monad”, “arrow”, etc. in the
context of Haskell.)



Categories
A category C consists of:

a collection of objects
for every two objects A and B a homset containing morphisms f ∶ A→ B
associative composition “#” of morphisms, defined for A f-B g-C, with(f #g) ∶ A→ C
for every object A an identity morphism IA which is both a right and left unit for
composition.

In category C, morphisnm g ∶ B → A is called inverse of f ∶ A→ B iff f #g = IA and g # f = IB.

If f has an inverse, then f is called an isomorphism or just iso.

Example categories: Sets with mappings
Sets with partial functions
Sets with relations
Graphs with graph homomorphisms
Lattices with lattice homomorphisms
Categories with functors

Categorial Graph Transformation
Graphs with graph homomorphisms form a category — category theory is re-usable
theory!

Using category-theoretical concepts, various graph transformation mechanisms are
defined; these are used for system modelling and model transformation.

Rule LHS

Application graph

1.2 The Main Ideas of the Algebraic Graph Transformation Approach 13

(PO1) (PO2)

L K R

G D H

(1) (1) (1)

(1) (1) (1)

(2) (2) (2)

(2) (2) (2)

(3)

(4)

(5)

(3)

(4)

(5)

(6) (7) (6) (7) (6) (7)

Fig. 1.4. Example of DPO graph transformation

between the boxes are graph morphisms. Moreover, the gluing construction of
graphs can be considered as an algebraic quotient algebra construction. This
algebraic view of graphs and graph transformations is one of the main ideas of
the algebraic graph transformation approach introduced in [EPS73, Ehr79].

1.2.3 From the DPO to the SPO Approach

As pointed out already, the gluing constructions in the algebraic approach are
pushouts in the category Graphs based on (total) graph morphisms. On the
other hand, the production p = (L ← K → R) shown in Fig. 1.4 can also be
considered as a partial graph morphism p : L → R with domain dom(p) = K.
Moreover, the span (G ← D → H) can be considered as a partial graph
morphism s : G → H with dom(s) = D. This leads to the diagram in Fig.
1.5, where the horizontal morphisms are partial and the vertical ones are total
graph morphisms. In fact, Fig. 1.5 is a pushout in the category PGraphs of
graphs and partial graph morphisms and shows that the graph transformation
can be expressed by a single pushout in the categoryPGraphs. This approach
was initiated by Raoult [Rao84] and fully worked out by Löwe [Löw90], leading
to the single-pushout approach.

From the operational point of view, the SPO approach differs in one main
respect from the DPO approach, which concerns the deletion of context graph
elements during a graph transformation step. If the matchm : L → G does not
satisfy the gluing condition with respect to a production p = (L ← K → R),
then the production is not applicable in the DPO approach. But it is applicable
in the SPO approach, which allows dangling edges to occur after the deletion
of L\K from G. However, the dangling edges in G are also deleted, leading to
a well-defined graph H .

Rule RHS

Result graph

Pushouts — A Typical Categorial “Universal Construction”

Pushouts can be seen as a generalisation of unions/joins:

Recall “Characterisation of ∪”:

B∪C is union of sets B and C iff

∀ X ● B ⊆ X∧C ⊆ X ≡ B∪C ⊆ X

{} ⊆ - C

⊆
?

⊆
?

B ⊆ -B∪C

A
A
A
A
A
A
A
A
AAU

⊆
HHHHHHHHHHj

⊆
p p p p p p p p p p p p p p p p p p pR
⊆

X

⟨ R-D S� ⟩ is pushout of span “B P� A Q-C” iff

P #R = Q #S ∧ ∀ ⟨ R′-D′ S′� ⟩ P #R′ = Q #S′
● ∃ Y ∶ D→ D′ ● R #Y = R′ ∧ S #Y = S′

A Q - C
P

?

S

?B R - D
A
A
A
A
A
A
A
A
AAU

S′
HHHHHHHHHHj

R′
p p p p p p p p p p p p p p p p p p pR

Y

D′

Pushouts of Graph Homomorphisms: “Gluing”

A Q - C
P

?

S

?B R - D
A
A
A
A
A
A
A
A
AAU

S′
HHHHHHHHHHj

R′
p p p p p p p p p p p p p p p p p p pR

Y

D′

Q

P

R

S

Such a pushout can be understood as:

gluing B and C together “along the interface P� A Q-”.

Double-Pushout Rewriting

Rule: L ΦL� G ΦR - R

Redex:

L ΦL� G ΦR - R
XL

?A

Rewriting step:

L ΦL� G ΦR - R
XL

?

PO Ξ

?

PO
?

XR

A ΨL� H ΨR - B

Example Double-Pushout Rewriting Step: Rule

PhiL PhiR

Example Double-Pushout Rewriting Step: Redex

PhiRPhiL

ChiL

Example Double-Pushout Rewriting Step: Host

PsiL

Xi

PhiRPhiL

ChiL

Example Double-Pushout Rewriting Step: Result

PsiL

ChiRXi

PhiRPhiL

ChiL

PsiR

The Power of Double-Pushout Rewriting

easy to understand

easy to implement

can

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
delete

identify
add

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
precisely specified items

cannot duplicate or delete loosely specified items
— no “subgraph variables”

DPO graph rewriting is the most widely used graph transformation formalism.

Describing evolution/execution of systems modelled as graphs
Defining model transformations (e.g., of UML diagrams) for system development

Categorial approaches are more likely to interact usefully with graph semantics than
“node-label-controlled” etc. low-level graph transformation approaches.



DPO Rule for Generating Sierpinski Triangles
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The Power of Gluing

Gluing via pushouts (or more general colimits) works in many intersting categories

A component specification consists of a signature and axioms

Such component specifications form a category; specification homomorphism can
structure complex specifications:

class. The axioms of the colimit are obtained by translating and collecting each axiom

of A, B, and C.

Example: Suppose that we want to build up the theory of partial orders by composing

simpler theories.

spec BinRel is

sort E

op le : E;E ! Boolean

end-spec

�!

spec PreOrder is

import BinRel

axiom reexivity is x le x

axiom transitivity is

x le y ^ y le z =) x le z

end-spec

?

?

y

spec Antisymmetry is

import BinRel

axiom antisymmetry is

x le y ^ y le x =) x = z

end-spec

The pushout of Antisymmetry BinRel! PreOrder is isomorphic to the speci�-

cation for Partial-Order in Section 2.1. In detail: the morphisms are fE 7! E; le 7! leg

from BinRel to both PreOrder and Antisymmetry. The equivalence classes are then

ffE;E;Eg; fle; le; legg, so the colimit spec has one sort (which we rename E), and

one operator (which we rename le). Furthermore, the axioms of BinRel, Antisymmetry,

and PreOrder are each translated to become the axioms of the colimit. Thus we have

Partial-Order.

In the category of speci�cations, colimit acts as a kind of union operator: the pushout

collects the symbols of Antisymmetry and PreOrder where the morphisms fromBinRel in-

dicate which symbols are shared. The colimit has the universal property that it computes

the simplest such speci�cation.

Example: The pushout operation is also used to instantiate the parameter in a pa-

rameterized speci�cation. The binding of argument to parameter is represented by a

morphism. To form a speci�cation for bags of integers, we compute the pushout of

Bag  Triv ! Integer, where Bag  Triv is fE 7! Eg, and Triv ! Integer is

fE 7! Integerg.

Example: A speci�cation for sequences can be built up from Container, also via

pushouts. We can regard Container as parameterized on a binary operator

spec BinOp is

sort E

op bop : E;E ! E

end-spec

morphism Container-Parameterization : BinOp! Container is

fE 7! E; bop 7! joing

and we can de�ne a re�nement arrow that extends a binary operator to a semigroup:

7

Specification homomorphism can also be used for refinement —
this method is used for correct-by-construction software development

Refining Bags to Sets in Sorting [Smith 1998]

TRIV

SEQ
BAG

BAG+SEQ

LINEAR-ORDER

BAG+SEQ-CONV

BAG+SEQ-LinOrd

BAG+SEQ-over-LinOrd

TRIV

SEQ
BaS

BaS+SEQ

LINEAR-ORDER

BaS+SEQ-CONV

BaS+SEQ-LinOrd

BaS+SEQ-over-LinOrd

TRIV

BaS

TRIV

BAG

SEQ SEQ

SORTING

BaS-SORTING

Figure 5: Re�ning Bags to Seqs in Sorting

means that the pushout will translate the de�nitions too, so they remain de�ned after

translation. If some of the auxiliary sorts or operators on the datatype are not in the

image of the classi�cation arrow, then the pushout will simply translate whatever con-

straints there are on such sorts and operators. If the constraints are de�nitions, then

the translation will be de�nitional, otherwise the symbols will be constrained but not

necessarily uniquely, and further re�nement will be required later.

This datatype re�nement mainly serves to bring the spec closer to the programming

language level. Other datatype re�nements have a more dramatic e�ect by re�ning to

a complicated data structure that e�ciently implements the more abstract type. The

same machinery applies. Leverage on the programming task will be most apparent when

a relatively small domain speci�cation re�nes to a relatively large codomain spec { the

extra bits of information in the codomain are added to the user's spec essentially for

free once the classi�cation arrow has been constructed. Some examples would include

Boolean expressions re�ning to BDDs, and sets over a �xed �nite universe re�ning to bit

vectors or hash tables, and �nite relations re�ning to B-trees.

22

. . . as One Step in Correct-By-Construction Algorithm Development [Smith 1998]
re�nement (bags implemented as sequences), then an expression simpli�cation re�nement

is applied, and so on. The squares represent the application of library re�nements and

the main line of re�nement descends directly from Sorting.

Divide-and-Conquer-0-1-2

+3

��

Sorting

��

Divide-and-Conquer-0-1-2-scheme

+3

Sorting-Alg

1

��

BAG

ks

��

New-Expression

+3

��

Sorting-Alg

2

��

BAG-AS-SEQ

ks

Equational-Simpli�cation

+3

Sorting-Alg

3

��

:::

3.3.1. Sorting: Algorithm Design

Before algorithm design can be applying we must have a well-de�ned problem to solve.

Problem-Theory in Figure 2 expresses the abstract structure of a problem: given input

datum x : D, �nd a feasible solution z : R satisfying the problem requirement constraint:

O(x; z). We call the input datum x a problem instance; note that Problem-Theory is

intended to specify a function.

Suppose that the user �rst decides to apply a generic re�nement for divide-and-

conquer algorithms.

empty-seq

�

sort

//

_

empty-seq

�1

��

empty-seq

hi

�

id

//

hi

_

empty-seq

OO

singleton-seq(e)

�

sort

//

_

singleton-seq

�1

��

singleton-seq(e)

e

�

id

//

e

_

singleton-seq

OO

x

0

�

sorting

//

_

concat

�1

��

z

0

hx

1

; x

2

i

�

sorting�sorting

//

hz

1

; z

2

i

_

merge

OO

The principle of divide-and-conquer

is to solve small problem instances

by some direct means, and to solve

larger problem instances by decompos-

ing them, solving the pieces, and com-

posing the resulting solutions. The �g-

ure to the left shows a mergesort as

generalized kind of divide-and-conquer

with three cases. The bottommost

square shows the familiar divide-and-

conquer case: the input x

0

is decom-

posed into two subproblem instances,

x

1

and x

2

, which are solved to produce

z

1

and z

2

, which are in turn composed

to form solution z

0

. The decomposi-

tion operator here is loosely speci�ed

as the inverse of a constructor, concat.

The �rst two cases also have the decompose-solve-compose pattern where the decom-

position operator is the inverse of a constructor. The datum hi is the 0-tuple and it is

treated as the output of the inverse of a constant constructor; hi is the sole element of
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Part 2: Conclusion

Organisation

Extra TA office hours:

● Sunday, Dec. 8th, 1:00 to 4:00 p.m. — room TBA● Monday, Dec. 9th, 1:00 to 4:00 p.m. — room TBA

The final exam covers the whole course. Expect questions that combine several topics.

COMPSCI 2LC3 on Avenue and CALCCHECKWeb remains active throughout term 2.

Collected lecture slides will be posted under “General”.

Please fill in the course experience surveys for all your courses!

Ð→ mcmaster.bluera.com/mcmaster

Proofs — (Simplified) Inference Rules —- See LADM p. 133, “Using Z” ch. 2&3

“Natural Deduction” — A Presentation of Logic for Mathematical Study of Logic

P∧Q
P ∧-Elim1

P∧Q
Q ∧-Elim2

∀ x ● P
P[x ∶= E] Instantiation (∀-Elim)

P
P∨Q ∨-Intro1

Q
P∨Q ∨-Intro2

P[x ∶= E]∃ x ● P ∃-Intro

P⇒Q P
Q ⇒-Elim

P Q
P∧Q ∧-Intro P∀ x ● P ∀-Intro (prov. x not free

in assumptions)

⌜P⌝....
Q

P⇒Q ⇒-Intro
P∨Q

⌜P⌝....
R

⌜Q⌝....
R

R ∨-Elim
(∃x ● P)

⌜P⌝....
R

R ∃-Elim (prov. x not free
in R, assumptions)

About Natural Deduction
Example proof (using the inference rules as shown in Using Z):

⌜∃x ∶ a ● p⇒ q⌝[1] ⌜x ∈ a⌝[3] ⌜p⇒ q⌝[3] ⌜∀x ∶ a ● p⌝[2] ⌜x ∈ a⌝[3]
p ∀-elim

q ⇒-elim

∃x ∶ a ● q ∃-intro

∃x ∶ a ● q ∃-elim[3]
(∀x ∶ a ● p)⇒(∃x ∶ a ● q) ⇒-intro[2]

(∃x ∶ a ● p⇒ q) ⇒ ((∀x ∶ a ● p)⇒(∃x ∶ a ● q)) ⇒-intro[1]

Each formula construction C has:
Introduction rule(s): How to prove a C-formula?
Elimination rule(s): How to use a C-formula to prove something else?

Tactical theorem provers (Coq, Isabelle) provide methods to
(virtually) construct such trees piecewise from all directions
Several of the Natural Deduction inference rules correspond

to LADM Metatheorems or proof methods,
to CALCCHECK proof structures.



Writing Proofs
Natural deduction was designed as a variant of sequent calculus that closely
corresponds to the “natural” way of reasoning used in traditional mathematics.
As such, natural deduction rules constitute building blocks of proof strategies.
Natural deduction inference trees are not normally used for proof presentation.
CALCCHECK structured proofs are readable formalisations of conventional informal
proof presentation patterns.
If you wish to write prose proofs, you still need to get the right proof structure first
— think CALCCHECK!
For proofs, informality as such is not a value.
Rigorous (informal) proofs (e.g. in LADM)
strive to “make the eventual formalisation effort minimal”.
There is value to readable proofs, no matter whether formal or informal.
There is value to formal, machine-checkable proofs,
especially in the software context,
where the world of mathematics is not watching.

Strive for readable formal proofs!

Proofs for Software
Partial correctness: Verifying essential functionality
Total correctness: Verifying also termination
Absence of run-time errors imposes additional preconditions on commands
Termination is typically dealt with separately; it requires a well-founded
“termination order”.

These are supported by tools like Frama-C, VeriFast, Key, . . . :
Hoare calculus inference rules are turned into Verification Condition Generation
Many simple verification conditions can be proved using SMT solvers
(Satisfiability Modulo Theories) — Z3, veriT, . . .
More complex properties may need human assitance:
Proof assistants: Isabelle, Coq, PVS, Agda, . . .
Pointer structures require an extension of Hoare logic: Separation Logic

Industry has more and more formal methods jobs!
Legacy C/C++ code needs to be analysed for issues
Legacy C/C++ code bases are still growing. . .

Mathematical Programming Languages

Software is a mathematical artefact
Functional programming languages and logic programming languages aim to
make expression in mathematical manner easier

Among reasonably-widespread programming languages.
Haskell is “the most mathematical”

Dependently-typed logics (e.g., Coq, Lean, PVS, Agda) make it possible to express
mathematics in a more natural way than in first-order predicate logic:

For a matrix M ∶ R3×4, the element access M5,6 raises a type error
A simple graph (V,E) can consist of a type V and a relation E ∶ V ↔ V.

Dependently-typed programming languages (e.g., Agda, Idris)
contain dependently-typed logics — “proofs are programs, too”
make it possible to express functional specifications via the type
system — “formulae as types”: Curry-Howard correspondence
A program that has not been proven correct wrt. the
stated specification does not even compile.

Continued Use of Logical Reasoning
COMPSCI 2AC3 Automata and Computability
— formal languages, grammars, finite automata, transition relations, Kleene algebra!
acceptance predicates, . . .

COMPSCI 2SD3 Concurrent Systems Design
—correctness of concurrent programs, may use temporal logic

COMPSCI 2DB3 Databases
— n-ary relations, relational algebra; functional dependencies

COMPSCI 3MI3 Principles of Programming Languages
— Programming paradigms, including functional programming;
mathematical understanding of prog. language constructs, semantics

COMPSCI&SFWRENG 3RA3 Software Requirements
— Capturing precisely what the customer wants, formalisation

COMPSCI 3EA3 Software and System Correctness
— Formal specifications, validation, verification

COMPSCI 4FP3 Advanced Functional Programming

Concluding Remarks

How do I find proofs? — There is no general recipe

Proving is somewhat like doing puzzles — practice helps

Proofs are especially important for software — and much care is needed!

Be aware of types, both in programming, and in mathematics

Be aware of variable binding — in quantification, local variables, formal parameters

Strive to use abstraction to avoid variable binding
— e.g., using relation algebra instead of predicate logic

When designing data representations, think mathematics: Subsets, relations,
functions, injectivity, . . .

Thinking mathematics in programming
is easiest in functional languages, e.g., Haskell, OCaml

Specify formally! — Design for provability!

When doing software, think logics and discrete mathematics!


