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1. Stack Machines

We define a type of transition functions that define state transitions triggered by inputs and also producing outputs:
type Transition state input output = ( state, input) — ( state, output)
(a) Define a Haskell function

process :: Transition state input output — state — [ input] — [ output ]

that calculates the list of outputs produced by a transition function given a starting state and a list of inputs.

Using process from (a) and prelude functions, the definition

runprocess : : Transition state String String — state — 10 ()

runprocess tr s = do
hSetBuffering stdout LineBuffering —— requires: ‘import System.IO” at beginning of module
interact ( unlineso process tr solines)

allows runprocess to turn a transition with String inputs and outputs into a runnable program.
Try: runprocess id 0

(b) Define a transition function
countEcho :: Transition Integer String String
that keeps a counter as its state and otherwise just reproduces the input prefixed with line numbers as output.
Try: runprocess countEcho 0

(c) Define a transition function
trAdd :: Transition Integer String String

that uses the prelude functions read and show to add the Integer reading of the input to the accumulating state, and outputs that
state as a string.

Try: runprocess trAdd 0
(d) For finite state, input, and output types, the Transition type defined above is the type of the transition function of a deterministic
Mealy automaton.
Let us use the following type for explicit representations of such transition functions:
type Mealy state input output = [ ( ( state,input), ( state, output) ) ]
Define a transition function generator
trMealy :: ( Eq state) = Mealy state String String — Transition state String String
that turns a representation of a Mealy transition function with String inputs and outputs into the corresponding Transition.

Define a non-trivial Mealy transition function and try: runprocess ( trMealy myMealy ) state0

(e) Let the following type for representing finite-state machines (parameterised with the state type) be given:
type FSM state = ( state, [ state], [ ( ( state, String) , state)])
Define a transition function generator
trDFSM :: ( Eq state, Show state) = FSM state — Transition state String String

that, given a representation of a deterministic finite-state machine, produces a transition function that takes input symbols for the
FSM as inputs, and shows the current state as output, together with information whether the current state is final.

Define a non-trivial FSM and try: runprocess ( trDFSM myFSM ) myStartState
(f) Produce trNFSM by modifying trDFSM to produce appropriate transitions also for non-deterministic finite-state machines.
(g) Define a transition function

polish :: Transition [ Integer] String String

that implements a reverse Polish notation calculator by pushing number inputs on the stack, always outputing the top of the stack
(if present), and interpreting +, -, *, / as taking their arguments from the stack and pushing the result back onto the stack.

Try: runprocess polish [ ]



(h) (optional) Instead of only showing the top element of the stack in your implementation of polish, output the top five elements
on the stack (as far as present). Also include in your solution for polish some stack manipulation commands, such as

* “dup” pushes the top element of the stack onto the stack another time,
* “exch” swaps the two top element on the stack,

* “rot” pops the top element, say n, from the stack, and then rotates the top n remaining elements “downwards”.

2. One-Dimensional Cellular Automata

A one-dimensional cellular automaton operates in a linear space of cells. For the purposes of this problem, only finite spaces
are considered.

In every generation, every cell is assigned one of a set of states. Neighbouring the first and last cells of the space, one should assume
“virtual cells” that are always in a default state.

For calculating from an (old) generation the next generation, there is a rule associated with the finite automaton. This rule prescribes
what the state of every element is in the next generation, depending on its own state in the old generation, and on the states of its left
and right neighbours in the old generation.

A run of such a linear cellular automaton is a sequence of successive state assignments of the space.

For example, the Sierpinski cellular automaton has two states, “empty” (default) and “full”, and the rule states that a cell is full in
the next generation if out of the three considered cells (i.e., itself and its left and right neighbours), exactly one or two are full in
the old generation.

If every line represents one generation, with full cells represented by '@’ characters and empty cells by space characters, then an
example run of the Sierpinski cellular automaton, starting with exactly the middle cell full, can be represented by the sequence
of lines printed on the next page.

(a) Produce and document Haskell data type declarations for one-dimensional cellular automata.

(b) Give a type signature for the function calculating the next generation from an old generation for a one-dimensional cellular au-
tomaton.
(¢) Give a definition for that function.

(d) Give a definition of an element of your one-dimensional cellular automata data type from (a) for the Sierpinski cellular au-
tomaton.

(e) Using the next-generation function from (b, c) and the Sierpinski automaton data from (d), define the function runSierpinski
such that the invocation “runSierpinski 64 in Hugs or GHCi interaction in a sufficiently large terminal produces the below
representation of the example run.
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3. Two-Dimensional Cellular Automata
(a) Define data types and transition function for Conway’s “Game of Life”, a well-known two-dimensional cellular automaton. (You
can find information for example from http://cafaq.com/.)

(b) Define a way to animate your “Game of Life” — an easy way would be to use XTerm control sequences. For example, in an xterm
(or rxvt), try “putStr "ESC[H\ESC[2J"", (and read also about character literal escape sequences in the Haskell report).

(c) Define an interesting starting state involving for example at least two gliders as part of your solution. Program this starting state
using appropriate abstractions (such as “glider”).



