Two Dozen Short Lessonsin Haskell

a participatory textbook on functional programming
by

Rex Page
School of Computer Science
University of Oklahoma

Copyright © 1995, 1996, 1997 by Réage

Permission to copand use this document for educational or research purposes of a
non-commercial nature is hereby grantedyled that this cogright notice is
retained on all copies. All other rights resshby authar

Rex Page

School of Computer Science
University of Oklahoma

200 Felgr Street — EL114
Norman OK 73019

USA

page@ou.edu

Table of Contents

Lttt bt st n et n et n e How To Use This Book
3 Hello World, Etc. 1
0 Definitions 2
QAo How to Run Haskell Programs 3
A Computations on Sequences — List Comprehensions 4
20ttt Function Composition and Currying 5
25 s Patterns of Computation — Composition, Folding, and Mapping 6
K TSSO Types 4
I Function Types, Classes, and Polymorphism 8
B2ttt Types of Curried Forms and Higher Order Functions 9
S Private Definitions — the where-clause 10
Y S Tuples 11
Y (S The Class of Numbers 12
X lteration and the Common Patterns of Repetition 13
B ercrrrrereieieesn e Truncating Sequences and Lazy Evaluation 14
Td ettt Encapsulation — modules 15
T ettt ettt n e anes Definitions with Alternatives 16
Bttt ettt ettt e it e nn e e anes Modules as Libraries 17
S Interactive Keyboard Input and Screen Output 18
S Interactive Programs with File Input/Output 19
101 Fractional Numbers 20
D12ttt Patterns as Formal Parameters 21
105ttt ettt e ae et et et an e ne it rearenennen Recursion 22
o T Ifs, Lets and Unlimited Interactive Input 23
022ttt n s Algebraic Types 24
1 Appendix — Some Useful Modules

Table of Contents

How To Use This Book

The book is spiral bound, to lie flat, so you can put it on a desk or table and write notes in it.
You're supposed to avk out answers to questions and write them directly in the bosla ftar-
ticipatory text — a sort of cross between attgook and a wrkbook. It doesit’have as man
guestions as a typicalorkbook, lut it does ask you to interrupt your reading, think about a ques-
tion, and write an answer directly in the book before proceeding.

You write these answers as you study pages with numbersQilor 27Q. The back of the page
will have the same numhdwt with an A instead of a Q.04 will find the answers on these A-
numbered pagesry'to work through a full Q-page before looking at the answers.

You will find several kinds of material on Q-pages:

e commentary explaining concepts and terms
Ordinary tet, like what you are reading woNo special markings.
» definitions of terms, which associate names wistiues or formulas
HaskeLL Derinimion e msg = "Hello World"
* commandstelling the Haskll system to maka computation
HASKELL COMMAND * TEVErse msg
» responsedrom the Haskll system to commands, reporting results of computations
HaskeLL Response e "dlroW olleH"
* questionsasking you to write in a definition, command, or response thakappropri-
ately complete the surrounding caoxite

¢ HASKELL DEFINITION ? [Here you would write the definitiansg= "Hello World"]

HASKeLL COMMAND » TEVErse msg
HaskeLL Response e "dIroW olleH"
HAsKeLL Commanp e msg ++ " Wide Web"

¢ HASKELL RESPONSE ? [Here you would write theesponséHello World Wide Web"]

Commentary explains principles of program design and construction, the form and meaning of
elements of Hasl, the programming language of thenkbook, and other concepts and funda-
mentals. Yu will learn these ideas through reading, lookingkah®les, thinking, and prac-
tice—mostly practice. The idea of th@rkbook is that you practice byorking out answers to

the questions that appear in thetten Q-pages, and checking thenaiagt answers, pwided on
A-pages. Yu will also deelop complete programs on yowm, often by applying portions of
programs defined in thextein different ways to describe mecomputations.

Definitions assign meanings to terms. Viae written in the syntax of the programming lan-
guage Hasé#ll. Terms, once defined, can be used in the definitions of otheeHeskns or in
commands to the Hask system. Definitions in theavkbook are flagged with a special mark at
the b@inning of the lineHaskeLL Derivmion ¢ Sometimes definitions will be left blank on Q-pages,
and flagged with a mark kkordinary definitions, i surrounded by question-marks

(¢ HaskerL Dervimion ?) and with a little gtra space. These ageestions about definitions They are

the ones you are supposed tarkvout on your wn. Write your answers on the Q-page, and when
you have finished the page, look at the A-page and compare your answers to the ones you see
there.

How To Use This Book 1

Commands are formulas made up of combinations of terms. The ¢lleskstem must e some

way of interpreting these terms, of course.yitvl be terms that you e defined or terms that

are intrinsic in the language—predefined terms, in otloedsv The Haskl system responds to
commands by making the computation specified in the formula (that is, the command) and report-
ing the results. Li& definitions, commands in thevkbook are flagged with a special mark at the
beginning of the lineHaskeLL Commano ¢ Some commands tea been left blank and flagged with the
mark ¢ HaskeLL Commanp ? These arguestions about commands. You are supposed to figure out

what command wuld delver the response that folls it, using the terms thatvebeen defined.

Write your answers on the Q-page, and when yee fiaished the page, compare your answers

to those supplied on the A-page.

Responses are the results that the Hatlksystem deliers when it carries out commands.
Responses, too, are flagged in tleeklook with a special mark at thegiening of the line:

HAsKELL RESPONSE » SOome responses are left blank on Q-pages, and flagged with the special mark
¢ HAsKeLL Response ? These arguestions about responses. You should try to wrk out the response
that the Has#ll system wuld delver to the command that precedes the response-question, con-
sidering the terms that Yxa been defined. Write your answers on the Q-page, and whenwsu ha
finished the page, compare your answers to those supplied on the A-page.

definitions Programmers prade definitions.
Programs are collections of definitions.

commands People using programs enter commands.

responses The Haskll system deliers responses by performing
computations specified in commands, using definitio
provided by programmers.

=

Here is anxample of a question that might appear on a Q-page:

HASKELL COMMAND® 2 + 2

¢ HASKELL RESPONSE ? [Make a guess about the response and write it here]

This question asks you taork out the Hasédl systems response to the comma2reR. You dont
know Haslell at this point, so you will hee to guess at an answe&his is typical. Most of the
time you won't know the answer for certainubyou will knav enough to maka good guess.

In this case, Hagfl responds witld, the sum of and2, as you wuld probably guess. Mgn
numeric operations are predefined in Halskntrinsic to the language. The addition operation (
and a notation for number, (for example) are intrinsic: Hasl knows haw to interpret +” and
“2”, so the do not hae to be defined in Hask programs.

Make some kind of guess at an answer for each questiem yéhen you feel li&k you dont knowv
enough to maka correct answegometimes you will hee the right idea,\ven though you may

not get all the detailsxactly right. By comparing your answers to the correct ones and taking note
of the diferences, you will gradually learn bits and details about élbakd about programming
principles that will enable you to construct programs entirely on ywar o

How To Use This Book 2

Hereis another question, thistime calling for a definition rather than a response:

¢ HASKELL DEFINITION ?

HASKELL COMMAND® X + 2
HASKELL RESPONSE* 5

don’t peek — use three-minute rule

Make some kind of stab at an answer to each ques-
tion and write it down Force yourself. If you don’t
do this, you may fall into the easy trap of taking a
quick peek at part of the answer to give yourself a
jump start. Thiswill speed up your reading, but slow
down your learning.

Give yourself three minutesto think of an answer. If
you think for three minutes and still don’t have a
good one, write in your best guess, then review your
thinking when you turn the page to see the answer.

[Guess a definition and write it he}

In this case, the necessary definitionisx = 3. You
probably had some difficulty guessing this one
because you didn’t know the form of Haskell defi-
nitions. But, you may have realized, after some
thought, that the term x needed to be defined; oth-
erwise, it would be hard to make sense of the com-
mand x + 2. And, you could tell from the
response, 5, that x needed to be 3 to make the for-
mulawork out. You might have guessed some-
thing likeor Set x =3 or Let x be 3or x := 3 or
some other form of expressing the idea that x

should be associated with the number 3. If so,
count yourself correct, make note of the particular way thisideais expressed in Haskell, and move
on. If not, try to incorporate the idea into the set of things you know about Haskell, and move on..

The important thing is to keep moving on. Eventually you will get better at this.

Sometimes many thingswill click into place at once, and sometimes your learning will bein little
bits at atime. Your greatest frustrations will come when you try to construct programs on your
own because programming language systems, Haskell included, are unbelievably intolerant of
minor errors. One comma out of place and the whole program is kapui.

This may be the first timein your life you've had to deal with such an extreme level of inflexibil-
ity. Unfortunately, you'll just have to get used to it. Computer systems are more tolerant now than
they were twenty years ago, and they’ll be more tolerant twenty years from now than they are
today, but it may be avery long time before they are as tolerant as even the most nit-picky teacher
you ever crossed paths with.

It isagood ideato write commentsin the
workbook about how your answer com-
pared to the correct one—what was right
about it and what was wrong. This prac-
tice gives you a chance to reflect on your
process of reasoning and to improve
your understanding of the concepts the
workbook talks about.

Haskell Report

Occasionaly, you will need to refer to the Report on the Rr-
gramming Languge Haslell, \erstion 1.3 by John Peterson
and thirteen other authors, available through the Internet. L ook
for the official definition in the Yale Haskell Project’s web site
(http://lwww.cs.yale.edu). The Reportis alanguage definition,
so it’sterse and precise — not fun to read, but useful, and you
need to learn how to read thiskind of stuff. You will not need it
in the beginning, but more and more as you progress.

How To Use This Book 3

Warning!

Try to ignore what you have learned about conventional, procedural, programming
languages, such as Pascal, C, or Fortran. Most of the concepts you learned about
conventional programming will impede your learning the principles of program-
ming in alanguage like Haskell. Haskell follows an entirely different model of com-
putation. Trying to understand Haskell programsin procedural termsis, at this
point, awaste of time and effort—confusing, frustrating, and definitely counter-pro-
ductive. Thetime for that is when you take ajunior- or senior-level coursein pro-
gramming languages.

For now, start fresh! Think about new things. You will be dealing with equations
and formulas, not those step-by-step recipes that you may have learned about
before. You will reason asyou would if your were solving problemsin algebra. That
other stuff is more like telling someone how to do long division.

How To Use This Book

Hello World, Etc. 1

Haskell includes several types of intrinsic data. This chapter makes use of two of them: character
strings (sequences of letters, digits, and other characters) and Booleans (True/False data).

HaskeLL Commanp e "Hello World"

¢ HASKELL RESPONSE ?

In aHaskell formula, a sequence of characters enclosed in quotation-marks denotes a data item
consisting of the characters between the quotation-marks, in sequence. Such adataitemis called
astring.

For example, "Hello World" denotes the string containing the eleven characters capital-H, lower-
case-e, and so on through lower-case-d. That’sfive |etters, a space, and then five more |etters. The
guotation-marks don’t count—they are part of the notation, but not part of the string itself.

A Haskell command isaformula, written in the syntax of the Haskell language. When a Haskell
command isastring (a particularly ssmple formula), the Haskell system responds with a message
denoting the charactersin that string, just as the string would be denoted in a Haskell formula.

Haskell’s response to the command "Imagine whirled peas." would be a message consisting of a
sequence of characters, beginning with a quotation mark, then capital-1, then lower-case-m,
lower-case-a, and so on through lower-case-s, period, and finally a closing quotation mark. That's
seven letters, a space, seven more |etters, another space, four more letters, and then a period, al
enclosed in quotation marks—the twenty-one characters of the string, plus two quotation marks
enclosing it.

HaskeLL Commanp e "Imagine whirled peas."

HaskeLL Response e "Imagine whirled peas.”

So, now you know how to represent one kind of data, sequences of characters, in a notation that
the Haskell system understands, and you know that a dataitem of thiskind is called a string. You
might be wondering what you can do with this kind of data. What kinds of computations can
Haskell programs describe that use strings?

Haskell’s intrinsic definitions include some operations that generate new character strings from
old ones. One of these defines a transformation that reverses the order of the charactersin astring.

HaskeLL Commanp e reverse "small paws”
¢ HASKELL RESPONSE ?

In this example, the Haskell command is athe string delivered by the transformation reverse,
operating on the string "small paws". So, the command reduces to a string, just as before, but this
time the command formula describes the string in terms of adataitem ("small paws") and a
transformation applied to that item (reverse), which produces another string ("swap llams'). It is

1 Hello World, Etc. 5Q

B~ W

character strings — a type of data

Sequences of characters are denoted, in Haskell, by enclosing the sequenceina
pair of quotation-marks. Such a sequence can include letters, digits, characters
like spaces, punctuation marks, ampersands — basically any character you can
type at the keyboard, and even afew more that you'll learn how to denotein

Haskell later.
"Ringo” five-character string, all of which are letters
"@H& A" seven-character string, none of which are letters

the string delivered by this transformation, in other words the result produced by making the com-
putation specified in the formula, that becomes the Haskell response, and the Haskell system dis-

plays that response string in the same form the string would take if it were acommand — that is,

with the surrounding quotation marks.

HAsKeLL Commanp e "Sswap llams”
HAskeLL Response e "swap llams™

Similarly, the command
HAsKeLL CommanD » reverse "aerobatiC"
would lead to the response
HaskeLL Response e "Citabrea”
Work out the following commands and responses.
HAskeLL Commanp » reverse "too hot to hoot"

¢ HASKELL RESPONSE ?
¢ HASKELL COMMAND ?
HAsKeLL Response e "nibor & namtab™
¢ HASKELL COMMAND ?
HaskerL Responsee - "ABLE WAS | ERE | SAW ELBA"

L use reverse to form these commands

Another intrinsic definition in Haskell permits comparison of strings for equality.
HaskeLL Commanp e "ABLE" == reverse "ELBA"
¢ HASKELL RESPONSE ?

The command in this example uses aformulathat involves two operations, string reversal
(reverse) and equality comparison (==). Previous commands have used only one operation (or
none), so that makes this one a bit more complex. Combinations of multiple operations in formu-
lasis one way Haskell can express complex computations.

The equality comparison operator reports that two strings are equal when they contain exactly the
same charactersin exactly the same order. If they are the same, in this sense, the equality compar-

1 Hello World, Etc. 6Q

6a
6b

10
11
12
13
14

15
16

ison operator deliversthe value True asits result; otherwise, that iswhen the strings are different,
it deliversthe value False. True/False values are not strings, so they are denoted differently —

without quotation marks. The value denoted by "True" isastring, but the value denoted by True
not a string. It is another kind of data, known as Boolean data. The quotation marks distinguish
one type from the other in Haskell formulas.

operations vs. functions

In the deepest sense, this textbook uses the terms operation and function
synonymously. Both terms refer to entities that build new data from old
data, performing some transformation along the way (for example, the addi-
tion operation takes two numbers and computes their sum). However, the
textbook does distinguish between operators and functions in three superfi-
cia ways:

1 function names are made up of letters, or letters and digitsin afew
cases, while operator symbols contain charactersthat are neither letters
nor digits

2 thedataitemsthat functionstransform are called arguments, while the
data items that operators transform are called operands

3 operators, when they have two operands (which ismost of thetime), are
placed between the operands (as in a+b), while functions always pre-
cede their arguments (asin sin x).

Here are some examples:

HAsKeLL Commanp e "plain” == "plane”

HaskeLL Response e False

HaskeLL Comvanpe "WAS" == reverse "SAW"
HASKELL RESPONSE* True

HaskeLL Commanp e "charlie horse" == "Charlie horse"

HASKELL RESPONSE False

HaskeLL Commanp e "watch for spaces " == "watch for spaces”
HaskeLL Response e False

HaskeLL Commanp e "count — spaces” == "count spaces"

HaskeLL Response e False

Asyou can see from the examples, equality comparison is case sensitive: upper-case letters are
different from lower-case letters and equality comparison delivers the value False when it com
pares an upper-case letter to alower-case letter. So, the following comparison delivers the resul

is

t

False, even though the only difference between the strings is that one of the lower-case lettersin

thefirst oneis capitalized in the second one.

HaskeLL Commanp e "mosaic” == "Mosaic"
HaskeLL Responsee False

In addition, blanks are charactersin their own right: equality comparison doesn’t skip them when
it compares strings. So, the following comparison delivers the result False, even though the only

1 Hello World, Etc.

Q

17
18
19
20
21
22
23
24
25
26

35
36

difference between the strings is that one has a blank in the fifth character position, and the other

omits the blank.

HaskeLL Commano e "surf ace" == "surface™
HASKELL ResPonsE e False

Even ablank at the end of one of the strings, or at the beginning, makes the comparison result
False.

HaskeLL Commanp e "end space " == "end space”
HASKELL REsPoNsE» False

The number of blanks matters, too. If one string has two blanks where another has four, the strings

are not equal.

HASKELL CommanD e "'Ste reo" == "ste reo
HaskeLL Responsee False

Remember! Two strings are the same only if both strings contain exactly the same charactersin

exactly the same relative positions within the strings. All this may seem like a bunch of minor

technicalities, but it isthe sort of detail you need to pay careful attention to if you want to succeed

in the enterprise of software construction.

Boolean — another type of data

True and False are the symbols Haskell uses to denote logic values, another
kind of data (besides strings) that Haskell can deal with. The operation that
compares two strings and reports whether or not they are the same (==) delivers
avalue of thistype, which is known as Boolean data. A Boolean dataitem will
always be either the value True or the value False.

Work out responses to the following commands.
HaskeLL Commanp e "planet” == "PLANET"
¢ HASKELL RESPONSE ?
HaskeLL Commanp e "ERE" == "ERE"
¢ HASKELL RESPONSE ?
HaskeLL Commanp e "Chicago” == reverse "ogacihc"
¢ HASKELL RESPONSE ?
HaskeLL Commanp e "Chicago™ == reverse "ogacihC"

¢ HASKELL RESPONSE ?

1 Hello World, Etc.

8Q

37
38

39
40

41
42

33
34
27
28
29
30
31
32

precedence — order of operations in multi-operatiariulas

To understand formulas combining more than one operation, one must know
which portions of the formula are associated with which operations. Haskell
computes formulas by first applying each function to the arguments following
it. The valuesthat result from these computations then become operands for the
operatorsin the formula. Parentheses can be used to override (or confirm) this
intrinsic order of computation.

HaskeLL Commanp e reverse "ELBA" == "ABLE" 43
means the same thing as

HaskeLL Commanp e (reverse "ELBA") == "ABLE" 44
but does not have the same meaning as

HaskeLL Coumann e reverse ("ABLE" == "ELBA") 45
In Haskell formulas, functions are always grouped with their arguments before
operations are grouped with their operands. Operators aso have specia prece-
dence rules, which will be discussed as the operators are introduced..

Review Questions

1 How doesthe Haskell system respond to the following command?

a
b
c
d

HaskeLL Coumanp e reverse "Rambutan”

"Natubmar"
"tanbuRam"
"Nambutar"
natubmaR

2 How about this one?

O T QO

HaskeLL Commanp e "frame" == reverse "emaurf"

True

False

Yes

assigns emarf, reversed, to frame

3 Andthisone?

a
b
c
d

HaskeLL Commanp e "toh oot" == (reverse "too hot")

True

False

Yes

no response — improper command

4 And, findly, this one?

a
b
c
d

HaskeLL Coumanp e reverse ("too hot" == "to hoot")

True

False

Yes

No response — improper command

1 Hello World, Etc.

N

Defi nitions 2

Haskell definitions are written as equations. These equations associate a name on the | eft-hand-
side of the equals-sign with aformula on the right-hand-side. For example, the equation

HASKELL DEFINITION ®

shortPalindrome = "ERE"

associates the name shortPalindrome with the string "ERE". This definition makes the name
shortPalindrome equivalent to the string "ERE" in any formula.

So, in the presence of this definition, the command

HASKELL COMMAND ¢
leads to the response
HASKELL RESPONSE ©
just as the command

HASKELL COMMAND
HASKELL RESPONSE ®

shortPalindrome

"ERE"

"ERE"
"ERE"

would lead to that response.

It's as simple as that! To get used to the idea, practice with it by working through the following

guestions.

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

HASKELL COMMAND *
¢ HASKELL RESPONSE ?
HASKELL COMMAND *
¢ HASKELL RESPONSE ?
HASKELL COMMAND *
¢ HASKELL RESPONSE ?
HASKELL COMMAND *
¢ HASKELL RESPONSE ?
HASKELL COMMAND *
¢ HASKELL RESPONSE ?
HASKELL COMMAND *

¢ HASKELL RESPONSE ?

2 Definitions

shortPalindrome = "ERE"

longPalindrome = "ABLE WAS | ERE | SAW ELBA"
notPalindrome = "ABLE WAS | ERE | SAW CHICAGO"
squashedPalindrome = "toohottohoot"
spacedPalindrome = "too hot to hoot"

longPalindrome

reverse notPalindrome

longPalindrome == reverse longPalindrome

notPalindrome == reverse notPalindrome

longPalindrome == shortPalindrome

reverse squashedPalindrome == squashedPalindrome

10Q

3.cl

3.c2

HaskerL Commanp e "ABLE WAS | ERE | SAW ELBA" == spacedPalindrome
¢ HASKELL RESPONSE ?
¢ HASKELL DEFINITION ?

HaskeLL Comvanp e defineThisName
HaskeLL Response e "Get this response.”

WEell, actually it can get alittle more complicated.

Definitions may simply attach names to formulas, as in the previous examples. Or, definitions
may be parameterized.

A paramerterized definition associates a function name and one or more parameter names with a
formula combining the parameters in some way. Other formulas can make use of a parameterized
definition by supplying values for its parameters. Those values specialize the formula. That is,
they convert it from ageneralized formulain which the parameters might represent any value, to a
specific formula, in which the parameters are replaced by the supplied values.

For example, the following parameterized definition establishes a function that computes the
value True if its parameter is associated with a palindrome, and False if its parameter is not a pal -
indrome.

palindrome
aword or phrase that reads the same backwards as forwards

Normally, punctuation, spaces, and capitalization and the like areignored in
deciding whether or not a phrase is a palindrome. For example, “Madam, I’'m
Adam” would be regarded as a palindrome. Eventually, you will learn about a
Haskell program that recognizes palindromes in this sense — but not in this
chapter. In this chapter, only strings that are exactly the same backwards as for-
wards, without ignoring punctuation, capitalization and the like, will be recog-
nized as palindromes: “toot” is, “Madam” isn't, at least in this chapter.

HaskeLL Derinimion e isSPalindrome phrase = (phrase == reverse phrase)

This defines a function, named isPalindrome, with one parameter, named phrase. The equation
that establishes this definition says that an invocation of the function, which will take the form
isPalindrome phrase, where phrase stands for a string, means the same thing as the result
obtained by comparing the string phrase stands for to itsreverse (phrase == reverse phrase).
Thisresult is, of course, either True or False (that is, the result is a Boolean value).

HaskeLL Commanp e isPalindrome "ERE"

HASKELL RESPONSE* True

HaskeLL Commanp e isPalindrome "CHICAGO"
HaskeLL REsponse e False

HaskeLL Commanp e isPalindrome longPalindrome
HasKEeLL ResPonsEe True

The command isPalindrome longPalindrome, makes use of the definition of longPalindrome
that appeared earlier in the chapter. For this to work, both definitions would need to bein the

2 Definitions 11Q

18

20

21
22

23

24
25
26
27
28
29

Haskell script that is active when the command isissued. In this case, the name longPalindrome

denotes the string "ABLE WAS | ERE | SAW ELBA", that was established in the definition:
HaskeLL Derivimion e longPalindrome = "ABLE WAS | ERE | SAW ELBA"

Continuing to assume that all definitions in this chapter are in effect, answer the following ques-

tions.
HaskeLL Commanp » isPalindrome shortPalindrome
¢ HASKELL RESPONSE ?
HaskeLL Commanp » isPalindrome notPalindrome
¢ HASKELL RESPONSE ?
HaskeLL Commanp » isPalindrome squashedPalindrome
¢ HASKELL RESPONSE ?
HaskeLL Commanp » iSPalindrome (reverse shortPalindrome)
¢ HASKELL RESPONSE ?

The command isPalindrome(reverse Palindrome) illustrates, again, the notion of using more
than one function in the same formula. The previous example of such acombination used only the
intrinsic operations of comparison (==) and reversal (reverse). The present example uses afunc-
tion established in a definition (isPalindrome) in combination with an intrinsic one (reverse).
The formula uses parentheses to group parts of the formula together into subformulas. The paren-
theses are needed in this case because Haskell’s rules for evaluating formulas require it to associ-

ate afunction with the argument immediately following it.
By thisrule,
isPalindrome reverse shortPalindrome
would mean
(isPalindrome reverse) shortPalindrome
rather than
isPalindrome (reverse shortPalindrome).

The parentheses are necessary to get the intended meaning.

Haskell programs = collections aodlefinitions

Haskell programs are collections of definitions. When you construct software
in Haskell, you will be defining the meaning of a collection of terms. Most of
these terms will be functions, and you will define these functions as parameter-
ized formulas that say what value the function should deliver.

People using a Haskell program write Haskell commands specifying the com-
putation they want the computer to perform. These commands are formulas
written in terms of the functions defined in a program.

Definitions, therefore, form the basis for al software construction in Haskell.

2 Definitions

12Q

30

31
32
33
34
35
36
37
38

Review Questions

1 How doesthe Haskell system respond to the following command?
HaskeLL Derinimion e word = reverse "drow"
HASKELL Commanp e word

True

False

"word"

"drow"

o0 T

2 How about this command?
HaskeLL DEFiniTion e ISTrue str = str == "True"
HaskeLL Coumanp e iSTrue(reverse "Madam, I'm Adam.")
True
False
".madA m’'l ,madaM"
Type error in application

[o NN @ @ i o))

3 And this one (assuming the definitions in questions 1 and 2 have been made)?
HaskeLL Commanp iISTrue word

True

False

"drow"

Type error in application

o0 T W

2 Definitions 13Q

How to Run Haskell Programs 3

To fire up the Haskell system from a Unix or Windows system where it isinstalled, smply enter
the command hugs' or click on the Hugs icon.

OpSys Commanp e hugs

Once fired up, the Haskell system acts like a general -purpose calculator: you enter commands
from the keyboard and the system responds with results on the screen.

Most of the commands you enter will be formulas, writ-
tenin Haskell notation, that request certain computations.
The entities that these formulas refer to (functions and

script
A collection of definitionswrittenin
Haskell isknown asascript. Scriptsare

operators, for example) may be intrinsic in Haskell, in packaged in files with names ending
which case they need no definitions (they are predefined), | with the extension .hs (for Haslell

or they may be entities that you or other programmers script) or with .lhs (for literate Haskll
have defined. script). In aliterate Haskell script, only

lines beginning with the greater-than
character (>) contain definitions. All
other lines are commentary.

Such definitions are provided infiles, and files containing
acollection of definitions are called scripts. To make a

collection of definitions contained in a script available for
use in commands, enter aload command. For example, the load command

HaskeLL Coumanp - :load myScript.hs — male definitions irmyScript.hs available
would make the definitions in the file myScript.hs available for use in formulas.

The previous chapter defined names such as longPalindrome and isPalindrome. If thefile
my Script.hs contained these definitions, you could, at this point, use them in commands:

HaskeLL Comvanp longPalindrome la.d6
¢ HASKELL RESPONSE ? 1b.d7

HaskeLL Commanp e isPalindrome "ERE" 1c.d24

HaskeLL Responsee True 1c.d25

If you want to look at or change the definitions in the file myScript.hs, enter the edit command:
HASKELL Commanp » edit — edit the mostecently loaded script

The edit command will open for editing the file that you most recently loaded. At this point you
could change any of the definitionsin the script contained in that file. When you terminate the edit
session, the Haskell system will be ready to accept new commands and will use definitions cur-
rently in the file, which you may have revised.

1. The Haskell system you will be using is called Hugs. It was originally developed by Mark Jones of the
University of Nottingham. More recent versions have been implemented by Alastair Reid of the Yale
Haskell Project. Hugs stands for the Haskell User’s Gofer System. (Gofer is alanguage similar to
Haskell.) Information about Hugs, including installable software for Unix, Windows, and Macintosh sys-
tems, is available on the World Wide Web (http://haskell.systemsz.cs.ya e.edu/hugs/). Strictly speaking,
the things we've been calling Haskell commands are commands to the Hugs system.

3 How to Run Haskell Programs 14Q

For example, if you had redefined the name longPalindrome during the edit session to giveit a
new value,

HaskerL Derivirion e longPalindrome = "A man, a plan, a canal. Panama!”
then upon exit from the edit session, the name longPalindrome would have a different value:

HaskeLL Commanp e longPalindrome
¢ HASKELL RESPONSE ?

If you find that you need to use additional definitions that are defined in another script, you can
use the also-load command. For example, the also-load command

HaskeLL Commanp e :also yourScript.hs — add definitions igourScript.hs

would add the definitions in the file yourScript.hs to those implicit :load commands

At this point the edit command will open the file your- implicit throughouit the text. The text will
assume that appropriate scripts have been

Script.hs for editing. If you want to edit adifferent file loaded so that formul a-commands have
(myScript.hs, for example), you will need to specify that | aecessto the definitions they need.
file as part of the edit command:

HaskeLL Commanp e -edit myScript.hs— opens filenyscript.hs for editing

The definitions in yourScript.hs can define new entities, but they must not attempt to redefine enti-
ties already defined in the file myScript.hs. If you want to use new definitions for certain entities,
you will need to get rid of the old onesfirst. You can do this by issuing aload command without
specifying a script:

HaskeLL Commanp e :load — clears all definitions (ecept intrinsics)

After issuing aload command without specifying a script, only intrinsic definitions remain avail-
able. You will have to enter a new load command if you need to use the definitions from a script.

If you want to review thelist of all Haskell commands, enter the help command:
HASKELL COMMAND ® . 7?

Thiswill display alist of commands (many of which are not covered in this textbook) and short
explanations of what they do.

To exit from the Haskell system, enter the quit command:
HASKELL COMMAND » Uit
This puts your session back under the control of the operating system.

Haskell commands are not part of the Haskell programming language. Haskell scripts contain def-
initions written in the Haskell programming language, and Haskell commands cause the Haskell
system to interpret definitions in scripts to make computations. Thisis known asthe inter active
mode of working with Haskell programs, and thisis how the Hugs Haskell system works.

Some Haskell systems do not support direct interaction of thiskind. They require, instead, that the
Haskell script specify the interactions that are to take place. Thisis known as the batch mode of
operation. Haskell systems that operate in batch mode usually require the person using a Haskell
program to first compile it (that is, use a Haskell compiler to trand ate the script into instructions

3 How to Run Haskell Programs 15Q

directly executable by the computer), then load the instructions generated by the compiler, and
finally run the program (that is, ask the computer to carry out the loaded instructions).

The batch-mode, compile/load/run sequenceistypical of most programming language systems.
The Glasgow Haskell Compiler (http://www.dcs.gla.ac.uk/fp/) and the Chalmers Haskell-B Com-
piler (http://www.cs.chalmers.se/~augustss/hbc.html) are alternatives to Hugs that use the batch
mode of operation. So, you can get some experience with that mode at alater time. For now, it's
easier to use the Hugs system’s interactive mode.

Review Questions

4 Thefollowing command
HaskeLL Commanp e :load script.hs
loads script.hs into memory
makes definitions in script.hs available for use in commands
runs the commands in script.hs and reports results
loads new definitions into script.hs, replacing the old ones

o0 T W

5 Thefollowing command
HAsKeLL Commanp e also script2.hs
a loads script.hsinto memory
b addsdefinitionsin script2.hs to those that are available for use in commands
Cc runsthe commandsin script2.hs and reports results
d tellsthe Haskell system that the definitions in script2.hs are correct

6 A Haskell system working in interactive mode
a interprets commands from the keyboard and responds accordingly
b actslike agenera-purpose calculator
¢ iseader for novicesto use than a batch-mode system
d al of the above

7 Thefollowing command
HASKELL COMMAND ® . 7?
a initiates aquery process to help find out what is running on the computer
b asksthe Haskell system to display the results of its calculations
c displaysalist of commands and explanations
d all of the above

3 How to Run Haskell Programs 16Q

Computations on Sequences —List Comprehensions 4

Many computations require dealing with sequences of data items. For example, you have seen a
formulathat reverses the order of a sequence of characters. Thisformulabuilds anew string (that
is, anew sequence of characters) out of an old one. You have also seen formulas that compare
strings. Such aformula delivers a Boolean value (True or False), given apair of stringsto com-
pare. And, you saw aformulathat delivered the Boolean value True if a string read the same for-
wards as backwards. All of these formulas dealt with sequences of characters as whole entities.

Sometimes computations need to deal with individual elements of a sequence rather than on the
sequence as awhole. One way to do thisin Haskell is through a notation known as

list comprehension. The notation describes sequences in amanner similar to the way sets are
often described in mathematics.

SET NOTATION (MATH) ® {x|x O chairs, x isred} —set of red chairs
HASKELL DEFINITION madam = "Madam, I'm Adam"

HASKELL COMMAND * [c|]c<-madam,c/=" "] -- non-blank characters from madam
HASKELL RESPONSE ® "Madam,’'mAdam"

This Haskell command uses list comprehension to describe a sequence of characters coming from
the string called madam. The name madam is defined to be the string "Madam, I’'m Adam".

In thislist comprehension, ¢ stands for atypical character in the new sequence that the list com-
prehension is describing (just as x stands for atypical element of the set being described in math-
ematical form). Qualifications that the typical element ¢ must satisfy to be included in the new
sequence are specified after the vertical bar (|), which isusually read as * such that.”

The qualifier c <- madam, known as a gener ator, indicates that ¢ runs through the sequence of
charactersin the string called madam, one by one, in the order in which they occur. Thisis anal-
ogous to the phrase x [chairs in the set description, but not quite the same because in sets, the
order of the elementsisirrelevant, while in sequences, ordering is an essential part of the concept.

Finally, the qualifier c /=’ ’ saysthat

comparison meaning in string or only non-blank characters are to be

operation character comparison included in the string being described.

—— equal to This part of the list comprehension is
— not equal to known asaguard. Itis analogous to the

< |ess than (alphabetically*) qualifier “x |s“ red in ’t’h_e mathernatlcal
<= less than or equal to set example; “x isred” indicates what
S greater than kind of chairs are admissible in the set.
>= greater than or equal to The not-equal-to operation (/=) in the

*sprt of guard is like equality comparison (==),
but with areversed sense: x /=y isTrue

when x isnot equal to 'y and False when x isequal toy.
The blank character is denoted in Haskell by ablank surrounded by apostrophes. Other characters

4 Computations on Segquences — List Comprehensions 17Q

can be denoted in thisway: '&’ stands for the ampersand character, 'x’ for the letter-x, and so on.

characters vs. strings

formal Haskell lingo.

consist of exactly one character.

Anindividua character is denoted in a Haskell program by that character, itself,
enclosed in apostrophes ('a’ denotes letter-a, '8’ denotes digit-8, and so on). These
data items are not strings. They are adifferent type of data, atype called Char in

Strings are sequences of characters and are of atype called (formally) String. A
string can be made up of several characters ("abcde™), or only one character
("a"), or even no characters (). Individual characters, on the other hand, always

Sinceindividual characters are not sequences and strings are sequences, 'a’ is not
the same as"a". In fact, the comparison 'a’=="a" doesn’t even make sensein
Haskell. The Haskell system cannot compare data of different types

In your studies, you will learn agreat deal about distinctions between different
types of data. Making these distinctions is one of Haskell’s most important fea-
tures as a programming language. This makes it possible for Haskell to check for
consistant usage of information throughout a program, and this helps program-
mers avoid errors common in languages less mindful of data types (the C lan-
guage, for example). Such errors are very subtle, easy to make, and hard to find.

List comprehensions can describe many
computations on sequences in a straightfor-
ward way.The command in the preceding
example produced a string like the string
madam, but without its blanks. Thisidea
can be packaged in afunction by parameter-
izing it with respect to the string to be pro-
cessed. Theresult isafunction that produces
astring without blanks, but otherwise the
same as the string supplied as the function’s
argument .

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

HASKELL DEFINITION ®

HASKELL COMMAND

HaskeiL Responsee "Ablewasl”

4 Computations on Segquences — List Comprehensions

indentation — ofsides rule
When a definition occupies more then one line, subse-
guent lines must be indented. The next definition starts
with theline that returnsto the indentation level of thefirst
line of the current definition. Programmers use indentation
to visually bracket conceptual units of their software.
Haskell makes use of this visua bracketing, known as the
offsides rule, to mark the beginning and ending of defini-
tions. Learn to break lines at major operations and line up
comparable elements vertically to display the components
of your definitionsin away that brings their interrelation-
ships to the attention of people reading them.

hot = "too hot to hoot"

removeBlanks str=[c|c<-str,c/=""]

napolean = "Able was | ere | saw Elba."
chicago = "Able was | ere | saw Chicago."
maddog = "He goddam mad dog, eh?"

removeBlanks "Able was I"

18Q

\ = thereis a space between these apostrophes

N

HASKELL COMMAND *
¢ HASKELL RESPONSE ?
HASKELL COMMAND *
¢ HASKELL RESPONSE ?
HASKELL COMMAND *
¢ HASKELL RESPONSE ?
HASKELL COMMAND *
¢ HASKELL RESPONSE ?
HASKELL COMMAND *
¢ HASKELL RESPONSE ?
HASKELL COMMAND *
¢ HASKELL RESPONSE ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

HASKELL COMMAND ®
HASKELL RESPONSE *
HASKELL COMMAND *
HASKELL RESPONSE ®

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

HASKELL COMMAND *
HASKELL RESPONSE *

removeBlanks napolean

removeBlanks 'spacedout"

removeBlanks maddog

removeBlanks hot

removeBlanks(reverse chicago)

removeBlanks hot == reverse(removeBlanks hot)

-- function to remove periods (you write it)

removePeriods str =

removePeriods chicago

"Able was | ere | saw Chicago"
removeBlanks(removePeriods chicago)
"AblewaslerelsawChicago”

-- function to remove blanks and periods (you write it)

removeBlanksAndPeriods str =

removeBlanksAndPeriods napolean
"AblewaslerelsawElba"

Review Questions

The following function delivers

HASKELL DEFINITION ®

fstr=[c|c<-str,c=="X]

all the ¢'sfrom its argument

astring like its argument, but with x’sin place of ¢'s

a
b anempty string unlessits argument has x’sin it
c
d

nothing — it contains a type mismatch, so it has ho meaning in Haskell

The following command delivers

HASKELL DEFINITION ®
HASKELL COMMAND
ner
"XX
"xerox xopy"

o0 T

g str = [c|c<-str,c=="x"]
g "xerox copy"

error — g expects its argument to be a sequence of strings, not a sequence of characters

4 Computations on Segquences — List Comprehensions

19Q

16

17
18
19
20

21

22
23

parameterization is abstraction

In the folloving definition of the namstretchSansBlanks,
HaskeLL Derinimion e stretchSansBlanks =[c|c<-"stretch",c/=" "]

the string whose blanks are being reewbis specifiedlicitly: "stretc h".
This string is a concrete entity

On the other hand, in the folling definition of the functiomemoveBlanks,
HaskeLL Derivimion e removeBlanks str = [c|c<-str,c/=" "]

the string whose blanks are being rewubis the parametstr. This parameter|
is an abstract entity that stands in place of a concrete entity to be specified
in a formula that uses the function. In thigythe abstract form of the formula
expresses a general idea that can be applied iy difiarent specific cases. It
could as well remee the blanks fromistretc h"as from'squas h" or
from ary other specific string.

The parameterized formulas that occur in function definitionggean gam-
ple ofabstraction. A parameter is an abstract entity that stands fpcancrete
value of the appropriate type. Abstraction is one of the most important conc:
in computer science.ov will encounter it in mandifferent contgts.

3 The folloving function delers a string lik its agument, it ...

HaskeLL Derinirione O str = [¢ | € <- reverse str, c <'n’]
written backvards if it starts with a letter in the first half of the alphabet
written backvards and without 8’
written backvards and without letters in the first half of the alphabet
written backvards and without letters in the last half of the alphabet

o0 T w

4 Which of the follaving equations defines a function that deis a string lik its second gument, kit with no

letters preceding, alphabeticaltiie letter specified by its firstgarment?
AHASKELL DEFINITION® S X Str = [c | Cc <-str,c <X]

BHASKELL DEFINITION® S X Str = [C | € <- str, ¢ >=X]
CHaskeLL DEFINioNe S abc str = [c | ¢ <- str, ¢ == "abc"]
DHASKeLL DEFinmione S abc str = [c | ¢ <- str, ¢ /="abc"]

5 In the folloving definition, the parametstr
HaskeLL Derinirione f str = [c| € <-str,c =="X"]
represents the letter x
represents the letter ¢
stands for a sequence o§x’
stands for a string containing a sequence of characters

o0 T

4 Computations on Sequences — List Comprehensions

20Q

Function Composition and Currying 5

The use of more than one function in aformulais known as function composition. The following
formula,

HaskeLL Derinvimon e madam = "Madam, I'm Adam." la
HaskeLL Commanp e removePeriods(removeBlanks madam) 1

which removes both periods and blanks from a string called madam, is a composition of the
functions removePeriods and removeBlanks. In this composition, the function removePeri-
ods is applied to the string delivered by the function removeBlanks operating on the argument
madam.

If there were athird function, say removeCommas, then the following composition

HaskeLL DerFiniTion e removeCommas str =[c | ¢ <- str, ¢ /="] 2a
HaskeLL Commanp e removeCommas(removePeriods(removeBlanks madam)) 2

would apply that function to the string delivered by removePeriods (which in turn operates on
the string delivered by removeBlanks operating on madam). Thisal workswell. It appliesa
simple concept, that of removing a certain character from a string, three times. But, the parenthe-
ses are beginning to get thick. They could become bulky to the point of confusion if the ideawere
extended to put together a command to remove many kinds of punctuation marks.

Fortunately, Haskell provides an operator that alleviates this problem (and lots of other problems
that it istoo early to discuss at this point). The composition of two functions, f and g, say, can be
written asf . g, sothat (f . g) x means the same thing as f(g(x)). And, (f . g . h) x means
f(g(h(x))). And so on.

Using this operator, the following formula
HaskeLL Commanp e (removeCommas . removePeriods . removeBlanks) madam 3

removes blanks, periods, and commas from madam just like the previous formula for that pur-
pose. Thisisalittle easier to look at because it has fewer parentheses, but it has a more important
advantage: it points the way toward a function that removes all punctuation marks.

Of course, one can generalize the preceding formulato a function that will remove blanks, peri-
ods, and commas from any string presented to it as an argument. Thisis done by parameterizing
with respect to the string being processed. Try to write this function yourself, using the function
composition operator (.) and following the form of the preceding command.

¢ HASKELL DEFINITION ? -- function to remove blanks, periods, and commas

¢ HASKeLL DEFinimion ? - removeBPC str = -- you write this function

¢ HASKELL DEFINITION ? 4
HaskeLL Comvanp e removeBPC madam 5.c1
HaskeLL Response e "MadamIimAdam® 6.c1

Actualy, inaformulalike (f . g . h) x, thef . g . h portion is a complete formulain its own right.
It denotes a function that, when applied to the argument x deliversthevalue (f. g . h) x. Itis

5 Function Composition and Currying 21Q

important keep these two things straight: f. g . hiisnot the samethingas(f. g . h) x. Oneisa
function, and the other is a value delivered by that function.t

The fact that aformulalikef . g . hisafunction inits own right provides a simpler way to write
the function that removes blanks, periods, and commas from a string. This function is simply the
value delivered by the composition of the three functions that each remove one of the characters.
The definition doesn’t need to mention the parameter explicitly. The following definition of
removeBPC isequivaent to the earlier one (and identical in form, except for the parameter).

HASKELL DEFINITION * -- function to remove blanks, periods, and commas
HaskeLL Deriniov s removeBPC = removeCommas . removePeriods . removeBlanks 7
HASKELL Coumanp e removeBPC madam 5.c2
HASKeLL Response e "MadamImAdam" 6.c2

The three functions that remove characters from strings al have similar definitions.

HaskeLL DeFinirion e removeBlanks str = [c | ¢ <- str,c/=""]
HaskeLL DeFinirion e removePeriods str = [c | ¢ <- str, c /= "]
HaskeLL Derinirion e removeCommas str = [c | ¢ <- str, ¢ /=",] 8

The only difference in the formulas defining these functions is the character on the right-hand-
side of the not-equals operation in the guards.

By parameterizing the formula with respect to that character, one can construct a function that
could, potentially (given appropriate arguments) remove any character (period, comma, semico-
lon, apostrophe, . . . whatever) from a string. The function would then have two arguments, the
first representing the character to be removed and the second representing the string to remove
characters from.

¢ HASKELL DEFINITION ? -- function to remove character chr from string str

¢ HASKELL DEFINITION ? remove chr str = -- you write this function

¢ HASKELL DEFINITION ? 9
HaskeLL Commanp e remove ' ' madam -- remove "' works just like removeBlanks 10
HaskeLL Responsee "Madam,I'mAdam.” 11
HAskeLL Commanp e remove ',' madam -- remove '," works just like removeCommas 12
HAskeLL REsponse e "Madam I'm Adam." 13
HaskeLL Commano e remove ', (remove ' ' madam) -- remove blanks, then commas 14
HaskeLL Response e "Madaml'mAdam” 15
HaskeLL Commanp e (remove ',' . remove ' ") madam -- using curried references 16
HaskeLL Response e "Madaml'mAdam.” 17

This new function, remove, is generalizes functions like removeBlanks and removeCommas.
That is what parameterization of aformulas does:. it makes the formula apply to a more general
class of problems. When afunction invocation provides arguments to a function, the arguments

1. To put the sameideain simpler terms, reverse and reverse "Chicago" are not the same thing: reverse
isafunction that operates on one string and delivers another. On the other hand reverse "Chicago" is not
afunction. Itisastring, namely the string "ogacihC". Thisisanother case where you must keep the types
straight: reverse and reverse "Chicago" are different types of things, which implies that they can't be
the same thing.

5 Function Composition and Currying 22Q

select a particular special case of the class of problems the function’s parameterized formula can
apply to. The arguments turn the generalized formula back into one of the special cases that the
parameterization generalized.

Asyou can seein the preceding examples, theformularemove ’, * madam behavesin exactly the
same way as the formularemoveCommas madam. The function remove, has two arguments.
Thefirst argument specifies what character to remove and the second is the string whose commas
(or whatever character is specified) are to be removed. On the other hand, the function remove-
Commas has only one argument: the string whose commas are to be removed. The formula

remove’;

in which the second argument (the string to be processed) is omitted, but in which a specific value
for the first argument (the character to be removed from the string) is supplied, is an example of a
curried invocation® to afunction.

Curried invocations are functions in their own right. If you look at the formula defining the func-
tion remove,

HAskeLL DeFiniTion e remove chr str = [c | ¢ <- str, ¢ /= chr]

and you specialize it by putting a comma-character where the first argument, chr, appearsin the
formula, then you get the formula used to define the function removeCommas:

removeCommas str is defined by the formula [c]c<-str,c/="]]
remove ', str is defined by the same formula [clc<-str,c/="]]

So, the function denoted by the curried invocation remove ’,; delivers the same results as the func-
tion removeCommas. It has to, because the two functions are defined by the same formulas.

Since these curried invocations are functions, one can use them in composition. Previously a func-
tion called removeBPC, the function defined earlier in aformula composing three functions
together,

HASKELL DEFINITION * -- function to remove blanks, periods, and commas
HaskerL Derivimion e removeBPC = removeCommas . removePeriods . removeBlanks

can be defined equivalently by composing three different curried invocations to the function
remove:

HASKELL DEFINITION * -- function to remove blanks, periods, and commas
HaskeLL Derinmion e removeBPC = remove ')’ . remove "' . remove "'

The two definitions are equivalent. But, the one using curried invocations to remove, instead of
the three specialized functions, is more compact. One formula defines remove, and the definition
of removeBPC uses thisformulain three different ways. This saves writing three separate for-
mulas for the specialized functions, removeBlanks, removePeriods, and removeCommas.

1. After Haskell B. Curry, aprominent logician who, in thefirst half of this century developed many of the
theoretical foundations on which programming languages like Haskell are based. Yes, the language
Haskell was named after Professor Curry.

5 Function Composition and Currying 23Q

19

7.c2

18

Review Questions

1 Given thefollowing definitions of f and g, the following Haskell command delivers

HaskeLL Derivirione T str = [c| c <-str,c =="X"]
HASKELL DEFInITIoNe @ Str = [C | € <- reverse str, c <'n’]
HaskeLL Commano e f(g "A man, a plan, a canal. Panama!")

a syntax error, unexpected parenthesis

b theempty string

Cc syntax error, type conflict in operands

d o OXOOXXXKXXXXXXXEXXXKXXXXXXXKKX

2 Given the above definitions of f and g, and the following definition of teddy, the following command delivers
HaskeLL Derivirion e teddy = "A man, a plan, a canal. Panama!”

HaskerL Commanp e (f . g) teddy
a syntax error, unexpected parenthesis
b theempty string
c syntax error, type conflict in operands
d OXOOOKKKXXXXXXXEXXXKXXXXXXXKKX

3 Given the above definitions of f, g, and teddy, the following Haskell command delivers
HaskeLL Commanp e (. g) teddy == f(g teddy)
a syntax error, unexpected parenthesis
b theempty string
c True
d o XXXXXXXXXXXXXXXXKKKXXXXXKKKKX

4 What would be the answer to the preceding question if, in the definitions of f and g, the sense of all the compari-
sons had been reversed (not equalsinstead of equals, less-than instead of greater-than-or-equal, etc.)?
a syntax error, unexpected parenthesis
b theempty string
c True
d XOO0GKKKHKHKIXXXIIXKXXXXXXXXXKKX

5 If equals isafunction that requires two arguments, then equals 'x’ isafunction that requires
a noarguments
b oneargument
c two arguments
d three arguments

5 Function Composition and Currying 24Q

Patterns of Computation —Composition, F olding, and Mapping 6

Function composition provides away to build acomposite function that has the effect of applying
several individual functions in sequence. An example you have already seen involves removing
various characters from a string by applying, one after another, functions that each specializein

removing a particular character.

HASKELL COMMAND

HaskeLL Responsee "Madamli'mAdam”

To carry out the preceding command, Haskell
constructs a composite function from three indi-
vidual functions. The composite function suc-
cessively removes blanks (remove ’ '), then
removes periods (remove '), and finally
removes commeas (remove ;') from a string sup-
plied as an argument ("Madam, I'm Adam") to
the composite function.

The composite function (remove ', . remove '’
.remove ’’) processes its argument by applying
the blank removal function to it. The string

delivered by that function is passed along as the

(remove ',' . remove "' . remove ' ") "Madam, I'm Adam."

patterns of computation
Composition of functions, which applies a succession
of transformations to supplied data, is the most com-
mon pattern of computation. It occursin almost every
program. Folding, which reduces a sequence of values
to asingle value by combining adjacent pairs, and map-
ping, which applies the same transformation to each
value in a sequence also find frequent use in software.
You will learn about these patternsin thislesson. A
fourth common pattern, iteration, which you will learn
to use later, applies the same transformation repeatedly
toits own delivered values, building a sequence of suc-
cessively more refined iterates. These patterns of com-
putation probably account for over 90% of all the

computation performed. It pays to be fluent with them.

argument for the next function in the composite,
the period removal function. Finaly, the result
delivered by the period removal function is passed along to the comma removal function, and the
result delivered by the comma removal function becomes the result delivered by the composite
function.

The composition operation (.) has two operands, one on the left and one on the right. Both oper-
ands are functions. Call them f and g, for purposes of this discussion, and suppose that f and g
transform arguments of a particular type into results that have the same type. Call it typet, to
make it easier to talk about. Then the function delivered by their composition, f . g, also trans-
forms arguments of typet into results of typet.

You can work this out by looking at the meaning of the formula (f . g) x. This formula means the
same thing as the formulaf(g(x)). Since g requiresits argument to have typet, the formulaf(g(x))
will make sense only if x has typet. The function g operates on x and delivers avalue of typet.
Thisvalueis passed along to the function f, which takes arguments of typet and delivers values of
typet. Theresult that f delivers, then, has type t, which shows that f(g(x)) hastypet. Since

(f . g) x means the same thing as f(g(x)), (f . g) x must also have typet. Therefore, the function

f . g transforms arguments of typet into results of typet.

To carry thisastep further, if there isathird function, h, that transforms arguments of typet into
results of typet, it makes senseto compose al three functions(f . g . h), and so on for any number
of functions dealing with data of typet in this way. Function composition provides away to build
an assembly-line operation from a sequence of functions.

6 Patterns of Computation — Composition, Folding, and Mapping 25Q

o

An agument to be processed by such an assembly line first passes through the first function in the
assembly line (which is the rightmost function in the composition), and the result that the right-
most function deliers is passed along to thexhkinction in theassembly line, and so onwio

the line until the final result pops out the other end. The assembly line comes Vinghdaeeral
functions arranged in a sequence and inserting the composition operator between each adjacent
pair of functions in the sequences:

forming an assembly linedm functionsf, g, andh: f.g.h

There is an intrinsic functiorpldrl, in

Haslell that inserts a gen operation betweer
adjacent elements in avgh sequence. (Actuj foldrl (0) [Xq, Xp, ..., Xp] == X1 0 X3 0...0 X,
ally, foldrl is not the only intrinsic function in where

]foldrl (intrinsic function)

Haslell that does operator insertionytht is a U is an operation such that] y delivers
good place to start.) Inserting an operation another alue of the same type asndy
between elements in thisay “folds” the ele- | pronouncedfold-R-one (not foldepne)
ments of the sequence into a singiéue of n >1 required

the same type as the elements of the sequence.
groups fom right:X; O (Xo O... O (X1 O Xp)- -

Here is anxample of such a folding process: gl !
(mattess only if(J is not associg

If pre is a function that chooses, fromawet-
ters supplied as gmments, the one that precedes the other in the alplpabép’('q’ is’p’ and
pre'u’ 'm’is’m’). Thenfoldrl pre string delivers the letter fromstring that is earliest in the

alphabet. Using ‘pre‘ y to stand fopre x y, the follonving is a step-by-step accounting of the

reduction of the formuléoldrl pre "waffle" to the result it debers:

foldrl pre "waffle"="w’ ‘pre‘ 'a’ ‘pre’ 'f' ‘pre‘ 'f’ ‘pre’ 'I' ‘pre' e’

fw :pre: :a: :pre: f :pre: f pre’ e functions as operators
:x ‘pig‘ ,Z, ‘pig, ,];, pre- € fxy opemator form (bakquotes)—\‘
;’W’ ‘Bre‘ 'a’ P kfunction form x ‘fy
='a’

Getting back to the assembly lineaenple, folding can be used with the composition operator to
build an assembly line from a sequence of functions:
foldrl () [f,g,h] means f.g.h

This example of folding uses twnewv bits of notation. One of these is the matter of enclosing the
composition operator in parentheses in the reference to the fufadtich These parentheses are
necessary to makthe operation into a separate packagefolditl can use as angument. If the
parentheses were not present, the formaalevdenote an wocation of the composition operator
with foldrl as the left-hand gument andf, g, h] as the right-hand gument, and that euldn’t

malke sense.

The other ne& notation is a ay to specify sequences. Up toanall of the sequences in thek-
book were strings, and the notation for those sequences consisted of a sequence of characters
enclosed in quotation marks.

A sequence in Hasl can contain antype of elements, and the usuayio denote a sequence
of elements is to list them, separated by commas and enclosed in squagtskfagkh] denotes
the sequence containing the eleméngs andh.

6 Patterns of Computation — Composition, Folding, and Mapping 26Q

operators as arguments
foldrl (.) [f, g, h]
>
as an operator a5 an argunent
foldrl [f, g, h]
*®

formula makes no sense
—wrong type of operands

Operators cannot be used as arguments or operands, at least not directly, but
functions can be used as arguments or operands (as you've seen in formulas
using function composition).

Fortunately, operations and functions are equivalent entities, and Haskell pro-
vides away to convert one form to the other: an operator-symbol enclosed in
parentheses becomes a function. The function-version of the operation has the
same number of arguments as the operator has operands.
()fg means f.g
function form—* ™__ operator form

converting operators to functions

sequences (also known aslists)

NOTATION

[element,, element,, ... element,,]
MEANING

a sequence containing the listed elements
COMMENTS

¢ elements all must have same type
* sequence may contain any number of elements, including none
» sequences are commonly called “lists”

EXAMPLES

['a’, 'b’, 'c’]— longhand for "abc", a sequence of three characters
[remove’, , remove '’ , remove '’]— sequence of three functions
["alpha", "beta", "gamma", "delta"]|— sequence of four strings

The previous chapter defined afunction called removeBPC as a composition of three functions:

HASKELL DEFINITION * -- function to remove blanks, periods, and commas
HaskeLL DeFinimon e removeBPC = remove ',' . remove "' . remove ' 3afcl8

Try to define removeBPC with a new formulathat uses the function foldr1l.

6 Patterns of Computation — Composition, Folding, and Mapping 27Q

¢ HASKELL DEFINITION ?

Using this folding operation and list comprehension together, one can design a solution to the
problem of removing all the punctuation marks from a string. It requires, however, a slight twist

on the notation for list comprehension.

In the notation for sets in mathematics that inspired the list comprehension notation, transforma-
tions are sometimes applied to the typical element. In the following example, the typical element
issguared, and it is the squares of the typical elements that comprise the set.

SET NoTaTioN (MATH) ¢ { NG | x O Integers }

List comprehensions permit functions to be applied
to the typical element in the list comprehension, just
asin the notation for sets. Using thisidea, you can
write alist comprehension that changes all the letters
in astring to lower case. The function applied to the
typical element in this list comprehension will be an
intrinsic function called toLower that deliversthe
lower case version of the character supplied asits
argument. The instrinsic function operates on indi-
vidual characters, but by using list comprehension,
you can apply it to all the charactersin a string.

— set of squags of intgers

mapping— making a n@ sequence
from an old one by applyin

a function to edg of its

elements

U

[f X]| x<-Xxs5] pronounced “&es”
same function to eAcelement

known as “mapping” the functionf
onto the sequences

toLower (function in Char library) Th(_efunction toLower convertsits a_\rgument,
which must be a character (not astring), to alower

toL.ower :: Char -> Char case letter if itsargument is aletter.! If its argu-
argu‘m\em typ:\ ment isn’t aletter, toLower ssimply deliversavalue
double-colon eads “has type” result type| that is exactly the same as its argument. So, for
toLower 'A’ == '3’ example, toLower 'E’ is’e’, toLower('n’) is'n’,
toLower 'B’ =="'b’ and toLower('+") is’'+' .
etc. This function for converting from capital lettersto

toLower delivers a copy of its @ument | lower-case ones can be used in alist comprehen-

if its argument is not a capital letteision to convert all the capital |ettersin astring to

import Char(toLower) lower-case, leaving al the other charactersin the
w— access t@aoLower | string asthey were:

HaskeLL Coumanp e [toLower ¢ | ¢ <- "Madam, I'm Adam."] mappingtoLower onto the

HaskeLL REsponse e "madam, i'm adam."

sequencéMadam, I'm Adam."

By parameterizing the preceding formulawith respect to the string whose letters are being capital -
ized, define afunction to convert all the capital lettersin a string to lower case, leaving all other
charactersin the string (that is, characters that aren’t capital |etters) unchanged.

1. Thefunction toLower residesin alibrary. Library functions are like intrinsic functions except that you
must include an import directive in any script that uses them. The name of the library that toLower
residesin is Char. To use toLower, include the directive import Char(toLower) in the script that uses
it.You will learn more about import directives later, when you learn about modules.

6 Patterns of Computation — Composition, Folding, and Mapping 28Q

(G2 SN

¢ HASKELL DEFINITION ? -- convert all capital letters in a string to lower case
¢ HaskeLL Derinimion 2 import Char(toLower) -- get access to toLower function

¢ HaskerL Derivimion ? - allLowerCase str =

¢ HASKELL DEFINITION ?

HaskeLL Commanp e allLowerCase "Madam, I'm Adam."
HaskeLL Responsee "madam, i'm adam."

A sequence consisting of the three functions, remove ’;’, remove ', and remove '’ can aso be
constructed using this notation.

HASKELL COMMAND e -- formula for [remove ',', remove "', remove ' ']
HAskeLL Commanpe [remove c | c <-",."]
mapping remove onto the sequence”,. " ‘\ Thereisa blank here.

This provides anew way to build the composition of these three functions; that is, yet another way
to write the function removeBPC:

HaskeLL Derinimion e removeBPC = foldrl (.) [remove c | c <-",. "]

‘\ Thereisablank here.

By adding characters to the string in the generator (c <-
tion marks from a phrase can be written:

..), afunction to remove all punctua-

¢ HASKeLL DEFinmion ? - removePunctuation = -- you write it
¢ HASKELL DEFINITION ?

HaskeLL Commanp e removePunctuation "Madam, I'm Adam."
HaskeLL Response e "MadamIimAdam”

You need to know a special trick to include a quotation mark in a string, as required in the defini-
tion of removePunctuation. The problem isthat if you try to put a quotation mark in the string,
that quotation mark will terminate the string.

The solution is to use escape mode within the string. When a backslash character (\) appearsin a
string, Haskell interprets the next character in the string literally, asitself, and not as a special part
of Haskell syntax. The backslash does not become part of the string, but simply acts as a mecha-
nism to temporarily turn off the usual rulesfor interpreting characters.

The sametrick can be used to include the backslash character itself into astring: "\\" isastring of
only one character, not two. The first backslash acts as a signal to go into escape mode, and the
second backslash is the character that goes into the string. Escape mode works in specifying indi-
vidual characters, too: '\”" denotes the apostrophe character, for example, and ’\\' denotes the
backslash character.

The functionsremovePunctuation and allLowerCase can be composed in aformulato reduce a
string to aform that will be useful in writing a function to decide whether a phraseis palindromic
in the usual sense, which involves ignoring whether or not letters are capitals or lower case and

ignoring blanks, periods, and other punctuation. In this sense, the phrase “Madam, I’'m Adam.” is

6 Patterns of Computation — Composition, Folding, and Mapping 29Q

6a
6b

10
11

embedding a quotation mark in a string

WRONG WAY
[removec|c<-",.;:"?210"]
This_quotati on ma_lrk ‘\The remaining part of the
terminates the string. intended string gets | eft out.
RIGHT WAY
[remove c|c<-",.;\"?21()"]

In escape-mode, Haskell
interprets quotation mark
after backslash as part of
string, not as terminator.

Backslash "escapes®
normal mode and is
not part of string.

regarded as palindromic. The characters in the phrase do not read the same backwards as for-
wards, but they do spell out the same phrase if punctuation and capitalization are ignored.

Use the functions removePunctuation and allLowerCase from this chapter and the function
isPalindrome from the previous chapter to write afunction that deliversthe value True if its
argument is a palindromic phrase (ignoring punctuation and capitalization) and whose value is
False, otherwise.

¢ HaskeLL Derivimion 2 isSPalindromic = -- you write this definition
¢ HASKELL DEFINITION ?

HaskeLL Commanp » iSPalindromic "Able was | ere | saw Elba."
HASKELL RESPONSE ¢ True

HaskeLL Coumanp e iSPalindromic "Able was | ere | saw Chicago."
HaskeLL Response e False

The definition of the function isPalindromic uses func-
tion composition in a more general way than previous for-
Haskell uses the name Bool for thetype | | as, In previous formulas, both functions involved in
consisting of thevalues True and False. | yhe composition delivered values of the same type as their

arguments. In this case, one of the functions (isPalin-
drome) delivers avalue of type Bool, but has an argument of type String. Yet, the composition
makes sense because the value delivered to isPalindrome in the composition comes from
removePunctuation, and removePunctuation delivers values of type String, which isthe
proper type for arguments to isPalindrome.

Boolean type: Bool

The crucial point isthat the right-hand operand of the function composition operation must be a

function that delivers avalue that has an appropriate type to become an argument for the left-hand
operand. With this restriction, function composition can be applied with any pair of functions as

its operands.

6 Patterns of Computation — Composition, Folding, and Mapping 30Q

12

13
14
15
16

other correct answers

Either of the following definitions would also be correct.

HASKELL DEFINITION ®

Definitions appear on A-page.

Review Questions

1 Supposethat post isafunction that, given two letters, chooses the one that follows the other in the al phabet
(post'x’ 'y'is’y’; post’u’ 'p’is’'u’). Thentheformulafoldrl post string delivers
a theletter from string that comes earliest in the alphabet
b theletter from string that comes latest in the al phabet
c thefirst letter from string
d thelast letter from string

2 Supposethat && is an operator that, given two Boolean values, delivers True if both are True and False other-
wise. Then the formulafoldrl (&&) [False, True, False, True, True] delivers the value

a True
b False
c Maybe

d Nothing — the formula doesn’'t make sense

3 Intheformula foldrl f [a, b, c, d]
a a, b, c,andd must have the same type
b fmust deliver avalue of the same type asits arguments
¢ fmust beafunction that requires two arguments
d all of the above

4 If fisafunction that requires two arguments, then foldrl f isafunction that requires
a noarguments
b oneargument
c two arguments
d three arguments

5 The second argument of foldrl must be
a asequence
b afunction
¢ asequence of functions
d afunction of sequences

6 Patterns of Computation — Composition, Folding, and Mapping 31Q

6 If nextisafunction that, given aletter, delivers the next letter of the alphabet, then the mapping processin the
formula[next c | ¢ <- "hal"] deliversthe string

a "lah"
b "ibm"
c "dm"
d "lha"

7 Thestring "is \"hot\" now"
a hasfour quotation marksin it
b hasexactly two spaces and two back-slashes
¢ has 12 characters, including exactly two spaces
d has 14 characters, including exactly two spaces

6 Patterns of Computation — Composition, Folding, and Mapping 32Q

Types 7

Haskell programs can deal with many different types of data. You already know about three types
of data: string, Boolean, and character. And you have learned that the Haskell system keeps track
of types to make sure formulas use data consistently.

Up to now, the discussion of types has been informal, but even so, you may have found it tedious
at times. In this chapter the discussion gets more formal and probably more tedious. Thiswould
be necessary at some point, in any case, because types are kind of afetish in the Haskell world.
Fortunately, it is aso desirable. The idea of typesis one of the most important concepts in com-
puter science. It isafundamental, organizing influence in software construction. It will pay you to
try to apply these ideas, even when you are writing software in alanguage not as mindful of types
as Haskell.

nonsense!
HASKELL CoMMAND ¢ reverse X’

HaskerL Responsee ERROR: Type error in application

HASKELL RESPONSE ® ~ *** : reverse X'
HASKELL RESPONSE* *** term X
HASKELL RESPONSE* ~ *** type : Char

HAskeLL REsponse e *** does not match : [a]

Theformulareverse "X’ makes no sense because the function reverse requiresits argument to be
astring. But the erroneous formula supplies an individual character, not a string, as an argument
of reverse. The response is some startling gobbledygook that tries to explain why the Haskell
system can't make sense of the command. You will need to understand types to make sense of
error reportslike this.

The Haskell response says “Type error in application.” You probably have a vague notion of
what atype error is, but what is an application? An application isaformula, or part of aformula,
that applies a function to an argument. In this case the application isreverse 'x’, and it isdis-
played on the line following the “ Type error in application.” message. So far, so good.

Next, the report displaysthe term with the erroneoustype [names of types
('x") and states itstype (Char). Char is the formal name
of the data type that the textbook has been referring to Char individual character ('x')

informally as “individual character” From now on, it's String sequence of Char (*abc”)
Char. synonym of [Char]

Bool Boolean (True, False)
Now comes the really mysterious part: all typen in Haskell begin with
*** does not match: [a] capital letters

Up to now, you have seen only part of the story about the
type that the function reverse expects its argument to be — reverse has been applied only to
arguments of type String, which are sequences of characters. However, reverse can handle any
argument that is a sequence, regardless of the type of the elements of the sequence.

In the message “does not match: [a]”, the“[a]” part specifies the type that the term X' does not

7 Types 33Q

match. The type “[a]” represents not just a single type, but a collection of types. Namely, it repre-
sents all types of sequences. The “a” in the notation stands for any type and is known as atype
variable. The brackets in the notation indicate that the type is a sequence. Altogether, “[a]” indi-
cates a sequence type in which the elements have type a, where a could be any type.

sequence types| !f thetypea were Char, then the type [a] would mean
[Char]. The type String is a synonym for sequence of

[Char] [a', b, ’c] characters, which iswhat [Char] means (Haskell often
same as "abc” uses the [Char] form to denote thistype in its error

[Bool] [True, False, True] reports). Therefore, one of the types that reverse can

[[Char]] sametypeas [String] accept as an argument is String. But it could also accept
[[a’, 07, [d', e, 'f]] arguments of type [Bool], or [String] (equivalently
same as["ab", "def"] [[Char]], indicating a type that is a sequence, each of

atype specifier of theform([a] (thatis, | Whose elements is a sequence with elements of type
a type enclosed in brackets) indicates | Char), or any other type.

a sequence type — the elementsof | |y symmary, the error report says that the argument sup-
the sequence have type a plied to reverse hastype Char, that reverse expectsan

argument of type [a], and that Char is not among the
typesindicated by [a]. In other words, Char is not a sequence. You already knew that. Now you
know how to interpret the error report from the Haskell system.

type-inquiry command

HaskeLL Commanp e reverse "abcdefg”
HaskeLL Response e "gfedcba”
HaskeLL Commanp e :type reverse "abcdefg"”

fype command inquires formula about whose type the
;';\bout the type of a formula :type command isinquiring
ormula whose type fol lows double-colonreads type delivered by formuia
the double-colon “ has type”

HaskeLL Response» reverse "abcdefg” 1 [Char] C[Char] is & synonym of St”r@

You can ask the Haskell system to tell you what type aformula delivers by using the type-inquiry
command, which is simply the symbol :type (starts with a colon, like :load — all Haskell com-
mands that aren’t formulas start with a colon) followed by the name or formulawhose type you'd
like to know. Haskell will respond with the type of the name or the type of the value that the for-
mula denotes.

HaskeLL Commanp e reverse [True, False, False]
¢ HASKELL RESPONSE ?
HaskeLL Commanp e type [True, False, False]

¢ HASKELL RESPONSE ?

7 Types 34Q

N

0 N o O

HaskeLL Coumanp e :type ["aardvark”, "boar", "cheeta"]

¢ HASKELL RESPONSE ?

HaskeLL Commanp e reverse ["aardvark”, "boar", "cheeta"]

¢ HASKELL RESPONSE ?

HASKELL COMMAND ©

¢ HASKELL RESPONSE ?

‘type reverse ["aardvark”, "boar", "cheeta"]

Review Questions

1 The
a
b
c
d

2 The
a
b
c
d

3 The
a
b
c
d

4 The
a
b
c
d

type of [[True, False], [True, True, True], [False]] is
mostly True

ambiguous

[Bool]

[[Bool]]

type of ["alpha”, "beta", "gamma"] is
[[Char]]

[String]

both of the above

none of the above

type of [["alpha", "beta", "gamma'l, ["psi", "omega"]] is
[String]]

[[Char]]

[String]

[String, String]

formula foldrl (.) [f, g, h, K] delivers

astring

afunction

a sequence

nothing — it’s an error because k can’t be afunction

5 Which of the following is a sequence whose elements are sequences

a
b

(¢

d

6 The
a
b
c
d

["from", "the", "right"]

[["Beyond", "Rangoon"], ["Belle", "du", "Jour"]]
(@] ['b].[c]]

all of the above

type of theformula foldrl (.) [f, g, h, K] is

String -> String

the same as the type of f

the same as the type of the composition operator

[a] -> [b]

7 If thetypeof fis String -> String, then thetype of [f x | X <- xs] is

a

b
c
d

7 Types

String -> String
String

[String]

none of the above

35Q

13
14
11
12

8 TheHaskell entity [["Beyond”, "Rangoon”], ["Belle", "du”, "Jour"]] hastype
a [[String]]
b [[[Char]]]
¢ both of the above
d none of the above

7 Types 36Q

Function Types, Classes, and Polymorphism 8

Functions have types, too. Their types are characterized by the types of their arguments and
results. In this sense, the type of afunction is an ordered sequence of types.

For example, the function reverse takes arguments of type [a] and delivers values of type[a],

where [a] denotes the sequence type, a generalized type that includes type String (sequences of

elements of type Char — another notation for the typeis [Char]), Boolean sequences (sequences
with elements of type Bool, the type denoted by [Bool]), sequences of strings (denoted [[Char]]
or, equivalently, [String]), and so on. A common way to say thisisthat reverse transforms values
of type[a] to other values of type [a]. Haskell denotes the type of such afunction by the formula

[a] -> [a].

HASKELL COMMAND » type reverse
HASKELL RESPONSE reverse :: [a] -> [a]

polymor phism

Polymorphism is the ability to assume different forms. Func-
tions like reverse are called polymor phic because they can
operate on many different types of arguments. Thisnotion plays
an important role in modern software devel opment. The use of
polymorphism reduces the size of software by reusing defini-
tions in multiple contexts. It also makes software more easily
adaptable as reguirements evolve.

Functions defined in scripts al so have types. For example, the function isPalindromic was defined

earlier in the workbook:

HaskeLL Derivimion e iSPalindromic =

HASKELL DEFINITION * isPalindrome . removePunctuation . allLowerCase
HaskeLL Coumanp » :type isPalindromic

HaskeLL Response e isPalindromic :: [Char] -> Bool

This function transforms strings to Boolean values, so itstype is [Char]->Bool. Thisisamore

restrictive type than the type of reverse. The reason for the restriction is that isPalindromic

applies the function allLowerCase to its argument, and allLowerCase requires its argument to

be a String.

HaskeLL Derinimion e allLowerCase str = [toLower ¢ | ¢ <- str]
HaskeLL Commanp e type allLowerCase
HaskeLL Response e allLowerCase :: [Char] -> [Char]

An argument supplied to allLowerCase must be a String because it applies the intrinsic function
toLower to each element of its argument, and toLower transforms from type Char to type Char.

HaskeLL Commanp e :type toLower

¢ HASKELL RESPONSE ?

8 Function Types, Classes, and Polymorphism

37Q

15
16

20
21
22

23
24
25

26
27

To continue the computation defined in isPalindromic, the function removePunctuation, like
allLowerCase, transforms strings to strings, and finally the function isPalindrome transforms
strings delivered by removePunctuation to Boolean values. That would make [Char]->Bool the
type of isPalindrome, right?

Not quite! Things get more complicated at this point because isPalindrome, like reverse, can
handle more than one type of argument.

HaskeLL Derinirion e isSPalindrome phrase = (phrase == reverse phrase)
HaskeLL Commanp e :type isPalindrome
HaskeLL Response e isPalindrome :: Eq a => [a] -> Bool

Whoops! There's the new complication. The [a] -> Bool part is OK. That means that the isPalin-
drome function transforms from sequences to Boolean values. But where did that other part come
from: Eqa=>?

Eq isthe name of aclass. A classisacollection of types that share a collection of functions
and/or operations. The class Eq, which isknown asthe equality class, isthe set of typesonwhich
equality comparison is defined. In other words, if it is possible to use the operation of equality
comparison (==) to compare two items of a particular type, then that typeisin the class Eq.

The"“Eq a =>" portion of the response to the inquiry about the type isPalindrome isarestriction
on thetypea. It saysthat thetype a must bein the classEq in order for [a] -> Bool to be a proper
type for isPalindrome.

The type for the function reverse, which is[a] -> [a], has no restrictions; reverse can operate on
sequences of any kind. But an argument of isPalindrome must be a sequence whose elements can
be compared for equality. This makes sense because isPalindrome compares its argument to the
reverse of its argument, and two sequences are equal only if their elements are equal. So, to make
its computation, isPalindrome will have to compare elements of its argument sequence to other
values of the same type. So, the restriction to equality types is necessary.

When isPalindrome was first written, the intention was to apply it only to strings, but the defini-
tion turned out to be more general than that. It can be applied to many kinds of sequences. Argu-
ments of type [Bool] (sequences of Boolean values) or [String] (sequences of String values)
would be OK for isPalindrome because Boolean values can be compared for equality and so can
strings. A sequence of type [Char->Char], however, would not work as an argument for isPalin-
drome because the equality comparison operation (==) is not able to compare values of type
Char->Char, that is functions transforming characters to characters.? So, isPalindrome is poly-
morphic, but not quite as polymorphic asreverse.

Operators are conceptually equivalent to functions and have types as well. The equality operator
(==) transforms pairs of comparable items into Boolean values. When a function has more than
one argument, the Haskell notation for its type has more than one arrow:

1. Thereisamathematical concept of equality between functions, but the equality comparison operator (==)
is not able to compare functions defined in Haskell. There is agood reason for this: it is not possible to
describe a computation that compares functions for equality. It can be done for certain small classes of
functions, but the computation simply cannot be specified in the general case. The notion of incomput-
abilty isan important concept in the theory of computation, one of the central fields of computer science.

8 Function Types, Classes, and Polymorphism 38Q

17.d23
18
19

- parentheses make this the function-version of the operator ==
HASKELL ComMmanD » :type (==)
HaskeLL Responsee EqQ a => a -> a -> Bool

The type of the equality operator is denoted in Haskell as a->a->Bool, where a must be in the
class Eq (types comparable by ==). Thisindicates that the equality operator, viewed asafunction,
takes two arguments, which must have the same type, and delivers a Boolean value.

Take another ook at the function remove, defined previoudly:

HASKELL DEFINITION * -- function to remove character chr from string str

HaskeLL DEfFinon e remove chr str = [c¢ | ¢ <- str, ¢ /= chr] 28
HaSKeLL CoumanD » Type remove 30
HasKELL ResPonse» remove & Eq a => a -> [a] -> [a] 29

The function remove has two arguments, so its type has two arrows. Itsfirst argument can be any
typein the class Eq, and its other argument must then be a sequence whose e ements have the
same type asitsfirst argument. It delivers a value of the same type as its second argument.

The function was originally designed to remove the character specified in itsfirst argument from a
string supplied asits second argument and to deliver asits value acopy of the supplied string with
all instances of the specified character deleted. That is, the type of the function that the person
who defined it had in mind was Char->[Char]->[Char], a specia case of a->[a]->[a].

The Haskell system deduces the types of functions defined in scripts. Thetypeit comesup within

this deductive process is the most general type that is consistent with the definition. The designer

of afunction can force the type of the function to be more specific by including atype declar a-
type declaration

tion with the definition of the function in the script.
- - type of value delivered
function whose typeis by function
being declared

HaskeLL Derinimion e remove :: Char -> String -> String-- type declaration
HAsKEeLL DEFINTioN e remove chr str = [c | ¢ <- str, ¢ /= chr] 3

types of arguments
first

second

A type declaration may confirmor restrict the type of a function.

The Haskell systemwill issue an error report if the type declaration is neither the
same as the type that Haskell deduces for the function or a special case of that
type.

It isgood practice to include type declarations because it forces you to formulate
a framework of consistency among the types you are using in a program.

The type declaration must be consistent with the type that the Haskell system deduces for the
function, but may be a special case of the deduced type. Sometimes, because of ambiguitiesin the
types of the basic elements of a script, the Haskell system will not be able to deduce the type of a
function defined in the script. In such cases, and you will see some of these in the next chapter,
you must include a type declaration.

It isagood practice to include type declarations with all definitions because it forces you to

8 Function Types, Classes, and Polymorphism 39Q

understand the types you are using in your program. This understanding will help you keep your
concepts straight and make it more likely that you are constructing a correct program. If the
Haskell system deduces a type that isincompatible with a declaration, it will report the inconsis-
tency and the type it deduced. This information will help you figure out what is wrong with your
formulas.

Review Questions

1 Polymorphic functions
a changethetypes of their arguments
b combine data of different types
C canoperate on many types of arguments
d gradually change shape as the computation proceeds

2 Thefunction toUpper takes aletter of the al phabet (avalue of type Char) and delivers the upper-case version of
the letter. What is the type of toUpper?
a polymorphic
b Char-> Char
c lower -> upper
d cannot be determined from the information given

3 Avaueof type[a] is
a asequence with elements of several different types
b aseguence with some of its elements omitted
Cc asequence whose elements are also sequences
d asequence whose elementsare al of typea

4 A function of type[a] -> [[a]] could
a transform acharacter into a string
b deliver asubstring of agiven string
c ddiver astring like its argument, but with the charactersin a different order
d transform astring into a sequence of substrings

5 Suppose that for any type a in the class Ord, pairs of values of type a can be compared using the operator <. A
function of type Ord a => [a] -> [a] could
a rearrange the elements of a sequence into increasing order
b deiver asubsequence of a given sequence
¢ both of the above
d none of the above

6 Suppose Ord isthe class described in the preceding question. What is the type of the operator <.
a Orda=>a->a->Bool
b Orda=>a->Bool
¢ Orda=>a->Char
d Orda=>a->[Char]

7 Theequality class
a includesall Haskell types
b iswhat makes functions possible
¢ iswhat makes comparison possible
d excludesfunction types

8 Function Types, Classes, and Polymorphism 40Q

8 A functionwiththetype Eq a =>a -> Bool
a requiresan argument with the name a
b delivers True on arguments of type a
c ispolymorphic
d must beequa toa

9 If thetypeof f hasthreearrowsinit, thenthetypeof f x has
a onearrowinit
b twoarrowsinit
c threearrowsinit
d four arrowsinit

10 A polymorphic function
a hasmore than one argument
b hasonly one argument
c may deliver values of different typesin different formulas
d can morph many things at once

8 Function Types, Classes, and Polymorphism 41Q

Types of Curried Forms and Higher Order Functions 9

Curried forms of function invocations supply, as you know, less than the full complement of argu-
ments for afunction. The formula used to define the function removePunctuation, for example,
used alist of curried invocations of remove.

HaskeLL DeFiniTion e removePunctuation = foldrl (.) [remove c | ¢ <-",. ;:\"?!()"] 32
HASKELL CommAND * :type remove 35.30c2
HaskeLL Respons+ remove 1 Eq a => a -> [a] -> [a] 36.29c2
HAsKeLL CommanD e :type remove '?' 33

¢ HASKELL RESPONSE ? 34

The curried invocation remove '?’ supplies one argument to the two-argument function remove.
The first argument of remove can be of any type (any type in the equality class, that is), asyou
can seein itstype specification. The argument supplied in thisinvocation has type Char, whichis
in the equality class. So far so good.

Thetype of remove indicates that its second argument must be a sequence type, and the elements
of the sequence must have the same type asits first argument. Thisimplies that when the first
argument has type Char, the second argument must have type [Char]. The value that result deliv-
ers has the same type as its second argument, as the type of remove shows.

Therefore, the type of the curried invocation, remove '?’, must be [Char]->[Char]. That is, the
function remove '?’ has type [Char]->[Char].

finding the type of acurried invocation
f transforms arguments of
fra>ph 4 type a to values of type b

X a -e-— Xhastypea g transforms two arguments (of types
PRV implies a and b, resp.) to a value of type c

g:a->b->c
X h.asty_pea\> X" a
implies
g X transforms one argument (of
type b) to a value of type c

g x:b->c

Now that you know the type of acurried invocation like remove '?’, what do you think would be
the type of the sequence of such invocations that are part of the formulafor the function remove-
Punctuation?

HASKEeLL Coumanp e :type [remove c | c <-",.;:\"?1()"] 37
¢ HASKELL RESPONSE ? 33

Thisis a sequence whose elements are functions. Remember! The elements of a sequence can
have any type, aslong as al the elements of the sequence have the same type.

9 Types of Curried Forms and Higher Order Functions 42Q

Another part of the formulafor the function remove-
Punctuation isthe composition operator expressed in the
form of afunction: (.). The type of thisone getsalittle [Functions that have an argument
complicated because both of its arguments are functions |that is, itself, a function are called
and it delivers afunction asits value. The functions sup- [higher-order functions. Functions
plied as arguments can transform any type to any other |that deliver a valuethat is, itself, a
type, but they must be compatible for composition: the |function arealso called higher-order

higher-order functions

right-hand operand must be a function that delivers a functions. The composition operator
value of atype that the left-hand operand canuseasan |isa higher-order function that does
argument. both.

When the operands are compatible in this way, then the

result of the composition will be afunction that transforms the domain of the right-hand operand
into the range of the left-hand operand. These hints may help you work out the type of the compo-
sition operator.

HasKeLL Commanp » :type (.) 39

¢ HASKELL RESPONSE ? 40

In the definition of removePunctuation, composition is being used to compose curried invoca-
tions of remove. These curried invocation have the type [Char] -> [Char]. When two such func-
tions are composed, the result is another function of the same type (because the domain and range
of the operands are the same). So, the composition taking place in aformula such as

remove’, . remove’’
has type
([Char]->[Char]) -> ([Char]->[Char]) -> ([Char]->[Char])

Thisisaspecial case of the polymorphic type of the composition operator. Actualy, the last pair
of parentheses in this type specification are redundant because the arrow notation is right-associa-
tive (see box). Haskell would omit the redundant parentheses and denote this type as

([Char]->[Char]) -> ([Char]->[Char]) -> [Char]->[Char]

arrow (->) isright-associative

To make the arrow notation (->) for function types compatible with curried forms
of function invocations, the arrow associatesto theright. Thatis,a -> b ->cis
interpreted asa -> (b -> ¢) automatically, even if the parentheses are missing. In
reporting types, the Haskell system omits redundant parentheses.

9 Types of Curried Forms and Higher Order Functions 43Q

The function foldr1 is another higher-order
function. Itsfirst argument is a function of two
arguments, both of the same type, that delivers
valuesthat also have that type. The second argu-
ment of foldrl is a sequence in which adjacent
elements are pairs of potential arguments of the
function that isthe first argument of foldrl. The
function foldrl treats the function (its first argu-
ment) asif it were an operator and inserts that
operator between each pair of adjacent elements
of the sequence (its second argument), combin-
ing al of the elements of the sequence into one
value whose type must be the type of elements
the sequence.

HaskeLL Commanp e type foldrl

¢ HASKELL RESPONSE ?

foldrl

where ‘op* denotes the operator equivalent
to the two-argument function op. More pre-
cisely, it meansw ‘op* (x ‘op‘ (y ‘op* z)).
The"r" in foldrl meansthat the operation is
to be carried out by associating the operands

foldrl op [w, X, Y, Z]
means

w ‘op‘ X ‘'op‘y ‘op‘ z

in the sequence from the right.

The definition of removePunctuation supplies, as a second argument to foldrl, a sequence of
functionsthat transform [Char] to [Char]. That is, the data type of the elements of the sequenceis
[Char]->[Char]. This means that the first argument must be a function that takes two arguments
of type [Char]->[Char] and delivers a value of that same type. It also means that the value that
this application of foldrl will deliver will have type [Char]->[Char].

That is, in this particular case, foldrl isbeing used in a context in which itstypeis
([Char]->[Char]->[Char]) -> [[Char]] -> [Char]

Thisisjust one of the specific types that the polymorphic function foldrl can take on.

Review Questions

1 Suppose functions f and g have types Char -> String and String -> [String], respectively.

Then their composition g . f hastype
a Char -> String

b Char -> String -> [String]

¢ Char -> [String]

d [[String]]

2 Supposethetype of afunctionfis f:: String -> String -> Bool. Thenthetypeof f"x" is

a Bool

b String

¢ String -> Bool

d Nothing— f"x" isnot aproper formula

3 Supposethetype of afunctionfis f:: Char -> String -> [String] -> [[String]].

Then f'x’ and f’'X' "y" have, respectively, types
a [String] -> [[String]] and [[String]]
Char -> String -> [String] and Char -> String

b
c String -> [String] -> [[String]] and [String] -> [[String]]
d

Nothing— f’X’ isnot a proper formula

9 Types of Curried Forms and Higher Order Functions

44Q

4 Because the arrow notation isright associative, thetype a -> b -> ¢ has the same meaning as
a (a->b)->c

b a->(b->c¢)
c (a->b->c¢)
d a->b(>¢)

5 The composition operator hastype (.) :: (a -> b) -> (c -> a) -> (c -> b). Another way to expressthistypeis
a ()Jra->b->(c->a)->(c->hb)
b ():(@->b)->(c->a)->c->b
c ()ra->b->c->a->(c->h)
d ():ra->b->c->a->c->b

6 The composition operator hastype (.) :: (a ->b) -> (c -> a) -> (c -> b). Another way to expressthistypeis
a ()i(b->c)>(@->b)->(@->c)
b ()=:@->c)->(b->a)->(b->c)
c ()i(c->a)>(b->c)->((b->a)
d al of the above

7 A function whosetypeis (a -> b) -> ¢ must be
a lower order
b middle order
¢ higher order
d impossibleto define

8 If afunctionfhastype f:: a-> a, thentheformulas f'x’ and f True have, respectively, types
a CharandBool
b [Char] and [Bool]
¢ Char -> Char and Bool -> Bool
d cannot be determined from given information

9 Types of Curried Forms and Higher Order Functions 45Q

Private Defi nitions —the where-clause 10

Functions, once defined in a script, can be used in formulas that occur anywhere in the script.
Sometimes one wants to define afunction or variable that will only be used in formulas that occur
in asingle definition and not in other definitions in the script. This avoids cluttering the name
space with functions needed only in the context of a single definition.

The concept of private variables versus public .
variables provides away to encapsulate por- variables
tions of aprogram, hiding internal detailsfrom | Namesused in Haskell programs are sometimes
other parts of the program. Encapsulation is | ¢aled variables, like names used in mathematica
one of the most important ideas in software equations. It's a bit of amisnomer, Since their vl
engineering. Without it, the development of ues, once defined, don't vary. The sameistruein

L ; . mathematical equations: there is only one value
large software systemsis virtually impossible. for x in the equation x + 5 = 10

encapsulation The examples of o
the next few chapters have to do with different ways to represent

information, from numbers to encrypted text. I nfor mation repre-
internal detailsin one com- | Sentation isanother central theme of computer science. For this rea-
ponent will have no affect | SO the examples themselves are as important to your education as
on other components of the | the programming methods that you will be learning along the way.

isolating components of
software so that modifying

software Thefirst example discusses some methods for representing numbers.
These methods apply only to non-negative numbers without frac-
tional parts — integers from zero up, in other words — but the ideas carry over to the representa-
tion of other kinds of numbers and even to other kinds of information. In fact, a subsequent
example will use these number representation ideas to do encryption and decryption of text.

Numbers are denoted by numerals. Numerals and numbers are not the same things: oneis a sym-
bol for the other. For example, 87 isanumera often used to denote the number four score and

seven, but LXXXVII (Roman), 57 (hexadecimal), / \+t (Chinese), and 1010111 (binary) are other
numerals also in common use to denote the same quantity that the decimal numeral 87 represents.

The Haskell language uses decimal numerals to denote numbers, but the Haskell system uses it
own internal mechanisms, which it does not reveal to the outside world, to represent inits calcula-
tions the numbers that these numeral's denote.

A decimal numeral uses base ten, positional notation to represent a number. The number that a
decimal numeral represents, isthe sum of a collection of multiples of powers of ten. Each position
in the numeral represents a different power of ten: the rightmost digit position is the units place
(ten to the power zero); the next position is the tens place (ten to the power one); next the hun-
dreds place (ten to the power two); and so on. The digits of the numeral in each position specify
which multiple of the power of ten represented by that position to include in the collection of
numbers to add up.

10 Private Definitions — the where-clause 46Q

decimal numerals
numeral
* dn dn-l - dl dO

number
thousands place

hundreds place dyx10" +d,,x10™1 +[1T3 dyx10 +dyx10°
‘e”fjg'ig;ace = ([II{dx10 + dy,.1)x10 + (T3 dy)x10 +dj
A
1492 =dgy + 10x(d; + [ITH# 10%(dy,.q + 10xdy,) (LD}
_ =do 0 (dy 0 OO (dyp.q O) CII)
one-thousand four-hundred ninety-two where dO0s=d + 10xs

If the digitsin adecimal numeral ared,, dy,.; . . . dy dy whered; isthedigitinthe 10' position,
then the number the numeral denotesis the following sum:

dyx10" +d,, 1 x10™1 +[1 dyx10" +dyx10°

A direct way to compute this sum would be to compute the powers of ten involved, multiply these
quantities by the appropriate coefficients (the d; values), then add up the results. This approach

requires a lot of arithmetic: n-1 multiplications for the power 10", n-2 multiplications for 10™%,
and so on, then n+1 more multiplications to handle the coefficients, and finally n additions.

A more efficient way to compute the sum isto look at it in anew form by factoring out the tens.

The new formula, a special case of amethod known as Horner’s rule for evaluating polynomials,
doesn’t require any direct exponentiation — just multiplication and addition, and only n of each.
Thisleads to the Horner formula:

dg + 10x(dq + [TTH 10x(d,,.1 + 10xd,,) [LI) Horner Formula

There are n stages in the Horner formula, and each stage requires a multiplication by ten of the
value delivered by the previous stage, and then the addition of a coefficient value. This pair of
operations can be viewed as a package. The following equation defines a symbol (L) for that
package of two operations:

dls=d +10xs
With this new notation, the following formulais exactly equivalent to the Horner formula.
do U (dy O [T (dyq O dy) [N Horner Formula using [

In this form, the Horner formulais just the d; coefficients combined by inserting the [operation
between each adjacent pair of them and grouping the sequence of operations with parentheses
from the right. Thisis exactly what the foldr1 function of Haskell does: it inserts an operator
between each adjacent pair of elementsin a sequence and then groups from the right with paren-
theses (that’s what the “r” stands for in foldrl — “from the right™). So, foldrl should be useful in
expressing the Horner formulain Haskell notation.

Using the [l-version of the Horner formula as a guide, try to use foldrl to define a Haskell func-
tion to compute the value expressed by the Horner formula. The argument of the function will be

10 Private Definitions — the where-clause 47Q

asequence of numbers [dy, dy, ..., dy,.1, d] of anew type, Integer, that can act as operandsin

addition (+) and multiplication (0) operations. The formulain the function will use foldrl and will
also use afunction called multAdd, defined below, which isaHaskell version of the circle-cross

operator (1), defined above.

Integral types —Integer andInt

Haskell uses ordinary decimal numerals to denote integral numbers. They may be positive
or negative; negative ones are preceded by a minus sign. There are two kinds of integral
numbersin Haskell: Integer and Int. Integer numbers behave like mathematical integers
in arithmetic operations: addition (+), subtraction (-), multiplication (0), quotient-or-next-
smaller-integer (‘div*), clock-remainder (n[{m ‘div‘ n) + m ‘mod‘ n == m), and exponen-
tiation (") deliver Integer values from Integer operands. Numbers of type Int behave in
the same way, except that they have alimited range (about 10 decimal digits).

0 nada 14110 altitude of Pile’'s Reak
23 Jordan’s number -280 altitude of Death #ley
23 ‘mod‘ 12 “film at” number -3 Samzans number
55div' 5 “film at” again 7 ‘mod’ (-5) Sarmzans number gain
59 ‘div' 5 and ajain 5‘div' (-2) Sarmazan yet gain

» The operands of ordinary division (/) are not Integral numbersin Haskell.
» Because the minus sign is used to denote both subtraction and the sign of Integer
numbers, negative integers sometimes need to be enclosed in parentheses:
mod 7 (-5) not mod 7 -5, which would mearfmod 7) - 5, whid is nonsens
» Context determines whether a particular numeral in aHaskell script denotes an
Integer or an Int.

112

¢ HaskeLL Derivimion 2 multAdd d s =d + 10*s

¢ HaskeLL Derinimion 2 hornerl0 ds = -- you define horner10

¢ HASKELL DEFINITION ? 1
HaskeLL Commanp e hornerlO [1, 2, 3, 4] 2
HaskeLL Responsee 4321 3

The multAdd function istailored specifically for use in the definition of horner10. It isnot likely
to be needed outside the context of that definition. For this reason, it would be better to make the
definition of multAdd private, to be used only by horner10.

Haskell provides a notation, known as the where-clause, for defining names that remain unknown
outside a particular context. Names defined in awhere-clause are for the private use of the defini-
tion containing the where-clause. They will be unknown elsewhere.

A where-clause appears as an indented subsection of a higher-level definition. The indentation is
Haskell’s way of marking subsections — it is a bracketing method known as the offsidesrule. A
where-clause may contain any number of private definitions. The end of a where-clause occurs
when the level of indentation moves back to the left of the level established by the keyword
where that begins the where clause.

10 Private Definitions — the where-clause 48Q

where-clause—dr defining private terms

A where-clause makes it possible to define terms for private use entirely within the con-
fines of another definition.

» Thekeyword where, indented below the definition requiring private terms,
begins the where-clause, and the clause ends when the indentation level returns
to the previous point.

» Thewhere-clause can use any termsit defines at any point in the clause.

* A where-clause within a function definition can refer to the formal parameters
of the function.

HaskeLL Derinimion e sumOfLastTwoDigits x = d1 + dO

HASKELL DEFINITION where -
uses paameterx
HASKELL DEFINITION d0=x‘mod 10 <+ P

HASKELL DEFINITION * d1 = shift ‘mod* 10
uses private variablshift
defined hex

HASKELL DEFINITION ® shift = x ‘div* 10

offsides rule — aradketing metianism

HaskeLL Derinimion e inches yds ft ins =

HASKELL DEFINITION * insFromFt (ft + ftFromYds yds) + ins

HaskeLL Derinirion e feet mis yds = fm + fy

HASKELL DEFINITION * where

HASKELL DEFINITION * fm = ftFromMiles mis indentation marksyden

HASKELL DEFINITION * fy = ftfromYds yds
HaskeLL DEriniTion e INSFromFt ft = 120t

of current definition

return to pevious indentation heel
e ends pavious definition
o starts nev definition

Thefollowing new definition of horner10 uses awhere-clause to encapsul ate the definition of the
multAdd function.

¢ HaskeLL Derivimion 2 horner10 ds = -- you define it again
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ? multAdd d s=d + 10*s

One of the goals of this chapter was to put together a function to transform lists of digits repre-
senting decimal numerals into the numbers those numerals denote. The function horner10 essen-
tially doesthat, except for akind of quirk: the numeral iswritten with its digits reversed (with the

10 Private Definitions — the where-clause 49Q

units place on the left (first in the sequence), then the tens place, and so on. The following func-
tion acceptsalist of digitsin the usual order (units place last), and delivers the number those dig-

its represent when the sequence is interpreted as a decimal numeral.

¢ HaskeLL Derinimion 2 integerFromDecimalNumeral ds = --you define it

¢ HASKELL DEFINITION ?

HaskeLL Commanp e integerFromDecimalNumeral [1,4,9,2]
HaskeLL Responsee 1492

The decimal numeral representing a particular integer is not unigue. It is always possible to put
any number of leading zeros on the front of the decima numeral without affecting the value the
numeral represents: [1, 4,9, 2], [0, 1,4, 9, 2],and [0, 0, 1, 4, 9, 2] al represent the integer 1492.

Similarly, you can always add or remove any number of leading zeros in a numeral without
changing the integer the numeral represents.

How about zero itself? The numerals[Q], [0, O], and [0, O, O] all represent zero. You caninclude as
many zero digits asyou like in the numeral. Or you can remove any number: [0, O, 0], [0, 0], [C],

[1. Whoops! Ran out of digits. How about that empty sequence?

For reasons having to do with how the function will be used in subsequent chapters, it isimportant

for the function integerFromDecimalNumeral to be able to deal with the case when the

sequence of digits representing the decimal numeral is empty. Asthe above analysis shows, it is
reasonable to interpret an empty sequence of digits as one of the alternative decimal numerals for

zero.
Aswritten, integerFromDecimalNumeral will fail if its argument is the empty sequence:

HaskeLL Commanp e integerFromDecimalNumeral []
HaskeLL Response e Program error: {foldrl (v706 {dict}) []}

comparison operations on Integral types

Integral values can be compared for equality and for order:

e equato X ==
* not equal to xIl=y
* lessthan X<y
e greater than X>y
* lessthan or equal to X<=y
e greater than or equal to X>=y

Relationship of the class Integral to other classes

* intheequality class (EQ)

* inaclasscaled Ord, the class for which the operations |ess-than, greater-than,
less-than-or-equal-to, and greater-than-or-equal -to (plus two operations derived
from these: max and min), are applicable

* inahierarchy of numeric classes that relate different kinds of numbers, classes
that you will learn about later

10 Private Definitions — the where-clause

50Q

5

6
-

The error message is pretty much undecipherable, but it does indicate a problem with foldrl. The
problem isthat foldrl expects its the sequence to be non-empty (that’s what the “1” standsfor in
foldrl — “at least one element”). It doesn’t know what to do if the sequence has no elements.

However, Haskell provides another intrinsic function foldr, that acts like foldrl, but can also han-
dle the empty sequence. The first argument of foldr is afunction of two arguments. Like foldrl,
foldr views this function as an operator that it places between adjacent pairs of elements of a
sequence, which is supplied asits last argument.

But, foldr hasthree arguments foldr
(unlike foldr1, which as only
two arguments). The second foldr op z[xq, Xp, .., Xp] =

argument of foldr isavalueto X1 ‘0p‘ (X ‘op’ (... ‘op’ (X,‘0p' 2) ...))
serve as the right-hand oper-
and in the rightmost applica-
tion of the operation. In case foldropz[]=z
the sequence (third argument)
isempty, it isthis value (sec-
ond argument) that foldr
delivers asits result.

In fact, foldr deliversthe
same value that foldrl would have delivered when supplied with the same operator asits first
argument and, for its other argument, a combination of the second and third arguments of foldr
(namely, a sequence just like the third argument of foldr, but with the second argument of foldr
inserted at the end). This makesit possible for foldr to deliver a value even when the sequenceis
empty.

foldr op z [w, X, y] =w ‘op* (X ‘op’ (y ‘op‘ 2))

HaskeLL Ipenmiye foldrl op xs = foldr op (last xs) (init xs)
where
last xs isthe last element in the sequence xs
init Xs is the sequence xs without its last element

To work out what an invocation of foldr means, augment the sequence supplied as its third argu-
ment by inserting its second argument at the end the sequence, then put the operator supplied as
its first argument between each adjacent pair of elements in the augmented sequence. For exam-
ple, foldr could be used to define a function to find the sum of a sequence of numbers:

HaskeLL Derinimion e total xs= foldr (+) O xs

HaskeLL Coumanp» total [12, 3, 5, 1, 4] total [12, 3,5, 1, 4] =

HASKELL RESPONSE* 25 12+@B+5B+@1+@+0))
HaskeLL Commanp » total [100, -50, 20]

¢ HASKELL RESPONSE ?

The function horner10 can be defined using foldr instead of foldrl by supplying zero as the sec-
ond argument. This makes integerFromDecimalNumeral work properly when the numeral is
empty. The computation is subtly different: the rightmost multAdd operation in the foldr con-
struction will be d+10LD, where d isthe last high-order digit of the numeral (that is, the coeffi-
cient of the highest power of ten in the sum that the numeral represents). Since 10L0 is zero, this
extramultAdd step doesn’t change the result.

No change needs to be made in the definition of integerFromDecimalNumeral. Its definition
depends on horner10. Once hornerl0 is corrected, integerFromDecimalNumeral computes
the desired results.

10 Private Definitions — the where-clause 51Q

¢ HaskeLL Derivimion 2 hornerl0 ds = -- you define (0 on empty argument)
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

HaskeLL Commanp e hornerlO [1, 2, 3, 4]

HaskeLL Responsee 4321

HaskeLL Commanp e hornerl0 []

HaskeLL Responsee O

HaskeLL Commanp e integerFromDecimalNumeral []
HaskeLL REsPonsEe O

Review Questions

1 Integral numbers are denoted in Haskell by
a decimal numerals enclosed in quotation marks
b decimal numerals— no quotation marks involved
¢ decima numerals with or without quotation marks
d vauesof type String

2 TheHaskell system, when interpreting scripts, represents numbers as
a decimal numeras
b binary numerals
¢ hexadecimal numeras
d however it likes— none of your business anyway

3 Encapsulation
a prevents name clashes
b prevents one software component from messing with the internal details of another
Cc isoneof the most important conceptsin software engineering
d al of the above

4 A where-clausein Haskell defines variables that
a will be accessible from al where-clauses
b takethe name of the where-clause as a prefix
¢ cannot be accessed outside the definition containing the clause
d have strange names

5 InHaskell, the beginning and end of adefinition is determined by
a begin and end statements
b matched sets of curly braces{ }
Cc indentation
d however it likes— none of your business anyway

6 Theintrinsic function foldr
a ismore generally applicable than foldrl
b takes more arguments than foldrl
c can accommodate an empty sequence asits last argument
d all of the above

7 What value does the following command deliver?
HaskeLL Derivimion e ¢t xs= foldr addOne 0 xs
HASKELL DEFINITION where

10 Private Definitions — the where-clause 52Q

HASKELL DEFINITION ® addOne x sum =1 + sum

HAskeLL Commanp e Ct [1, 2, 3, 4]
10, by computing 1+(2+(3+(4+0)))
4, by computing 1+(1+(1+(1+0)))

5, by computing 1+(1+(1+(1+1)))
nothing — ct is not properly defined

o0 T W

10 Private Definitions — the where-clause 53Q

Tuples 11

Consider the reverse of the problem of computing
the number that a sequence of digits represents.
Suppose, instead, you would like to compute the
sequence of digitsin the decimal numeral that
denotes a given number. In one case, you start with
a sequence of digits and compute a number, and in
the other case you start with anumber and compute

a sequence of digits.

The units digit of the decimal numeral for anon- * these are equivalent notations
negative number is simply the remainder when the when op has two arguments
number is divided by ten. The clock-remainder * op may have adefined fixity (left-,

function, mentioned in the previous chapter, can be

used to extract this digit:

HASKELL DEFINITION ®
HASKELL COMMAND

unitsDigit x =
unitsDigit 1215

¢ HASKELL RESPONSE ?

making functions into operators

function syntax op argl arg2
operator syntax argl ‘op, arg2

2,

backquote— ooks like backwards
danting apostrophe on keyboard

cedence that affects grouping

right-, or non-associative) and pre-

X ‘mod” 10

The trick to getting the tens digit of a number isto first drop the units digit, then extract the units

digit of what's | eft:

HaskeLL Derinimion e tensDigit x = d1
HASKELL DEFINITION ® where
HASKELL DEFINITION * xSansLastDigit =

HASKELL DEFINITION ®

HaskeLL Commanp e tensDigit 1789

¢ HASKELL RESPONSE ?

x “div: 10

d1l = xSansLastDigit ‘'mod" 10

It often happens that the ‘div* and ‘mod* operators need to be used together, asin the calculation
of thetens digit of anumeral. For this reason, Haskell includes an operator called ‘divMod’ that
delivers both the ‘div* part and the ‘mod* part in the division of two Integers. The ‘divMod* oper-
ator returnsthis pair of numbersin a Haskell structure known as atuple.

patterns must match exactly

If atuple of variables appearson theleft sidein
adefinition, the value on the right must be a
tuple with the same number of components. A
definition is an equation. If one side of the
equation hasone form (say atwo-tuple) and the
other side has a different form (say athree-
tuple), it can't redlly be an equation, can it?

11 Tuples

A tuplein Haskell is an aggregate of two or more
individual components. The components may be

of any type, and different items of atuple may

have different types. Tuples are denoted in Haskell
scripts by alist of the components, separated by
commas, with the entire list enclosed in parenthe-

SES.

Equations that define variables as tuples can use a
single name for the whole tuple, or they can use
tuple patternsto give a name to each component. When atuple pattern is defined, the first vari-

54Q

N -

o b~

able getsthe value of the first component of the tuple in the formulaon the right hand side, and the
second variable gets the value of the second component.

The ‘divMod* operator computes the quotient and remainder of two integral operands. Its |eft
operand acts as the dividend and the right operand acts as the divisor. It delivers the quotient and
remainder in the form of atuple with two components:

x ‘divMod* d = (x ‘div‘ d, x ‘mod* d)

tuples

("Rodney Bottoms", 2. True) :: (String, Integer, Bool)
(6,1) :: (Integer, Integer) — result of 19 ‘divMod’ 3

e must have at least two components

» components may be of different types

e components separated by commas

* parentheses delimit tuple

» type of tuple looks like a tuple, but with types as components

The quotient x ‘div* d isthe next integer smaller than the exact ratio of the x to d, or the exact ratio
itself if x divided by d isan integer. (Thisiswhat you'd expect if both arguments are positive. |
oneis negative, then it is one less than you might expect.) The remainder x ‘mod’ d is chosen to
make the following relationship True.

dox ‘div' d) + (x ‘mod* d) ==

One can extract the hundreds digit of a numeral through an additional iteration of the idea used in
extracting the units and tens digits. It amounts to successive applications of the ‘divMod’ operator.
All of this could be done with the ‘div* and ‘mod* operators separately, of course, but since the
operations are used together, the ‘divMod" operator is more convenient.

HaskeLL Derivimion e hundredsDigit x = d2

HASKELL DEFINITION * where

HASKELL DEFINITION * (xSansLastDigit, d0) = x ‘divMod™ 10

HASKELL DEFINITION ® (xSansLast2Digits, d1) = xSansLastDigit "divMod™ 10
HASKELL DEFINITION * (xSansLast3Digits, d2) = xSansLast2Digits "divMod™ 10
HaskeLL Commanp e hundredsDigit 1517

¢ HASKELL RESPONSE ?
The definition
(xSansLastDigit, d0) = x ‘divMod* 10

defines both the variable xSansLastDigit (defining its value to be the first component of the tuple
delivered by x ‘divMod’ 10) and the variable dO (defining its val ue to be the second component of
the tuple delivered by x ‘divMod* 10). The other definitions in the above where-clause also use
tuple patterns to define the two variables that are components in the tuple patterns.

11 Tuples 55Q

(o¢]

Review Questions

1 Thetypeof thetuple ("X Windows System”, 11, "GUI") is
a (String, Integer, Char)
b (String, Integer, String)
¢ (X Windows System, Eleven, GUI)
d (Integer, String, Bool)

2 After thefollowing definition, the variables x and y are, respectively,
HASKELL DEFINITION ® (X, YY) = (24, "XXIV")
a both of type Integer
b both of type String
c anlinteger and a String
d undefined — can’t define two variables at once

3 After thefollowing definition, the variable x is
HASKELL DEFINITION e X = (True, True, "2")
a twiceTrue
b atuplewith two components and a spare, if needed
c atuplewith three components
d undefined — can't define a variable to have more than one value

4 After the following definition, the variable x is
HASKELL DEFINITION e x = 16 ‘divMod" 12

a 1+4
b 16+4
c 1x12+4
d (1,4

5 TheformuladivMod x 12 == x ‘divMod* 12 is
a (x'div'12, x ‘mod* 12)
b (True, True)
¢ Trueif xisnot zero
d True, no matter what Integer x is

6 Inadefinition of atuple
a both components must be integers
b thetuple being defined and its definition must have the same number of components
¢ surplus components on either side of the equation are ignored
d al of the above

11 Tuples 56Q

The Class of Numbers 12

The function horner10 is polymorphic. It operates on a class of numeric types.
HaskeLL Derivimion e hornerl0 :: Num a => [a] -> a

This type specification says that the argument of horner10 does not have to be Integral. It can be
of any type belonging to the class Num.

Num isaclass containing atotal of six subclasses and eight specific types. So far the only specific
type from class Num that you have seen is Integer. The type Integer is one of two typesin the
class Integral. The class Integral is a subclass of the class Real, and the class Real is, in turn,
one of the two primary subclasses of the class of numbers, which is called Num.

One way to view the class structure of Num isto look at it as a Venn diagram. In the diagram, a
region that is wholly contained in another region indicates a subclass relationship. Overlapping
regions represent classes that share some of their types and subclasses. Specific types that belong
to aparticular class are displayed inside the region representing that class.

Each class of numbers shares a collection of operations and functions. For example, avalue from
any of the eight typesin the class Num is a suitable operand for addition (+), subtraction (-), or
multiplication (), and a suitable argument for negation (negate), absolute value (abs), signum
(signum), or conversion from Integer to another numeric type (frominteger). These are the
seven intrinsic operations shared among all typesin class Num.

The Class of Numbers

Classes
& Num

AR

Fractional
RealFrac

Floating
Integral

12 The Class of Numbers 57Q

Other numeric operations are restricted to subclasses. For example, ‘mod* and ‘div* require oper-
andsfrom the class Integral, which meanstheir operands must either be of type Integer or of type

Int (integers restricted to the range® -2 to 229-1).

Anot_he_zr _exampl eisdivision (_/). Operands of Why several types of numbers?
the division operator must bein the class Frac- o N . .
tional. Some of the typesin the class Frac- Primarily to make efficient computation possible. The

. . . instructions sets of most computers provide instructions
tional are represented in what is known as to do fast arithmetic on three types: Int, Float, and

floati ng point form. Fi oating point numbers Double. In theory, the type Integer would be adequate
have a fixed number of digits, but a decimal for convenient programming of any Integral computa-
point that can be shifted over awide range to tion. The type Int wouldn’t be needed. In practice, on

represent large numbers or small fractions. On | the other hand, operations on numbers of type Integer
most computer systems, the type Float carries proceed at a pace that could be a hundred times slower

. . . . than computations with numbers of type Int. Some-
about seven decimal digits of precision, and times, you just don’t have a hundred times longer to

Double carries about sixteen digits. wait. That'swhat Int is for, to make the computation go
There are many other functions and operators | faster when you don’t need extrarange.

associated with various subclasses of Num.

You can learn about them on an as needed basis, referring to the Haskell Report where necessary.

In this chapter, the only new class of numbers you need to know about is Integral. Asyou can see
in the diagram this includes two types: Int and Integer. Both types are denoted in Haskell by dec-
imal numerals, prefixed by aminus sign (-) in case they are negative. The difference between the
two typesisthat one has arestricted range and the other has an unlimited range.

The official Haskell requirement isthat any integer in the range -22° to 22°-1 is alegitimate value
of type Int. Outside that range, there are no guarantees.

Some of the intrinsic functionsin Haskell that will be needed in the next chapter deal with values
of type Int. These intrinsic functions convert between values of type Char and values of type Int.
Because of the way Haskell represents characters, there are only 255 different values of type
Char. So, the type Int has plenty of range to handle integer equivalents of values of type Char,
and the designers of Haskell didn’t see much point in doing acomplicated conversion when asim-
ple one would do.

Given the information that addition (+) and multiplication (C) can operate on any type in the class
Num and that 'divMod’ must have operands from the class Integral, try to figure out the most
general possible types of the following functions.

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? horner b ds = foldr (multAdd b) 0 ds
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? multAdd b d s= d + b*s

1. Thisrangeisrequired of al Haskell systems. Usually the range will depend on the underlying hardware.

For example, 231 to 23L1isthe range of integers supported by hardware arithmetic on many popular
chip architectures, so that is the range of values of type Int on most Haskell systems.

12 The Class of Numbers 58Q

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

integerFromNumeral b x = (horner b . reverse) x

numeralFrominteger b x =
reverse [d | (s,d) <- takeWhile (/= (0,0)) (sdPairs b x)]

sdPairs b x = iterate (nextDigit b) (x "divMod" b)

nextDigit b (xShifted, d) = xShifted "divMod™ b

Hint on a tough one: nextDigit ignores the second component in the tuple supplied as its second
argument, so it doesn’t care what type that component has.

Review Questions

In the Haskell class of numbers, Int and Integer

a arebasicaly the sametype

b arethe sametype except that numbers of type Integer can be up to 100 digits long
c aredifferent typesbut x+y is ok, evenif x is of type Int and y is of type Integer

d aredifferent types, but both in the Integral subclass

In the Haskell class of numbers, Float and Double

a arebasicaly the sametype

b arethe sametype except that numbers of type Double can be up to 100 digitslong
c aredifferent typesbut x+y is ok, even if x is of type Float and y is of type Double
d aredifferent types, but both in the RealFrac subclass

What is the most restrictive class containing both the type Integer and the type Float?

a Num
b Real
¢ RealFrac

d Fractional

In the Haskell formula n/d, the numerator and denominator must be in the class

a Integral

b RealFrac
¢ Fractional
d Floating

12 The Class of Numbers

59Q

5 What isthe type of the function ?
HASKELL DEFINITIONe f X y = X[y
a Float -> Float -> Float
b Real num => num -> num -> num
¢ Fractional num => num -> num -> num
d Floating num => num -> num -> num

6 What isthetype of theformula(gn 1) ?
HASKELL DEFINITION® g X y = X+Y
HASKELL DEFINITION ® 1 :: Int
HASKELL CoMMAND® g n 1

Int

Integer

Integral

Real

o0 T

12 The Class of Numbers 60Q

lteration and the Common Patterns of Repetition 13

Look again at the definition of the function hundredsDigit from the previous chapter:

HaskeLL Derivimion e hundredsDigit x = d2

HASKELL DEFINITION * where

HASKELL DEFINITION * (xSansLastDigit, d0) = x ‘divMod™ 10

HASKELL DEFINITION ® (xSansLast2Digits, d1) = xSansLastDigit "divMod™ 10
HASKELL DEFINITION * (xSansLast3Digits, d2) = xSansLast2Digits "divMod™ 10

All of the definitions in the where-clause perform the
same operation on different data, and the data flows
from one definition to the next. That is, information | To iterateisto do the same thing again
generated in the first definition is used in the second, | @d again. In software, this amountsto
and information generated in the second definition is asuccf on of appl |c§§||ons ththe I
used in thethird. It isasif afunction were applied to ?Thi spgilggé r:ppﬁ " g;]t?r: o?r:? t
some data, then ?he samefuncﬂ on "?pp"ed agan tothe words, to form a composition with sev-
result produced in the first application, and finally the | o4 applications of the same function:
same function applied a third time to the result pro-
duced in the second application. Thisillustrates a

common programming method known as iteration.

iteration

(f.H)x — 2iterations of f
(f.f.f.f.f)x —Siterationsof f

Technically, in software, iteration requires composing a function with itself. First, you apply the
function to an argument. That’s one iteration. Then, you apply the function again, thistime to the
result of thefirst iteration. That's another iteration. And so on.

The where-clause in the definition of the function hundredsDigit almost meets this technical def-
inition of iteration, but not quite. The missing technicality isthat, while data generated in one iter-
ation isused in the next, it is not used in exactly the form in which it was delivered.

Thefirst iteration delivers the tuple (xSansLastDigit, d0), and the second iteration uses only the
first component of thistuple to deliver the next tuple (xSansLast2Digits, d1). Thethird iteration
follow the same practice: it uses on the first component of the tuple to compute the third tuple.
With alittle thought, one can iron out this wrinkle and define hundredsDigit in the form of true
iteration in the technical sense.

Thetrick isto define afunction that generates the next tuple from the previous one. This function
will ignore some of the information in its argument:

HaskerL Derinimion e nextDigit(xShifted, d) = xShifted "divMod™ 10
HaskeLL Coumanp e nextDigit(151, 7)

¢ HASKELL RESPONSE ?

The nextDigit function can be used to define hundredsDigit in a new way, using true iteration:
¢ HaskerL Derivimon 2 hundredsDigit x = d2
¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ?

13 Iteration and the Common Patterns of Repetition 61Q

w N

This scheme leads to a ssmple formulafor extracting any particular digit from a number: put
together an n-stage composition of nextDigit to extract digit n of a decimal numeral, where n rep-
resents the power of ten for which that digit is the coefficient:

HaskeLL Commanp e X ‘divMod’ 10 —extracts digit O

HaskeLL Commanp e nextDigit (X ‘divMod’ 10)—extracts digit 1

HaskeLL Commanp e (nextDigit . nextDigit) (x ‘divMod* 10)— extracts digit 2

HaskeLL Coumanp e (nextDigit . nextDigit . nextDigit) (x ‘divMod* 10)—extracts digit 3

The above formulas are iterations based on the function nextDigit. Each formula delivers atwo-
tuple whose second component is the extracted digit. Thisformulation of digit extraction suggests
away to derive a complete decimal numeral from a number: just build the sequence of digits
through successively longer iterations of the function nextDigit:

[dO, d1, d2, d3, ..]=[d | (s, d) <- [x ‘divMod" 10,

nextDigit (x ‘divMod* 10),
tuple-patterns can be
used in generators, too

(nextDigit . nextDigit) (x ‘divMod’ 10),
]

(nextDigit . nextDigit . nextDigit) (x ‘divMod’ 10),
e]
The Haskell language provides an intrinsic function to build the sequence of iterations described
in the above equation. The functionis called iterate, and its two arguments are a (1) afunction to
be repeated in the iterations and (2) an argument for that function to provide a starting point for
the iterations.

For example, if iterate were applied to the func- Hint
tion that adds one to its argument and to a starting iterate add1 0 =
point of zero, what sequence would it generate? [0, add1 0, (add1 . add1) 0

Haskerl Derinmone addln=n+1 (addl . addl . addl) O,

HaskeLL Commanp e iterate addl O (addl . addl . addl . addl) O,
In asimilar way, an invocation of iterate can gen- o]

erate the powers of two. In this case, instead of
adding one, the iterated function doubles its argument.

HaskeLL Derinirion e double p = 20p
HaskeLL Commanp » iterate double 1

Combining these two ideas |eads to aformula for the sequence of tuplesin which the first compo-
nent is the power to which the base (2) is raised and the second component is the corresponding
power of two.

HaskerL Derinimion e add1Double (n, p) = (n + 1, 2(p)
HaskeLL Commanp e iterate addlDouble (0, 1)
HASKELL RESPONSE *

13 Iteration and the Common Patterns of Repetition 62Q

In general, the function iterate builds a sequence that reflects the cumulative effects of applying a
given function, repeatedly, to an argument supplied as a starting point.

iterate :: (a->a)->a->][a]

iterate f x = [dgy, dy, dp, ds, ...]
where
[dg,dy,dp,d3, ... =[x, fx, (F.f)x (F.f.f)x ...]

* iterate generates a sequence with an infinite number of elements
» caculationsthat useiterate will truncate the sequence it generates when the
elements needed in the computation are delivered

The above definition of iterate isintended to describe the result that iterate delivers.
The definition uses some Haskell syntax, but is not written purely in Haskell. The fol-
lowing equation defines iterate formally in Haskell. Don't try to puzze out its mean-
ing at this point —you don’t have all the necessary information yet.

HaskeLL Derinirion e iterate f x =[x] ++ iterate f (f x) 6

Now take another look at the formulas for the digits of the decimal numeral of x:

[x ‘divMod’ 10,
nextDigit (x ‘divMod’ 10),
(nextDigit . nextDigit) (x ‘divMod’ 10),
(nextDigit . nextDigit . nextDigit) (x ‘divMod’ 10), ...]

Try to use the function iterate to write a Haskell function that delivers the sequence of digitsin
the decimal numeral of a given integer. Don’'t worry, at this point, about the sequence being infi-
nite.

¢ HaskeLL Derivimion 2 allDigitsinNumeralStartingFromUnitsPlace x =
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

HaskeLL Commanp e allDigitsInNumeralStartingFromUnitsPlace 1863

HaskeLL Responsee [3, 6, 8,1, 0, 0,
o,0000,0,00,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
oo00000,000,000,000,00000000,00,0,
0, 0, 0, 0, 0,"C{Interrupted'}

interrupted by pressing control-C
— otherwise, it keeps on going like
the Energizer Bunny

13 Iteration and the Common Patterns of Repetition 63Q

ing characteristic.

non-terminating computations and embedded saitey

Iteration is one of the mechanisms that makes it possible for programmers to describe
non-terminating computationsin Haskell. Such computations are needed in some types of
software. For example, the software that controls an ATM (automatic teller machine)
describes a non-terminating computation: serving a customer amounts to one session of
an unlimited number of sessions that occur as customers, one after another, use the
machine. Most software embedded in devices for control purposes has this non-terminat-

Device control is an areathat has been truly liberated by the advent of small, cheap com-
puter chips. In the days of mechanical controls, most devices sensed external conditions
with the same components that actuated controls. There was little opportunity for trandlat-
ing conditions detected by sensors into complex control sequences. Electronic controls
have made it possible to do agreat deal of analysis of conditions and to take different
actions based on those conditions. Fuel injection systems, anti-lock braking systems,
sophisticated stereo equipment, music synthesizers, electronic thermostats, and multi-
function wrist watches are examples of the benefits of this technology.

zipWith :: (a-> b ->c¢) -> [a] -> [b] -> [C]
zipWith op [xq, %, %3, ...] [V, ¥2.V3, ...] =
[Op X1 Y1 Op X2 Y2, Op X3Y3, ...]
Note: zipWith delivers a sequence whose length
matches that of the shorter of the sequences supplied

asitslast two arguments. Zipping stops when one of
those arguments runs out of elements.

filter :: (a -> Bool) -> [a] -> [a]
filter keep xs = [x | x <- xs, keep X]
filtering as folding:

filter keep = foldr op []
where result if keep x is True

op Xys

| keep x = if not

| otherwise =ys q¢— ——

map :: (a -> b) ->[a] -> [b]
map f xs = [f X | x <- xs]

mapping as élding:
map f =foldr op []
where
op xys =[fx] ++ys

mapping as zipping:
map f = zipWith op (repeat(error "ignored"))
where
op ignored x = f x

13 Iteration and the Common Patterns of Repetition

Iteration consists of repeating the same compu-
tation over and over. You have seen two other
forms of repeated computation, mapping and
folding, for which Haskell providesintrinsic
operators. You have also used list comprehen-
sion to express the idea of filtering — that is,
selecting certain elements from a given
sequence to form a new one.

Thereisanintrinsic function filter for this tran-
sormation, which can be defined as afolding
process. Most computations calling for repeti-
tion fall into one of these patterns or into a pat-
tern called zipping, which is a generalized form

of mapping.

When you are trying to describe a computation
that involves repetition, try to view it as one of
common patterns: mapping, folding, filtering,
iteration, and zipping. The operators map, foldr,
filter, iterate, and zipWith make up akind of
linguistic shorthand that covers probably over
90% of the computations involving repetition
that you will encounter in practice.

It paysto try to view repeated computationsin
one of the common patterns because you will
acquire afacility for quickly understanding

64Q

computations specified in these ways, and thiswill make it more likely that your programswill do
what you expect. And, other people will find it easier to understand your programs when you
write them in this way.?

Review Questions

1 Theiterate function
a ddiversan infinite sequence asits value
b appliesafunction to the value that function delivers, over and over
c ddiversitssecond argument as the first element of a sequence
d all of the above

2 What value do the following Haskell commands deliver?
HASKELL DEFINITION® add2n=n + 2
HASKELL COMMAND » iterate add2 O
HASKELL COMMAND » iterate add2 1
the biggest number that Haskell can compute
nothing — they aren’t proper commands
the number that is two more than the starting point
one delivers the sequence of even numbers, the other the odds

o0 T

3 Usetheiterate function to generate the sequence [Xg, X1, X, Xs, ...] wherexg =1 and X,4; = 11x, mod 127.
a nextx=x/127 011

iterate next 1 pseudorandom numbers

b nextx = (110X) ‘mod‘ 127 Sequences like [Xo, X1, Xp, X3, -] (in which each successive ele-
iterate next (1/11 ‘div* 127) ment is the remainder, using afixed divisor, when the previous

c nextx=(11k) ‘mod‘ 127 element is multiplied by afixed multiplier) sometimes exhibit
iterate next 1 many of the statistical properties of random sequences. Thisis

d none of the above the usual way of generating “random” numbers on computers.

1. Thereisanother reason for using standard operators to specify repetition: efficiency. People who develop
systems that carry out Haskell programs realize that most repeating computations will be described in a
standard way, so they invest agreat deal of effort to ensure that their systems will use computing
resources efficiently when performing one of the common repetition operations.

13 Iteration and the Common Patterns of Repetition 65Q

Truncating Sequences and Lazy Evaluation 14

Sometimes a computation will need to work with part of a sequence. To accommodate situations
like these, Haskell providesintrinsic functions that accept a sequence as an argument and deliver
part of the sequence as aresult. Four such functions are take, drop, takeWhile, and dropWhile.

The function take delivers an initial segment of a sequence. Itsfirst argument says how many ele-
ments to include in the initial segment to be delivered, and its second argument is the sequence
whose initial segment isto be extracted. The function drop delivers the other part of the sequence
— that is, the sequence without a specified number of its beginning elements.

take, drop :: Int -> [a] -> [a]

take N [Xq, Xo, -y Ko Xt s - = X0 X0 ooy X
drop n[X1, Xo, -y ¥ X4 1s -4 = X Xe1s -

HaskeLL Commanp e take 3 [1, 2, 3,4, 5, 6, 7]
¢ HASKELL RESPONSE ?

HaskeLL Commanpe drop 3 [1, 2, 3,4, 5, 6, 7]
¢ HASKELL RESPONSE ?

HaskeLL Commanp e (take 3 . drop 2) [1, 2, 3, 4,5, 6, 7]
¢ HASKELL RESPONSE ?

HaskeLL Commanp » take 3 [1, 2]

HAskeLL REsPonsE e [1, 2] — takes as many as aravailable
HaskeLL Commanp e drop 3 [1, 2]
HaskeLL REsponsE e |] — drops as many as it can; deliweempty list

Try to define a function that delivers a sequence of the thousands digit through the units digit of
the decimal numeral denoting a given number. Use the function take and the function allDigitsIn-
NumeralStartingFromUnitsPlace (defined in the previous chapter) in your definition.

¢ HaskeLL Derinimion 2 lastFourDecimalDigits x = -- you define it
¢ HASKELL DEFINITION ?

HaskeLL Commanp e lastFourDecimalDigits 1937
HaskeLL Responsee [1, 9, 3, 7]
HaskeLL Commanp » lastFourDecimalDigits 486

¢ HASKELL RESPONSE ?
HaskeLL Commanp » lastFourDecimalDigits 68009
¢ HAsKeLL Response 2 [8, 0, 0, 9]

The functions takeWhile and dropWhile are similar to take and drop, except that instead of
truncating sequences based on counting off a particular number of elements, takeWhile and
dropWhile look for elements meeting a condition specified in the first argument.

14 Truncating Sequences and Lazy Evaluation 66Q

~N O O AOWDN P

Thefirst argument of takeWhile and drop-
While isafunction that delivers Boolean val-
ues (True/False). Thisfunctioniscalled a
predicate. Aslong as elementsin the
seguence pass the test specified by the predi-
cate (that is, aslong as the predicate delivers
True when applied to an element from the ini-
tial part of the list), takeWhile continuesto
incorporate these elements into the sequenceit
delivers. When takeWhile encounters an ele-
ment that failsto pass the test, that element
and all that follow it in the sequence are trun-
cated (actually, they are never generated in the
first place — see box on lazy evaluation).

lazy evaluation
The Haskell system always waits until the last minute to
do computations. Nothing is computed that is not
needed to deliver the next character of the result
demanded by the command that initiated the computa-
tioninthefirst place.

So, when takeWhile is applied to a sequence, the only
elements of the sequence that will ever be generated are
those up to and including the first one that fails to pass
takeWhile'stest of acceptance (that is, its predicate).

Thisisknown aslazy evaluation, and it has many conse-
quences of great value in software design.

The function dropWhile delivers the elements from the trailing portion of thelist that takeWhile
would truncate: take and takeWhile truncate atrailing segment of a sequence, and drop and
dropWhile truncate an initial segment of a sequence..

takeWhile P [Xl, X2,] = [Xl’ X2, "'Xk-l]
dropWhile p [Xq, X, ...] = X Xict1, -+

HASKELL COMMAND

¢ HASKELL RESPONSE ?

HASKELL COMMAND

¢ HASKELL RESPONSE ?

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]

where x isthe first element such that p x is False
takeWhile odd [3,1,4,1,5,9, 2, 6]

dropWhile odd [3,1,4,1,5,9, 2, 6]

odd isanintrinsic function
that delivers True if itsargu-

ment is not divisible by two

operator section
« curried form of the less-than function (<)
* (<5)x isequivalentto x <5

y

HASKELL COMMAND

HAskeLL REsponse e [3, 1, 4, 1]
HASKELL COMMAND *
HaskeLL REsponse [5, 9, 2, 6]

takeWhile (<5)[3, 1,4, 1,5, 9, 2, 6]

dropWhile (<5)[3,1,4,1,5,9, 2, 6]

The takeWhile function provides the means to the goal of writing a function to build the decimal
numeral of agiven integer. The function allDigitsinNumeralStartingFromUnitsPlace, devel-
oped in the previous chapter, almost does the trick. But, it delivers too many digits (an infinite
number) and it delivers them backwards (the units digit first, then tens digit, etc.). The function
contains essentially the right ideas, but needs to incorporate some sort of truncation.

14 Truncating Sequences and Lazy Evaluation

67Q

With takeWhile as the truncation mechanism, the criterion for deciding where to truncate
requires some trigkanalysis.

Reconsider the functiosdPairs that was defined for the benefit aliDigitsinNumeralStarting-
FromUnitsPlace:

HaskerL Derinimion e sdPairs x = iterate nextDigit (x "divMod™ 10) 8

ThesdPairs function luilds the sequence of tuples ta#lDigitsinNumeralStartingFro-
mUnitsPlace extracts the digits of the decimal numeral from.

HaskeLL Commanp e sdPairs 1954 9
HaskeLL Response e [(195,4), (19,5), (1,9), (0,1), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0),
(0,0), (0,0, (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0),
(0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0),
(0,"C{Interrupted!} 10
The digits in the numeral for the igierx are the second-components of the tuples in the sequence
sdPairs x. That is, thed-components of the foleing sequence are the digits of the numeral.

sdPairs X = [(sp, do), (Sy, dp), (S,), -]
wheres ;1 =S, ‘div' 10 anddy,, =S, ‘mod- 10 for allk> 0

The abee formulas imply that i§, is zero, then botg,,, andd,,, are zero, which means that as
soon as, becomes zero, no subsequent elements of the sequence will contain non-zero digits for

the numeral. So, tadild the numeral, all elements of the sequenceei&d bysdPairs x beyond
the first one where trecomponent is zero can be truncated.

On the other hand, the numeral contains all non-zerg
digits that occur in thd-component, so no such compo- _
nents can be truncated from the sequence if the numégéfo“ knav, an operator with t operands

is to be constructed from what is left comes a functions with eaguments
) when its operatesymbol is enclosed in

The upshot of these twobserations is this: to con- parentheses. .
struct the numeral, all the sequence elements will bgWhen one operand of the operator is supp|
needed up to,u not including, the first element whergl"Side the parentheses, the resulting funct
both thes-component and thitcomponent are zero. Sa 1o o1 0né @ument. The other gument i

. P . P) the \alue specified as an operand:
the truncation function should ®lelementsg d) from

operator sections

==0) X X ==
the sequence as long asd) # (0,0), but it can truncate E< 0)3(x< 0
all elements starting from the first one that eq(@[3). (‘div* 10) x x ‘div' 10
Obviously, lazy evaluation is going to beery important ET)); le i

in this computation. If the Hask system werem’lazy; Exception!(-c) is not an operator section
it might go on foreer generating more and mosz d)- It is a number — the wative ofc
pairs that wuld never be needed.

The predicate to test for this conditiomwid be the operator secti¢fx (0,0)), so the truncation
formula would be

takewhile (/= (0,0)) (sdPairs x)

14 Truncating Sequences and Lazy Evaluation 68Q

Imbed this truncation in the formula defining the function allDigitsinNumeralStartingFro-
mUnitsPlace, then apply reverse to get the digits in the conventional order (units digit last) to
construct afunction that builds a sequence containing the digits of the decimal numeral represent-
ing a given number:

¢ HaskeLL Derinimion ? - decimalNumeralFrominteger x = -- you define it
¢ HASKELL DEFINITION ? 11
HaskeL Commann e decimalNumeralFrominteger 1975 12
HaskeLL Responsee [1, 9, 7, 5] 13
Review Questions

1 What isthe value of w?
HASKELL DEFINITION® U, V, W :: String
HASKELL DEFINITION U = "Four vier cuatro”
HaskeLL DEFINITION® v =drop 5 u
HASKELL DEFINITION® W =drop 5 v
a "Four"
b ‘vier"
c cuatro"
d ‘"cinco"

2 What string does the following command deliver?
HAskeLL CommAND » takeWhile (/= blank) "Four score and seven"
a "score and seven"

b " score and seven"
¢ "Four "
d "Four"

3 What string does the following command deliver?
HASKELL CommAND ¢ dropWhile (/= blank) "Four score and seven"
a "score and seven"
b " score and seven"
¢ "Four "
d "Four"

4 What value does the following command deliver?
HASKELL DEFINITION e dozen=[1, 2, 3,4,5,6,7,8,9, 10, 11, 12]
HASKELL CommAND [take 2 xs | Xs <- iterate (drop 2) dozen]
a [1,2,3,4,5,6]
b [[1,2],[3 4][5 6] (7 8],[9 10}, [11, 12], [, [L. [L [L. []. .-]
c [2,4,6,8,10,12]
d [[1,2,3,4,5,6],[7,8,9, 10, 11, 12]]

5 Which of the following formulas delivers the product of the numbers in the sequence xs?
a dropWhile (/= 0) (iterate (O xs)
b takeWhile (/= 0) (iterate () xs)
c foldr (O O xs
d foldr (D 1 xs

6 Given thefollowing definition, which of the formulas delivers the number 3?
HASKELL DEFINITION® kK Xy = X
HAskeLL DEFINITION » first, second, third :: Integer

14 Truncating Sequences and Lazy Evaluation 69Q

HASKELL DEFINITION e~ first = k (4-1) O
HASKeLL DEFINITION e second = k (1+2) "three"
HASKELL DEFINITION e third = k 3 (1 ‘div* 0)

a first
b second
¢ third

d all of the above

7 Consider the following function.
HASKELL DEFINITION ® - f 22 String -> [String]
HASKELL DEFINITION e f w = [take 2 w, drop 2 w]
What doesthe formula iterate f "cs1323" deliver?
a ["cs',"1323"[1,[1], -
b ["cs',"13","23"[1,[], -
¢ [['es]["13237, 1], ..
d error ... type mismatch

14 Truncating Sequences and Lazy Evaluation 70Q

Encapsulation —modules 15

The where-clause provides one way to hide the internal details of one software component from
another. Entities defined in awhere-clause are accessible only within the definition that contains
the where-clause. So, the where-clause provides away to encapsulate information within alim-
ited context. This keepsit from affecting other definitions. But, the most important reason for
using awhere-clause isto record the results of a computation that depends on other variables
whose scopeis limited to a particular context (formal parameters of functions, for example), for
use in multiple places within the definition containing the where-clause. It is best to keep where-
clauses as short as possible. When they get long, they mix up the scopes of many variables, which
can lead to confusion.

Access to entities can also be controlled by defining them in software units known as modules.
Entities defined in modules may be public (accessible from outside the module) or private (acces-
sible only inside the module).This makes it possible to define software units that are independent
of each other, except with regard to the ways in which their public entities are referred to. This, in
turn, makes it possible to improve internal details in modules without affecting other parts of the
software. Private entities within amodule are said to be encapsulated in the module. .

HaskerL Dervimion e module DecimalNumerals

HASKELL DEFINITION (integerFromDecimalNumeral, --export list

HASKELL DEFINITION ¢ decimalNumeralFrominteger)

HASKELL DEFINITION ® where

HASKELL DEFINITION ®

HASKELL DEFINITION * integerFromDecimalNumeral ds = (horner10 . reverse) ds
HASKELL DEFINITION ®

HASKELL DEFINITION decimalNumeralFrominteger x =

HASKELL DEFINITION ® reverse [d | (s,d) <- takeWhile (/= (0,0)) (sdPairs x)]
HASKELL DEFINITION ®

HASKELL DEFINITION hornerl0 ds = foldr multAdd O ds

HASKELL DEFINITION ®

HASKELL DEFINITION * multAdd d s=d + 10*s

HASKELL DEFINITION ®

HASKELL DEFINITION ® sdPairs x = iterate nextDigit (x "divMod™ 10)

HASKELL DEFINITION ®

HASKELL DEFINITION * nextDigit(xShifted, d) = xShifted "divMod™ 10

Modern programming languages® provide good facilities for handling this sort of encapsulation
— that is, for sharing information among a particular collection of functions, but hiding it from
the outside world. Haskell provides this facility through modules.

1. Haskell, ML, Java, Fortran 90, and Ada, for example — but not C and not Pascal

15 Encapsulation — modules 71Q

encapsulating decimal numeral functions

file: DecimalNumerals.hs

H

A moduleis ascript that designates some of the entities it defines as exportable to other scripts,
but keeps all of its other definitionsto itself. Other scripts using the module may use its exportable
definitions, but they have no access to its other definitions.

The module DecimalNumerals contains definitions for functions to convert between decimal
numerals and integers. The module makes the definitions of the functions integerFromDecimal-
Numeral and decimalNumeralFrominteger available to the outside world by designating them
in the export list after the module name at the beginning of the module. The other functions
defined in the modul e are private.

A module script begins with the keyword module, which is followed by a name for the module.
The module name must start with a capital |etter. After the module name comes alist of the enti-
tiesthat will be available to scripts using the module. Thisisknown asthe export list. Entities not
specified in the export list remain private to the module and unavailable to other scripts.

Following the export list is awhere clause in which the functions of the module are defined. The
module DecimalNumerals defines the functions integerFromDecimalNumeral, decimalNu-
meralFrominteger, horner10, multAdd, and nextDigit, all but two of which are private to the
module.

A script can import the public definitions from amodule, then use them in its own definitions. The
script does this by designating the module in an import specification prior to the script’'s own def-
initions. If a script has no definitions of its own, it may consist entirely of import specifications.
Each import specification in a script gives the script access to some of the public entities defined
in the module that the import specification designates, namely those public entities designated in
the import list of the import specification.

The following script imports the two public functions of the DecimalNumerals module. When
this script isloaded, the Haskell system responds to commands using either of the two public
functions of DecimalNumerals designated in the import list of the import specification. But the
Haskell system will not be able to carry out commands using any of the private functionsin Dec-
imalNumerals. They cannot be imported.

HaskeLL Derivirion e import DecimalNumerals
HASKELL DEFINITION * (integerFromDecimalNumeral, decimalNumeralFromInteger)
HaskeLL Commanp e integerFromDecimalNumeral [1, 9, 9, 3]

¢ HASKELL RESPONSE ?

HaskeLL Commanp e decimalNumeralFrominteger 1993
¢ HASKELL RESPONSE ?

HaskeLL Commanp e (integerFromDecimalNumeral . decimalNumeralFrominteger) 1993
¢ HASKELL RESPONSE ?

HaskeLL Commanp e nextDigit(199, 3)
HaskeLL Response e ERROR: Undefined variable "nextDigit"

15 Encapsulation — modules 72Q

2

From this point on, most of the Haskell software module filed

discussed in this te_Xt will hav_e amain module | By convention, each moduleis defined in afile— one
that acts as the basis for entering commands. This | module to afile— with afilename that isidentical to
main module will import functions from other the module name plus a.hs extension. For example,

modules, and the imported functions, together the DecimalNumerals.hs file would contain the Deci-

with any functions defined in the main module malNumerals module. Exception: thefile containing
’ the main modul e should be given aname indicative of

will be the only functions (other than instrinsic the software's purpase. Otherwise, there will be too
functions) that can be invoked in commands. The | many files called Main.hs.

preceding script, which imports the public func-
tions of the DecimalNumerals module, is an example of a“main module” of this kind.

The following redevel opment of the numeral conversion functions provides some practicein
encapsulation and abstraction.

Asyou know, decimal numerals are not the only way of representing numbers. Not by along shot!
There are lots of completely unrelated notations (Roman numerals, for example), but the decimal
notation is one of acollection of schemesin which each digit of anumeral represents a coefficient
of apower of aradix

In the decimal notation, theradix isten, butany 7 3dix — the base of a number system
radix will do. Most computers use aradix two dde - did
representation to perform numeric cal culations. S
People use radix sixty representations in deal-
ing with time and angular measure.

isaradix b numeral for the number

dyxb" +d, yxb™ +I dyxb! +dgxbP
. each d; isaradix b digit.
The functions defined in the module Decimal- . radix b digits come from the set {0, 1, ... b-1}
Numerals can be generalized to handle any
radix by replacing the references to the radix 10 by a parameter. For example, the function
horner10 would be replaced by a new function with an additional parameter indicating what
radix to use in the exponentiations. The following module for polynomial evaluation exports the
new horner function. The module also defines a multAdd function that factorsin the radix (its
first argument), but this function is private to the module.

¢ HaskeLL Derinimion 2 module PolynomialEvaluation -- you write the export list
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? where
¢ HASKELL DEFINITION ? horner b ds = foldr (multAdd b) 0 ds
¢ HASKELL DEFINITION ? multAdd b d s = -- you write multAdd

¢ HASKELL DEFINITION ?

The PolynomialEvaluation module can be used to help build the following module to handle
numerals of any radix. Some of the details are omitted, to give you a chance to practice.

The module Numerals imports the module PolynomialEvaluation. This makesit possible to use
the function horner in within the Numerals script (but not the function multAdd, which is pri-
vate to the PolynomialEvaluation modul€).

The Numerals module exports the functions integerFromNumeral and numeralFrominteger,
which are analogous to the more specialized functions that the DecimalNumerals module

15 Encapsulation — modules 73Q

exported. The module does not export any other functions, however. So, a script would not get
access to the function horner by importing the module Numerals.

The difference between the functionsin Numerals and those in DecimalNumerals is that the
onesin Numerals have parameterized the radix. That meansthat the functionsin Numerals have
an additional argument, which specifies the radix as a particular value when the functions are
invoked. You can construct the functions in Numerals by using the radix parameter in the same
ways the number 10 was used in the DecimalNumerals module.

¢ HaskeLL Derivimion 2 module Numerals

¢ HASKELL DEFINITION ? (integerFromNumeral,

¢ HASKELL DEFINITION ? numeralFrominteger)

¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ? import PolynomialEvaluation(horner)

¢ HASKELL DEFINITION ? integerFromNumeral b x = -- your turn to define a function

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? numeralFrominteger b x = -- you write this one, too
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? sdPairs b x = -- still your turn

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? nextDigit b (xShifted, d) = xShifted "divMod" b

Once the module Numerals is defined, the functions in the module DecimalNumerals can rede-
fined in terms of the functions with a parameterized radix, ssmply by specifying aradix of 10 in
curried invocations of the functions that Numerals exports.

HaskeiL Dervimon e module DecimalNumerals

HASKELL DEFINITION ¢ (integerFromDecimalNumeral,

HASKELL DEFINITION * decimalNumeralFrominteger)

HASKELL DEFINITION © where

HASKELL DEFINITION * import Numerals(integerFromNumeral, numeralFrominteger)
HASKELL DEFINITION * integerFromDecimalNumeral ds = integerFromNumeral 10 ds
HASKELL DEFINITION decimalNumeralFrominteger x = numeralFrominteger 10 x

A main module could now import functions from either the Numerals module or the Decimal-
Numerals module (or both) and be able to use those functionsin commands:

HaskeLL Derinimion e import Numerals(integerFromNumeral, numeralFrominteger)
HaskeLL Derinimion e import DecimalNumerals(decimalNumeralFrominteger)

HaskeLL Commanp e decimalNumeralFrominteger 2001

HaskeLL Responsee [2, 0, 0, 1]

HaskeLL Commanp e numeralFrominteger 2 2001

HaskeLL Responsee [1,1,1,1,1,0,1,0,0,0, 1]

HaskeLL Commanp e numeralFrominteger 60 138 —ahundred thirty-eight minutesis
HASKELL RESPONSE* [2, 18] two hours, eighteen minutes

15 Encapsulation — modules 74Q

HaskeLL Coumanp e numeralFrominteger 60 11697 — awhole bunch of secondsis

HASKELL RESPoNSE» [3, 14, 57] three hours, fourteen minutes and fifty-seven seconds
HaskeLL Commanp e numeralFrominteger 12 68 —sixty-eight inches is
HASKELL REsPonse s[5, 8] five feet eight inches
HaskeLL Commanp e integerFromNumeral 5280 [6, 1000] — six milesand a thousand feet is
HaskeLL Response e 32680 a cruising altitude of thirty-two thousand six hundred eighty feet

Now you need to know how to communicate modules to Hugs, the Haskell system you have been
using. Put each module in aseparate file with aname identical to the name of the module, but with
a“.hs’ extension (or a.lhs extension if you are using the literate form in your script). When Hugs
loads a Haskell script that imports amodule, it finds the script defining the module by using the
modul€’s name to construct the name of the file containing the definition. So, the loading of mod-
ule scripts occurs automatically, as needed.

Theway inwhich aprogram is organized in terms of modulesis an important aspect of its overall
structure. Export lists in module specifications and import lists in import specifications reveal the
details of this structure, but in aform that is scattered across files and hard to picture al at once.
Another representation of the modular structure of the program, a documentation tool known (in
thistext, at least) as a program organization chart, does a better job of communicating the big
picture.

A program organization chart consists of ovalslinked by arrows. Each oval names amodule of the
program, and an arrow from one module-oval to another indicates that the module at the head of
the arrow imports entities from the module at the tail. The imported entities appear on the chart as
labels on the arrow.t

) integerFromNumeral (
DecimalNumerals |- Numerals
numeralFrominteger k
el
o

PolynomialEvaluation

Program Organization Chart

1. Since the program organization chart contains no information that is not also specified in the modules, it
would be best to have program organization charts drawn automatically from the definitions of the mod-
ules. Thiswould ensure their correctness. However, the charts serve also as a good planning tool. Sketch-
ing the program organization chart before writing the program, then revising it as the program evolves
helps keep the overall structure of the program in mind, which can lead to improvementsin design.

15 Encapsulation — modules 75Q

Review Questions

1 A Haskell module provides away to
a share variables and functions between scripts
b hide some of the variables and functions that a script defines
c package collections of variables and functions to be used in other scripts
d al of the above

2 Theexport list in amodule designates variables and functions that
a aredefined in the module and redefined in other modules
b aredefined in the module and will be accessible to other scripts
¢ aredefined in other scripts and needed in the module
d aredefined in other scripts and redefined in the module

3 Animport specification in a script
a makesall the definitionsin a module available in the script
b designates certain variables and functionsin the script to be private
¢ makes some public definitions from another modul e available for use in the script
d specifiesthe importation parameters that apply in the script

4 In anumeric representation scheme based on radix b,
a numbers are denoted by sequences whose elements come from a set of b digits
b numbers are written backwards
c letters cannot be used to represent digits
d numberslarger than b cannot be represented

5 Horner'sformula
a computesthe reverse of a sequence of digits
b takestoolong to compute when nis bigger than 10
c expressesasum of multiples of powers of a certain base as a nest of products and sums
d istoo complicated to usein ordinary circumstances

15 Encapsulation — modules 76Q

Defi nitions with Altematives 16

Julius Caesar wrote messages in a secret code. His scheme was to replace each letter in amessage
with the third letter following it in the al phabet. In a coded message, he would have written URPH
for ROME, for example. The following script provides functions to encode and decode messages
using Caesar’s cipher.

HaskeLL Derivirion - cipherJulius :: String -> String

HaskeLL Derinimion e cipherJulius = map(shiftAZ 3)

HASKELL DEFINITION *

HaskeLL Derivimion - decipherdulius :: String -> String

HaskeLL Derinimion e decipherJulius = map(shiftAZ (-3))

HASKELL DEFINITION *

HaskeLL Derivimion e ShiftAZ n ¢ = ItrFromint((intFromLtr ¢ + n) ‘mod” 26)
HASKELL DEFINITION *

HaskeLL Derinmion e intFromLtr :: Char -> Int

HaskeLL Derinimion e intFromLtr ¢ = fromEnum c - fromEnum A’
HASKELL DEFINITION *

HaskeLL Derinmion e ItrFromint :: Int -> Char

HaskeLL Derivimion e [trFromint n = toEnum(n + fromEnum 'A’)

HaskeLL Commanp e cipherJdulius "VENIVIDIVICI"
HaskeLL Responsee "YHQLYLGLYLFL"

HaskeLL Commanp e decipherJulius "YHQLYLGLYLFL"
HaskeLL Responsee "VENIVIDIVICI"

You are probably wondering what the formula defining cipherJulius means. What is that map
thing anyway? Thisis an intrinsic function that duplicates one of the uses of list comprehensions:

map f xs =[f x| X <- xs]

It's as simple as that. So, why use map? Mainly because it makes some formulas a bit more con-
cise. An equivalent formulafor cipherJulius would be

cipherJulius plaintext = [shiftAZ 3 ¢ | ¢ <- plaintext]

Taking f to be the curried form shiftAZ 3 in the definition of map, thisformulafor
cipherJulius msg equivalent to the following:

cipherJulius plaintext = map (shiftAZ 3) plaintext

This definition of cipherJulius is amost the same asthe original. The only difference s, this one
names an explicit argument, and the original uses a curried invocation of map, leaving the argu-
ment implicit. But, the definitions are equivalent because of the following observation:

fx=gxforadlx means f=g

Thisiswhat it means for two functions to be the same: they deliver the same values when sup-
plied with the same arguments. Because Haskell allows curried function invocations, the mathe-

16 Definitions with Alternatives 77Q

matical idea of function equality carries over to the syntax of Haskell. The following two Haskell
definitions are equivaent, no matter how complicated the anyFormula part is:

f x =anyFormula x isequivalent to f =anyFormula

The same trick worksiif the f part isa curried form:

g Yy z x =anyFormula x isequivalent to g Yy z =anyFormula

So, cipherJulius msg = map (shiftAZ 3) msg isequivalent to

cipherJulius map (shiftAZ 3)

From now on, you'll see thisform of expression in lots of definitions. When definitions omit some
of the parameters of the function being defined, subtle ambi guitiesl can arise. For thisreason, itis
necessary to include explicit type specifications for such functions. Generally, explicit type speci-
fications are good practice anyway, since they force the person making the definition to think
clearly about types. So, most definitions from this point on will include explicit type specifica-

tions.

Now, back to the script for computing Caesar ciphers.

The function shiftAZ 3 in this script does the work of encoding aletter:
shiftAZ 3 ¢ = ItrFromInt((intFromLtr ¢ + 3) "'mod" 26)

The function first translates the character supplied as its argument to an integer between zero and
twenty-five (intFromLtr c), then it adds three, computes the remainder in adivision by twenty-six
(to loop around to the beginning if the letter happened to be near the end of the a phabet), and
finally converts the shifted number back to aletter (ItrFromint(all that stuff)).

The functions that do the conversions between
letters and integers use some intrinsic func-
tions, toEnum and fromEnum, that do a
dlightly different conversion between letters
and integers. The function toEnum will trans-
late any argument of type Char into avalue of
type Int between zero and 255 (inclusive).? For
any character c in the standard electronic
alphabet, the Haskell formula fromEnum(c)
denotesits ASCII code, which isanumber
between zero and 127. The function toEnum
converts back to type Char. That is, for any
ASCII character, toEnum(fromEnum(c))=c.

ASCI| character set

A standard known as | SO8859-1 specifying represen-
tations of a collection of 128 characters has been estab-
lished by the International Standards Organization.
These are usually called the ASCII characters—the
American Standard Code for Information Interchange.
ASCII, an older standard essentially consistent with
1S08859-1 but lessinclusive of non-English alphabets,
represents 128 characters (94 printable ones, plus the
space-character, a delete-character, and 32 control-
characters such as newline, tab, backspace, escape,
bell, etc.) as integers between zero and 127

The designers of the ASCII character set arranged it so that the capital letters A to Z are repre-
sented by a contiguous set of integers, and the functions intFromLtr and ItrFromint use thisfact to

their advantage: For any letter c,

fromEnum(’A’) < fromEnum(c) < fromEnum('Z’)

1. Explained in the Haskell Report (see “ monomorphism restriction”).
2. Haskell usestype Int instead of Integer for these functions because Int is adequate for the range 0 to 255.

16 Definitions with Alternatives

78Q

Therefore,
fromEnum(’A’) - fromEnum(A’) <
fromEnum(c) - fromEnum(’A’) <
fromEnum(’Z’) - fromEnum(’A’)

And, since the codes are contiguous, fromEnum(’Z’) - fromEnum(’A’) must be 25, which means
0 < fromEnum(c) - fromEnum('A’) < 25

Because of these relationships, you can see that fromEnum and toEnum
intFromLtr will always deliver an integer between
zero and 25 when suppl qu Wlt.h acapltql letter asits several other types. The function fromEnum con-
argument, and ItrFromint just invertsthis processto | i< from any of these types to Int, and toEnum

get back to the capital letter that the integer code goesin the other direction. Since there are several

came from. target types for toEnum to choose from, explicit
type declarations are often needed.

The class Enum includes Char, Bool, Int, and

The deciphering processis basically the same asthe
process of creating a ciphertext, except that instead
of shifting by three letters forward (shiftAZ 3), you shift by three letters back in the a phabet
(shiftAZ (-3)). So, the formulafor the decipherJulius function is similar to the one for cipherJu-
lius:

HaskeLL Derinirion e cipherJulius = map (shiftAZ 3)
HaskerL Derinimion e decipherJulius = map (shiftAZ (-3))

The script, as formulated, takes some chances. It assumes that the supplied argument will be a
sequence of capital letters— no lower case, no digits, etc. If someone tries to make a ciphertext
from the plaintext “Veni vidi vici,” it will not decipher properly:

HaskeLL Commanp e cipherJulius "Veni vidi vici."

HaskeLL Responsee - YNWRWERMRWERLRK

HaskeLL Coumann e decipherJulius "YNWRWERMRWERLRK"
HaskeLL Responsee VKTOTBOJOTBOIOH

Thisisnot good. Thisisnot right. My feet stick out of ... oh ... sorry ... lapsed into some old
Dr Seussrhymes ... let me start again ...

Thisisnot good. It's ok for a program to have some restrictions on the kinds of datait can handle,
but it’'s not ok for it to pretend that it's delivering correct results when, in fact, its delivering non-
sense — especialy if what you're expecting from the program is a ciphertext, which is supposed
to look like nonsense, so you can’t tell when the program is outside its domain.

One way to fix the program isto check for valid letters (that is, capital letters) when making the
conversions between letters and integers. To do this, you need some way to provide aternativesin
definitions, so that the intFromLtr function can apply the conversion formulawhen itsargument is
acapital letter and can signal an error! if its argument is something else.

Definitions present alternative results by prefacing each alternative with aguard. Theguardisa
formula denoting aBoolean value. If thevalueis True, theresult it guardsis delivered asthe value

1. Any function can signal an error by delivering as its value the result of applying the function error to a
string. The effect of delivering this value will be for the Haskell system to stop running the program and
send the string as a message to the screen.

16 Definitions with Alternatives 79Q

of the function. If not, the Haskell system proceeds to the next guard. The first guard to deliver
True selectsits associated formula as the value of the function. The last guard is always the key-
word otherwise: if the Haskell system getsthat far, it selects the alternative guarded by other-
wise as the value of the function. One way to look at thisisthat each formulathat provides an
aternative value for the function is guarded by a Boolean value: they are a collection of guarded
formulas.

A guard appears in adefinition as a Boolean formulafollowing avertical bar (|, like the one used
in list comprehensions). After aguard comes an equal sign (=), and then the formula that the
guard, if True, is supposed to select as the value of the function. Here's afunction that delivers 1
if its argument exceeds zero and -1 otherwise:

HaskeLL DeriniTion e X
HASKELL DEFINITION * [x>0 =1
HASKELL DEFINITION ¢ | otherwise = -1

Try to apply thisideain the following script defining a safer version of the Caesar cipher system.
In case the conversion functionsintFromLtr and ltrFromint encounter anything other than capital
letters, use the error function to deliver their values. To test for capital |etters, you can use the
intrinsic function isUpper Char -> Bool, which delivers the value True if its argument is a capi-
tal letter, and False otherwise.

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

HASKELL COMMAND
HASKELL RESPONSE

import Char(isUpper)

cipherJulius :: String -> String

cipherJulius = map(shiftAZ 3)

shiftAZ :: Int -> Char -> Char

shiftAZ n ¢ = ItrFromInt((intFromLtr ¢ + n) ‘'mod" 26)
decipherJulius :: String -> String

decipherJdulius = map(shiftAZ (-3))

intFromLtr :: Char -> Int

intFromLtr c -- you fill in the two-alternative definition

[trFromint :: Int -> Char
[trFromint n -- again, you fill in the definition

cipherJulius "VENIVIDIVICI"
"YHQLYLGLYLFL"

16 Definitions with Alternatives

80Q

HaskeLL Coumanp e cipherJulius "Veni vidi vici."
HaASKELL RESPONSE e Y
HaskeLL Response e Program error: intFromLtr(non-letter) not allowed

Another problem with the Caesar cipher system isthat it uses a modern alphabet. The Roman
alphabet in Caesar’s time had twenty-three |etters, not twenty-six. The letters J, U, and W from
the modern alphabet were not in the ancient one.! This, too, can be fixed by putting some addi-
tional aternativesin the conversion functions to squeeze out the gaps in that the omission of J, U,
and W leave in the integer codes.

Theideaisto check to see what rangetheletter isin A-1, K-T, V, or X-Z, then adjust by zero, one,
two, or three, respectively. (Of course the clock arithmetic has to be done mod 23 rather than mod
26, too.) Checking for arange like A-I takestwo tests: ¢ >="A" and ¢ <’J . For compound formu-
laslike this, Haskell provides the and-operator (&&). It takes two Boolean operands and delivers

the value True if both operands are True and False otherwise. (Haskell also provides an or-oper-
ator (|]) and a not-function (not), but they won’t be needed in this case.)

Try to work out the gapsin the following script, which encodes using the ancient Roman al phabet.
¢ HaskeLL Derinimion 2 cipherJulius :: String -> String
¢ HaskeLL Derivimion 2 cipherJulius = map(shiftRomanLetter 3)
¢ HaskerL Derivimion 2 shiftRomanLetter :: Int -> Char -> Char
¢ HaskerL Derinimion 2 shiftRomanLetter n ¢ = romFromInt((intFromRom ¢ + n) “'mod’ 23)
¢ HASKeLL Derivimion 2 intFromRom :: Char -> Int
¢ HaskeLL Derinimion 2 intFromRom ¢ -- you fill in the definition (5 alternatives)
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? where
¢ HASKELL DEFINITION ? cint = fromEnum c - fromEnum 'A’
¢ HASKELL DEFINITION ?
¢ HASKELL DEFiINITion 2 romFromint :: Int -> Char
¢ HASkeLL Derinmion 2 romFromint n -- again, you fill in the definition
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

1. A problem the cipher system doesn’t have that it might seem to haveisthat it can’t deal with spaces and
punctuation. Asit happens, the Romans didn’t use spaces and punctuation in their writing. | don’t know if
they used lower case letters or not, but the all-upper-case messages |ook really Roman to me.

16 Definitions with Alternatives 81Q

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ? fromASCII code = toEnum(code + fromEnum 'A’)

¢ HASKELL DEFINITION ?
¢ HaskerL Derinmion 2 decipherdulius :: String -> String

¢ HaskeLL Derivimion 2 decipherJulius = map(shiftRomanLetter (-3))

HaskeLL Coumanp e cipherJulius "VENIVIDIVICI"
HaskeLL Response e "ZHQMZMGMZMFM"

HaskeLL Commanp e decipherJdulius "ZHQMZMGMZMFM"

HaskeLL Responsee "VENIVIDIVICI™

The Caesar cipher is not avery good one. You can look at even a short ciphertext, such as
“ZHQMZMGMZMFM” and guess that M probably stands for avowel. Cipherslike Caesar’'s are
easy to break.!

Review Questions

Guards in function definitions

a hidetheinterna details of the function from other software components

b remove some of the elements from the sequence
¢ select the formulathat delivers the value of the function
d protect the function from damage by cosmic rays

Theformula map reverse ["able", "was", "I"] deliversthe value
a ['I" "saw", "elba"]
b ['elba", "saw", "I']
c [, "was", "able"]

d ['able", "was", "I", "not"]

Theformula map f xs deliversthevalue
a fx

b [fx]|x<-xs]

c fxs

d [fxs]

Which of the following formulasis equivalent to theformula [g Xy | y <-ys] ?

a (map.gx)ys
b (mapgx)ys
c map(gxy)ys
d map(gx)ys

1. Thearticle “Contemporary Cryptology: An Introduction,” by James L. Massey, which appearsin Con-
temporary Cryptology, The Science of Information Integrity, edited by Gustavus J. Simmons (IEEE Press,

1992), discusses methods of constructing good ciphers.

16 Definitions with Alternatives

82Q

5 Thefollowing function delivers
HASKELL DEFINITION® h XS

HASKELL DEFINITION ® | xs ==reverse xs ="yes
HASKELL DEFINITION ® | otherwise ="no"

a "yes", unlessxs isreversed

b "yes"if itsargument isapalindrome, "no" if it's not

c "no"if xsisnot reversed

d "yes"if itsargument iswritten backwards, "no" if it's not

6 Thefollowing function
HASKELL DEFINITION® S X

HASKELL DEFINITION |x<0 = -1
HASKELL DEFINITION |x==0 = 0
HASKELL DEFINITION x>0 = 1

a thevalue of its argument

b the negative of its argument

¢ acodeindicating whether its argument is a number or not

d acodeindicating whether its argument is positive, negative, or zero

7 Assuming thefollowing definitions, which of the following functions putsin
sequence of x'sin place of all occurrences of agiven word in agiven

seguence of words?

length :: [a] -> Int

length[xq, Xp, ..., X] =N

HASKELL DEFINITION® rep n X = [X|k<-[1..n]]
HASKELL DEFINITION * replaceWord badWord word

HASKELL DEFINITION ® | badWord == word = rep (length badWord) "X’
HASKELL DEFINITION * | otherwise = word

a censor badWord = map (replaceWord badWord)

b censor badWord = map . replaceWord badWord

¢ censor badWord = replaceWord badWord . map

d censor badWord = map badWord . replaceWord

16 Definitions with Alternatives

83Q

Modules as Libraries 17

Encryption is an important application of computational power. It isalso an interesting problemin
information representation, and in that way is related to the question of representing numbers by

numerals, which you have aready studied. In fact, the numeral/number conversion software you

studied earlier can be used to implement some reasonably sophisticated ciphers. So, constructing
encryption software provides an opportunity to reuse some previously developed software.

Reusing existing software in new applications reduces the development effort required. For this
reason, software reuse is an important idea in software engineering. Programming languages pro-
vide a collection of intrinsic functions and operations. Whenever you use one of these, you are
reusing existing software. Similarly, when you package functions in a module, then import them
for use in an application, you are reusing software. Modules and intrinsic functions provide repos-
itories or libraries of software intended to be used in other applications.

This chapter presents some software for encryption, that is for encoding messages so that they
will be difficult for people other than the intended receiversto decode. Encoding methods for this
purpose are known as ciphers.

Substitution ciphers, in which there is afixed replacement for each letter of the alphabet, are easy
to break because the distribution of letters that occur in ordinary English discourse (or any other
language) are known. For example, the letter E occurs most frequently in English sentences, fol-
lowed by the letter T, etc. If you have afew sentences of ciphertext, you can compute the distribu-
tion of occurrence of each letter. Then you can guess that the most frequently occurring letter is
the letter E, or maybe T, or one of the top few of the most frequently occurring letters. After
guessing afew of the |etter-substitutions by this method, you can break the code easily.!

The statistics on pairs of letters are also known. So, even if the cipher is designed to substitute a

fixed new pair of lettersfor each pair that occur in the original message (maybe XQ for ST, RY for
PO, and so on for all possible two-letter combinations), the cipher will not be hard to break. The
code breaker will need accessto alonger ciphertext, however, because the statistical differences

among occurrences of different letter combinations are more subtle than for individual letters.

The same goes for substitution ciphers that use three-letter combinations, and so on. But, the
longer the blocks of letters for which the cipher has a fixed replacement, the harder it isto break
the code. Ciphers of thiskind (that is, multi-letter substitution ciphers) make up a class known as
block ciphers. The Data Encryption Standard (DES), which was designed and standardized in the
1970s, is a substitution cipher based on blocks of eight to ten letters, depending on how the mes-
sage is represented. The method of computing the replacement combination, given the block of
characters for which anew block is to be substituted, has sixteen stages of successive changes. It
scrambles the message very successfully, but in principle, it isamulti-letter, substitution cipher.

To encode a message with the DES cipher, the correspondents agree on a key. The DES cipher
then uses this key to compute the substitutions it will make to encrypt and decrypt messages. As

1. Edgar Allan Poe’s story, The Gold Bug, contains an account of the breaking of a substitution cipher.

17 Modulesas Libraries 84Q

long asthe key is kept secret, people other than the correspondents will have a very tough time

decoding encrypted messages.

A block cipher is like the Caesar cipher, but on alarger alphabet. For example, if the message-
alphabet consisted of capital letters and blanks, 27 symbolsin al, and the block cipher substituted
new three-letter combinations for the three-letter combinations in the message, then thiswould be
a substitution cipher on an alphabet with 27x27x27 letters — that’'s 19,683 lettersin all.

The following module, Encryption, contains
software that implements a block cipher of this
kind. It isnot limited to three-letter combinations.
Instead, it is parameterized with respect to the
number of lettersin the substitution-blocks. They

DES Efficiency|
The encryption software devel oped in this lesson
scrambles messages successfully, but requires
much more computation than the DES procedure,
which is carefully engineered for both security

and efficient use of computational resources.

can be of any length.

The overall structure of the program to be constructed isillustrated in the accompanying program
organization chart. The Encryption module will import afunction from the SequenceUtilities
module (in the Appendix) to package messages into blocks. Each block will then be encrypted,
with the help of some entities imported from an EncryptionUstilities module, which, itself, gets
some help from the Numerals modul e developed previously. The Numerals module imported a

function from the PolynomialEvaluation module. The program organization chart displays a

these relationships. You can useit to help you keep track of what is going on as you work your

way through this lesson.

blocksRigid

Encryption

SequenceUtiIitie9

Sym
F omB\ock, b\ockFrom
symt!

qumeral®as®

integerFromNumeral (

Numerals
numeralFrominteger k

EncryptionUtilities |-

‘(\0‘(\6‘

Message Encryption Program

o PolynomialEvaluation
Organization Chart y

The encipher and decipher functions in the Encryption module are also parameterized with

respect to the key. The correspondents can agree on any sequence of charactersthey like as akey

for the software to use to encipher and decipher messages.

17 ModulesasLibraries

85Q

The cipher works like this. Given afixed block size, it partitions the message into blocks of that
length (say, for example, 20 characters per block). If the number of charactersin the messageis
not an exact multiple of the block size, then the last block is padded with blanks to make it come
out even.

Each block is then converted to a numeral (see page 74) by trandating its block of charactersinto
ablock of integers. To do this, each letter in the alphabet that the message is written in is associ-
ated with an integer code (first letter coded as zero, second letter as on, etc.). The resulting
numeral then denotes a number in standard, positional notation with aradix equal to the number
of letters in the alphabet. The function integerFromNumeral (from the Numerals module), the
numeral is converted into an integer, and it isthisinteger that isviewed as a character in the cipher
alphabet.

The number of charactersin the cipher alphabet varies with the chosen block size:
cipher-alphabet size = ab,

where o = message-aphabet size
3 =block size

The message a phabet consists of the printable
characters of the ASCII character set (see “ASCII
character set” page 78) plus the space, tab, and
newline characters, for atotal of 97 characters “digits’ inthe numeral are ASCI| characters
(a =97). If the correspondents were to choose a Example, block-length 3, numeral “AbX”:
block size of one (3 = 1) then the cipher al phabet AbX

would contain the same number of symbols as the
message al phabet (97), which would produced a
simple substitution cipher similar to the Caesar

cipher. But, with ablock size of five (B=5),the | \qerc 2ot) S80S 8 O Ao
number of symbolsin the cipher alphabet goesup | codes for those characters.

to severa billion (97° = 8,587,340,257), and with a
block size of twenty (3 = 20) up to huge number with forty digitsinitsdecimal numeral (enter the
Haskell command (97::Integer)*20 if you want to see the exact number).

character-blocks as numerals

The encryption software essentially interprets each
block of characters as a base-97 numeral. The

denotes the cipher-al phabet symbol
code(A)x972 + code(b)x971 + code(X)*x97°

After converting ablock of charactersin the original message to an integer (denoting a symbol in
the cipher alphabet), an integer version of the key is added. (The integer version of the key is got-
ten by interpreting the key as a base-97 numeral, just as with blocks of characters from ames-
sage.) This sum denotes another symbol in the cipher alphabet, shifted from the original symbol
by the amount denoted by the key (just as with the Caesar cipher, but on alarger scale: the remain-

der is computed modulo the number of charactersin the cipher alphabet — that is 978, where Bis
the block size). And, finally, the shifted integer is converted back to a block of characters by
reversing the process used to convert the block of charactersin the original message to an integer.

17 Modulesas Libraries 86Q

HaskeLL Derinmion e module Encryption

HASKELL DEFINITION * (encipher, decipher)

HASKELL DEFINITION ® where

HASKELL DEFINITION ®

HASKELL DEFINITION import EncryptionUtilities

HASKELL DEFINITION ® import SequenceUtilities

HASKELL DEFINITION ®

HASKELL DEFINITION encipher, decipher :: Int -> String -> String -> String

HASKELL DEFINITION ® encipher blockSize key =

HASKELL DEFINITION * cipher blockSize (symFromBlock key)

HASKELL DEFINITION * decipher blockSize key =

HASKELL DEFINITION ® cipher blockSize (- symFromBlock key)

HASKELL DEFINITION ®

HASKELL DEFINITION cipher :: Int -> Integer -> String -> String

HASKELL DEFINITION ¢ cipher blockSize keyAsinteger =

HASKELL DEFINITION ® concat . -- de-block
HASKELL DEFINITION * map blockFromSym . -- back to blocks (from symbols)
HASKELL DEFINITION ® map shiftSym . -- encipher symbols
HASKELL DEFINITION * map symFromBlock . -- convert to cipher-alphabet symbol
HASKELL DEFINITION * blocksRigid blockSize "' -- form blocks
HASKELL DEFINITION ® where

HASKELL DEFINITION * shiftSym n = (n + keyAsinteger) ‘mod" alphabetSize

HASKELL DEFINITION * alphabetSize = numeralBase”blockSize

In this way, encoding a message is a five-step process.

1 group charactersin original message into blocks

2 convert each block to a symbol in the cipher alphabet

3 shift the cipher-alphabet symbol by the amount denoted by the key

4 convert each (shifted) cipher-alphabet symbol into ablock of characters

5 string the blocks together into one string, which is the encoded message (ciphertext)

The function cipher in the Encryption module is defined as five-step composition of functions,
one function for each step in the encoding process. The functions encipher and decipher both
use the function cipher, one with aforward version of the key and the other with a backward ver-
sion (just asin the Caesar cipher, where the forward key advanced three |etters in the a phabet to
find the substitute | etter, and the backward key shifted three |etter back in the a phabet). The struc-
ture of these functions matches their counterparts in the Caesar cipher software, except for the
addition of the blocking and de-blocking concepts.

The Encryption module imports functions from a module called EncryptionUtilities to convert
between blocks of ASCII characters (type String) and cipher-alphabet symbols (type Integer). It
maps the block-to-symbol function (called symFromBlock) onto the sequence of blocks of the
original message, then maps the symbol-shifter function (shiftSym) onto the sequence of sym-
bols, and then maps the symbol-to-block function (blockFromSym) onto the sequence of shifted
symbols to get back to blocks again.

17 Modulesas Libraries 87Q

append operator (++)| 1he Encryption module also uses the variable numeralBase from
gluestwo sequencestogether | the EncryptionUtilities module, which provides the size of the
cipher alphabet (alphabetSize). The Encryption module needs
this value to do the shifting modul o the size of the alphabet, so that
symbols that would shift off the end of the cipher-alphabet are recir-

[1,2,3,4] ++[5,6,7] means
[1,2, 34,56, 7] culated to the front.

"Thelma" ++ "Louise" means
"ThelmaL ouise"

The Encryption module also uses a function called blocksRigid
from the module SequenceUtilities to build blocks of characters from the original message
string. It uses an intrisic function, concat, to paste the blocks of the encoded message back into a
single string.

The SequenceUtilities module appearsin the Appendix. It isalibrary of several functions useful
for building or converting sequences in various ways. The blocksRigid function takes three argu-
ments. ablock size, apad, and a sequence to group into blocks. It groups the sequence into as
many blocks asit takes to contain al of its elements. The last block will be padded at the end, if
necessary, to make it the same size as the others (the second argument says what pad-character to
use). For now, it’s best to accept that this function works as advertised, but when you have some
freetime, you can take alook at the Appendix and try to understand it. The definition uses some
intrinsic functions that you haven't studied. You can ook them up in the Haskell Report.

The intrinsic function, concat, which converts the
blocks back into one long string works as if you had put
an append operator (++) between each pair of blocksin | concat [[1,2,3], [4,5], [6,7,8,9]] =
the sequence. In fact, it could be defined in exactly that [1,2,3,4,5,6,7,8,9]
manner using afold operator.

concat :: [[a]] -> [a]

concat = foldr (++) []

The Encryption module defines two functions for
export: encipher and decipher. It aso defines a private function, cipher, which describes the
bulk of the computation (that’s where the five-link chain of function compositionsis). It imports
two functions (symFromBlock and blockFromSym) and a variable (numeralBase) from the
EncryptionUtilities module. These entities are not exported from the Encryption module, so a
script importing the Encryption module would not have access to symFromBlock, blockFrom-
Sym, or numeralBase. Thisis by design: presumably a script importing the Encryption module
would do so to be able to encipher and decipher messages; it would not import the Encryption
module to get access to the utility functions needed to encipher and decipher messages. The addi-
tional functions would just clutter up the name space.

Now, take alook at the EncryptionUtilities module (see page 90). It defines four functions. sym-
FromBlock, blockFromSym, integerCodeFromChar, and charFromintegerCode.

The purpose of the functions integerCodeFromChar, and charFromintegerCode isto convert
between values of type Integer and blocks with elements of type Char. These functions make this
conversion for individual elements, and then they are mapped onto blocks to make the desired
conversion. The functions are defined in amanner similar to intFromLtr and ltrFromint in cipher-
Julius (see page 80), except that the new functions are ssmpler because thereisonly one gap in
the ASCII codes for the characters involved (the ancient Roman character set had three gaps).

The ASCII codes for the space character and the 94 printable characters are contiguous, running
from 32 for space (fromEnum(’ ")=32) up to 126 for tilde (fromEnum(’~")=126). Theonly gap is

17 Modulesas Libraries 88Q

between those characters and the other two in the character set the software uses for encoding
messages, namely tab (ASCII code 9 — fromEnum(’/t")=9) and newline (ASCII code 10 —
fromEnum(’/n")=10). Given thisinformation, try to write the definitions of these functions that
convert between integers and code-characters.

Try to write the other two functions, too. Their definitions can be constructed as a composition of
one of the integer/numeral conversion-functions in the Numerals module (see page 74) and a
mapped version of one of the integer/code-character conversion-functions. It might take you a
while to puzzle out these definitions — the three-minute rule is a bit short here. But, if you can
work these out, or even get close, you should feel like you're really getting the hang of this.

¢ HaskeLL Derivimion 2 module EncryptionUtilities

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

(symFromBlock, blockFromSym, numeralBase)
where
import Numerals

¢ HASKELL DEFINITION ? symFromBlock :: String -> Integer -- you write the function
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? blockFromSym :: Integer -> String -- again, you write it
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? integerCodeFromChar :: Char -> Integer -- write this one, too
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? | fromEnum ¢ >= minCode =
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? charFromintegerCode :: Integer -> Char -- and this one
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? | intCode >=
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

17 ModulesasLibraries

maxCode, minCode, numExtraCodes :: Int

maxCode = 126 -- set of code-characters =
minCode = 32 -- {tab, newline, toEnum 32 ... toEnum 126}
numExtraCodes = 2

89Q

¢ HASKELL DEFINITION ? numeralBase :: Integer
¢ HASKELL DEFINITION ? numeralBase =
¢ HASKELL DEFINITION ? fromintegral(maxCode - minCode + 1 + numExtraCodes)

Asyou can see, the EncryptionUtilities module is rather fastidious about the differences between
type Int and type Integer. The reason the issue arisesis that the functions fromEnum and toE-
num, which are used to convert between characters and ASCII codes, deal with type Int. They
may as well, after all, because all the integersinvolved are between zero and 255, so thereis no
need to make use of the unbounded capacity of type Integer. Type Int is more than adequate with

its range limit of 22° - 1, positive or negative (see page 58).

However, Int is definitely not adequate for representing the integers that will occur in the cipher
alphabet. These numbers run out of the range of Int as soon as the block size exceeds four.! So,
the computations specified by the integer/numeral conversion functions of the Numerals module
must be carried out using type Integer. For this reason, the functions integerCodeFromChar
and charFromintegerCode usetype Integer on the integer side of the conversion and type Int on
the character side. To do thisit is necessary to convert between Int and Integer, and an intrinsic
function is available to do this: fromintegral. The function fromintegral, given an argument in
the class Integral (that is, an argument of type Int or Integer), delivers a number of the appropri-
ate type for the context of the invocation.

The following script encrypts a maxim from Professor Dijkstra, which appeared in an open letter
in 1975 and later in an anthology of his writi ngs.2 It imports the Encryption module and usesits
exported functions. As the commands demonstrate, enciphering the message, then deciphering it
gets back to the original (plus afew blanks at the end, depending on how the blocking goes).

HASKELL DEFinITIoN s import Encryption

HASKELL DEFINITION *

HaskerL Derinimion e maximDijkstra, ciphertext, plaintext :: String
HAskeLL DeFinirion e maximDijkstra =

HASKELL DEFINITION * "Besides a mathematical inclination, an exceptionally\n" ++
HASKELL DEFINITION * "good mastery of one's native tongue is the most vital\n" ++
HASKELL DEFINITION "asset of a competent programmer.\n"

HaskeLL Derinimion e ciphertext = encipher blockSize key maximDijkstra
HaskerL Derinimion e plaintext = decipher blockSize key ciphertext
HASKELL DEFINITION *

HAskeLL DeFiniTion e Key 2 String

HaskeLL DeFiniTioN e Key = "computing science”

HaskeLL Derinirion e blockSize :: Int

HaskeLL Derinimion e blockSize = 10

Using this program involves displaying messages that may be several lineslong. If these mes-
sages are displayed directly as strings, they will be represented in the form that strings are denoted
in Haskell programs. In particular, newline characters will appear in the form “\n”, and, of course
the string will be enclosed in quotation marks.

1. 97°>2%.1
2. Selected Writings on Computing: A Personal Perspective, Edsger W. Dijkstra (Springer-Verlag, 1982).

17 Modulesas Libraries 90Q

2

The putStr directive makes it possible to display the con- tStr direct
tents of a string, rather than the Haskell notation for the _Pu LT directive
string. Thisleaves off the surrounding quotation marks and putStr :: String -> 10()
interprets special charactersin their intended display form. | Causesthe contents of the string specified
For example, the newline will be displayed by starting a ;sr'znwﬁﬁ?géocﬁ;‘zcﬁr%ﬁrggg -
new lineand dlsp_layl ng subsequent characters from that the normal way (e.q., newline characters
point. The following commands, making use of the above | gart new lines, tabs cause spacing, etc.).

program, use putStr to improve the display in this way.

HASKeLL Commanp e putStr maximDijkstra — display contents of string
HaskeLL Response e Besides a mathematical inclination, an exceptionally

HaskeLL Response e good mastery of one's native tongue is the most vital

HaskeLL Response e asset of a competent programmer.

HASKELL CoumanD » PUtSTr ciphertext — display contents of encrypted string
HaskeLL Response e 2MVAIPYQEQ]IwW]IXHANIQT# ... and a bunch more gobbledygook ...
HAskeLL Commanp e putStr plaintext — display contents of deciphered string

HaskeLL Response e Besides a mathematical inclination, an ... etc. (as above) ...

Review Questions

1 Softwarelibraries
a contain functions encapsulated in modules
b provide away to package reusable software
¢ both of the above
d none of the above

2 A module that supplies reusable software should
a export all of the functionsit defines
b import all of the functionsit defines
c export reusable functions, but prevent outside access to functions of limited use
d import reusable functions, but avoid exporting them

3 Theformula concat['The", "Gold", "Bug"] delivers
a "The Gold Bug"
b ['The", "Gold", "Bug"]
¢ "TheGoldBug"
d [["The], ['Gold"], ['Bug"]]

4 Encryption isagood example to study in acomputer science course because
a itisanimportant use of computers
b itinvolvesthe concept of representing information in different ways
c both of the above
d well ... redly ... it'sapretty dumb thing to study

5 The DES cipher isablock cipher. A block cipher is
a asubgtitution cipher on alarge a phabet
b arotation cipher with scrambled internal cycles
¢ lesssecurethan asubstitution cipher
d more secure than a substitution cipher

17 Modulesas Libraries 91Q

Professor Dijkstra thinks that in the software development profession

a

b
c
d

mathematical ability isthe only really important asset that programmers need

the ability to express oneself in anatural language is a great asset to programmers
mathematical ability doesn’t have much influence on a programmer’s effectiveness
it's awaste of time to prove, mathematically, the correctness of program components

17 ModulesasLibraries

922Q

Interactive Keyboard Input and Screen Output 18

Input and output are managed by the operating system. Haskell communicates with the operating
system to get these things done. Through a collection of intrinsic functions that deliver values of
1O type, Haskell scripts specify requests for services from the operating system. The Haskell sys-
tem interprets 10 type values and, as part of thisinterpretation process, asks the operating system
to perform input and output.

For example, the following script uses the intrinsic function putStr to display the string “Hello
World” on the screen:

HAskeLL DeFiniTion e main = putStr "Hello World"

By convention, Haskell scripts that perform input and/or output define a variable named main in
the main module. Entering the command main then causes Haskell system to compute the value
of the variable main. That value, itself, is of no consequence. But, in computing the value,
Haskell uses the operating system to perform the input/output specified in the script.

HASKELL CommanD e main
Op Sys Responsee Hello World

When the value delivered by a Haskell command is of 10 type (e.g., main) the Haskell system
does not respond by printing the value. Instead it responds by sending appropriate signalsto the
operating system. In this case, those signals cause the operating system to display the string
"Hello World" on the screen. Thisis an output directive performed by the operating system.

Input directives are another possibility. For example, Haskell can associate strings entered from
the keyboard with variables in a Haskell program.

Any useful program that reads input from the keyboard will aso contain output directives. So, a
script containing an input directive will contain one or more output directives, and these directives
will need to occur in acertain sequence. In Haskell, such sequences of input/output directives are
specified in ado-expression.

HASKELL DEFINITION * Main =

HASKELL DEFINITION * do

HASKELL DEFINITION * putStr "Please enter your name.\n"

HASKELL DEFINITION * name <- getLine

HASKELL DEFINITION * putStr("Thank you, " ++ name ++ ".\n" ++

HASKELL DEFINITION * "Have a nice day (:-)\n")

HASKELL COMMAND * Main Haskell-induced output

-
Or SysResronsee Please enter your name. echo by operating system

OpSyvsEcHoe Fielding Mellish & qf keyboard entry
Op SysResponse e Thank you, Fielding Mellish.
Op SysResponsee Have a nice day (:-) <e— —

18 Interactive Keyboard Input and Screen Output 93Q

A do-expression consists of the keyword do followed by a sequence of input/output directives.
The example presented here contains a sequence of three such directives:

1 putStr "Please enter your name.\n"-e— causes operating systemto display a line on the screen

2 name<-getLine -—— causes operating systemto read a line entered
3 putStr("Thank you, " ++ name ++ ".\n" ++ at the keyboard —the string entered becomes

"Have a nice day (:-)\n") the value of the variable name

DA causes operating system to display two lines on screen

Thefirst directive sends the string "Please enter your name.\n" to the screen. Since the string ends
in a newline character, the string " Please enter your name." appears on the screen, and the cursor
moves to the beginning of the next line. The second directive (name <- getLine) reads aline
entered from the keyboard and associates the sequence of characters entered on the line® with the
variable specified on the left side of the arrow (<-), which in this example is the variable called
name. Any subsequent directivein the do-expression can refer to that variable, but the variableis
not accessible outside the do-expression. And finally, the third directive sends a string constructed
from name (the string retrieved from the keyboard) and some other strings ("Thank you, ", a
string containing only the newline character, and "Have a nice day (:-)\n").

When the name is entered, the Haskell system builds echo
astring from the characters entered and associates Operating systems normally send characters to
that string with the variable called name. Whileitis |the screen asthey are entered at the keyboard.
doing this, the operating system is sending the char- | Thisis known as echoing the characters, and it
acters entered to the screen. Thisis known as echoing | S usualy the desired form of operation. Most
the input, and it is the normal mode of operation; operating systems have away to turn off the

. . echo when that is more desirable, such as for
without echoing, people could not see what they were | pasquord entry. Haskell provides a directive to

typing. control echoing. See the Haskell Report.

When the string is complete, the person at the key-

board enters a newline character. This terminates the getLine directive (anewlineiswhat it was
looking for). And, since the operating system echoes the characters as they come in, the newline
entry causes the cursor on the screen to move to the beginning of the line following the name-
entry line.

The third directive sends a string to the screen containing two newline characters. In response to
this signal, two new lines appear on the screen. You can see by looking at the script that the first
one ends with a period, and the second one ends with a smiley-face.

What happens to the rest of the characters? The ones entered at the keyboard after the newline?
WEell, this particular script ignores them. But, if the sequence of input/output directives in the do-
expression had contained other getLine directives, the script would have associated the strings
entered on those lines with the variables specified in the getLine directives.

The sequence of input/output directivesin the do-expression could, of course, include more steps.
The following script retrieves two entries from the keyboard, then incorporates the entriesinto a
screen display, and finally retrieves a sign-off line from the keyboard.

1. Thatis, all the characters entered up to, but not including, the newline character. The newline character is
discarded

18 Interactive Keyboard Input and Screen Output 94Q

HASKELL DEFINITION * ~ main =

HASKELL DEFINITION ® do

HASKELL DEFINITION putStr "Please enter your name: "
HASKELL DEFINITION * name <- getLine

HASKELL DEFINITION * putStr "And your email address, please: "
HASKELL DEFINITION address <- getLine

HASKELL DEFINITION * putStr(unlines[

HASKELL DEFINITION "Thank you, " ++ name ++ ".",
HASKELL DEFINITION * "I'll send your email to " ++ address,
HASKELL DEFINITION * "Press Enter to sign off."])

HASKELL DEFINITION * signOff <- getLine

HASKELL DEFINITION return()

HASKELL CoMmAND Main
HaskeLL REsp/OS EcHo+ Please enter your name: Captain Ahab
HaskeLL Resp/0S EcHoe And your email address, please: cap@mobydick.org
HaskeLL Response e Thank you, Captain Ahab.

__— underline shows OS echo

HaskeLL Response» — I'll send your email to cap@mobydick.org
HaskeLL Response e Press Enter to sign off.
Op SYSECHO * -«— echo of Enter-key from keyboard

There are afew subtleties going on with newline characters. The string sent to the screen by the
first directive does not end with a newline. For that reason, the cursor on the screen remains at the
end of the string "Please enter your name: " while waiting for the name to be entered.

After completing the name entry, the person at the keyboard presses the Enter key (that is, the
newline character). The operating system echoes the newline to the screen, which moves the cur-
sor to the beginning of the next line, and the Haskell system compl etesits performance of the get-
Line directive. Then, asimilar sequence occurs again with the request for an email address.

Next, the putStr directive sends a three-line
display to the screen. This string is constructed
with anintrinsic function called unlines. The
unlines function takes a sequence of strings as
its argument and constructs a single string con-
taining all of the strings in the argument unlines takes a sequence of strings and delivers a
sequence, but with anewline character inserted | Siring that appends together the stringsin the

at the end of each them. In this case, there are seguence, each followed by a newline character.
three strings in the argument, so theresultisa

string containing three newline characters. This string, displayed on the screen, appears as three
lines.

unlines :: [String] -> String
unlines = concat . map (++ "\n")

unlines ["linel", "line2", "line3"] =
“linel\nline2\nline3\n"]

The last input/output directive in the do-expression is another getLine. This one simply waits for
the entry of a newline character. Because the variable that gets the value entered (signOff) is not
used elsawhere in the script, all characters entered up to and including the expected newline are,
effectively, discarded.

18 Interactive Keyboard Input and Screen Output 95Q

Review Questions

1 Vauesof IO type
a areintheequality classEq
b specify requests for operating system services
C represent tuplesin aunique way
d describe Jovian satellites

2 Which of thefollowing intrinsic functions in Haskell causes output to appear on the screen?
a concat : [[any]] -> [any]
b putStr:: String -> 10 ()
Cc printString :: Message -> Screen
d getLine :: IO String

3 What will be the effect of the command main, given the following script?
HASKELL DEFINITION® ~ main =

HASKELL DEFINITION * do putStr "Good "
HASKELL DEFINITION * putStr "Vibrations\n"
HASKELL DEFINITION * putStr " by the Beach Boys\n"

a onelinedisplayed on screen

b twolinesdisplayed on screen

c threelinesdisplayed on screen

d audio effects through the speaker

4 What will be the effect of the command main, given the following script?
HASKELL DEFINITION® ~ main =

HASKELL DEFINITION ® do putStr "Please enter your first and last name (e.g., John Doe): "
HASKELL DEFINITION ® firstLast <- getLine
HASKELL DEFINITION ® putStr (reverse firstLast)

a display of name entered, but with the last name first
b display of last name only, first name ignored
c display of last name only, spelled backwards

5 display of name spelled backwards How should the last input/output directive in the preceding question be
changed to display the first name only?
a putStr(take 1 firstLast)
b putStr(drop 1 firstLast)
c putStr(takeWhile (/="") firstLast)
d putStr(dropWhile (/="") firstLast)

18 Interactive Keyboard Input and Screen Output 96Q

Interactive Programs with File Input/Output 19

Software can interact with peopl e through the keyboard and the screen, and you have learned how
to construct software that does this (see “Interactive Keyboard Input and Screen Output” on

page 93). Since the screen isahighly volatile device, information displayed on it doesn’t last long
— it is soon overwritten with other information. The computer system provides afacility known
asthe file system for recording information to be retained over a period of time and retrieved as
needed. By interacting with the file system, software can retrieve information from files that were
created at an earlier time, possibly by other pieces of software, and can create files containing
information for processing at alater time.

Suppose, for example, you wanted to write a Haskell script that would record, in afile that could
be accessed at alater time, aline of text entered at the keyboard. The script would begin by dis-
playing a message on the screen asking the person at the keyboard to enter the line of text. Then it
would write afile consisting of that line.

HASKELL DEFINITION .~ Main =

HASKELL DEFINITION © do

HASKELL DEFINITION * putStr(unlines["Enter one line."])

HASKELL DEFINITION * lineFromKeyboard <- getLine

HASKELL DEFINITION * writeFile filename lineFromKeyboard

HASKELL DEFINITION * putStr("Entered line written to file \"" ++ filename ++ "\"")
HASKELL DEFINITION © where

HASKELL DEFINITION filename = "oneLiner.txt"

Writing the file is accomplished through an output writeFile :: String -> String -> 10()
directive called writeFile. The first argument of write-

File isastring containing the name of thefileto be writeFile filename contents
created, and the second argument is the string to be name of file _
written to thefile. In this case, the string contains only tobecreated entirecontentsof

file to be created

one line, but it could contain any number of lines. For
example, the following script writes afile containing

three lines.
HASKELL DEFINITION Main =
HASKELL DEFINITION * writeFile "restaurant.dat” (unlines pepes)
HASKELL DEFINITION © where
HASKELL DEFINITION ¢ pepes = ['Pepe Delgados”, "752 Asp", "321-6232"]

readFile :: String -> 10 String| S0: thewriteFile directive creates afile of text. The
readFile directive does the reverse: it retrieves the
contents of an existing file. In ascript, the readFile
ndime of file to directiveis used much as getLine is used, except that
be retrieved instead of retrieving asingle line from the screen,
readFile retrieves the entire contents of afile.

contents <- readFile filename

entire contents of file,
retrieved as needed

19 Interactive Programs with File Input/Output 97Q

The contents are retrieved on an as-needed basis, following the usual Haskell strategy of lazy
evaluation. But, the script accesses the file contents through the variable named on the | eft of the
arrow (<-) preceding the readFile directive, and any input/output command following the read-
File command in the do-expression containing it can refer to that variable.

Toillustrate the use of file input/output, consider the problem of encrypting the text containedin a
file. That is, suppose you want to retrieve atext from afile, encrypt it, then create a new file con-
taining an encrypted version of the file contents.

The following script solves this problem by first asking for the name of afile from the keyboard,
confirming it, then asking for a sequence of charactersto use as an encryption key. When the key
is entered, the script reads the contents of the file (that is, the plaintext), enciphersit using a func-
tion from the Encryption modul e developed earlier (page 87), and writes the encrypted message
in afile with the same name as the one containing the plaintext, but with an extended name
(“.ctx”, for ciphertext, is added to the filename).

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION *
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION *
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

import Encryption(encipher)

main =
do

filename <- getFilename
confirmFilename filename
key <- getKey
confirmKey
putStr(msgReading filename)
plaintext <- readFile filename
putStr msgComputing
writeFile (outFile filename) (encipher blockSize key plaintext)
putStr (msgSignOff(outFile filename))

getFilename =

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

19 Interactive Programs with File Input/Output

do
putStr msgEnterFilename
filename <- getLine
return filename

confirmFilename filename = putStr (msgThxForFilename filename)
getkey =
do
putStr msgEnterKey
key <- getLine
return key
confirmKey = putStr msgThxForKey

msgEnterFilename = "Enter name of file containing plaintext: "

98Q

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

msgThxForFilename filename =
unlines|
"Thank you",
" ... will read plaintext from " ++ filename,
" ... and write ciphertext to " ++ outFile filename]

msgEnterKey = "Enter key: "
msgThxForKey =
unlines|
"Thank you ...",
" ... will use key, then throw into bit-bucket"]

msgReading filename =
unlines['Reading plaintext from " ++ filename]

msgComputing = unlines[" ... computing ciphertext"]

msgSignOff filename =
unlines[" ... ciphertext written to " ++ filename]

outFile filename = filename ++ ".ctx"

blockSize :: Int
blockSize = 10

Some of the functionsin this script retrieve input from the keyboard (getLine or readFile) and
need to deliver the input astheir IO String values. This can be accomplished from a do-expres-
sion by using the return directive. When the return directive at the end of a do-expression con-
taining input/output directivesis supplied with an argument that is a String, then the do-
expression delivers a value that can be used in the same way as a value delivered by getLine or
readFile. In thisway, you can write functions that do specialized sorts of input directives, such
prompting for and retrieving the filename (getFilename) and the key (getKey) in the above
script.

19 Interactive Programs with File Input/Output 929Q

The following interactive session illustrates the use of the preceding script. Its effects, other than

the interaction you seen on the screen, are the file reading and writing shown in the diagram.

HASKELL ComMAND ¢ MaAin

HaskeLL Resp/OS EcHo» Enter name of file containing plaintext: sussman.txt

HaskeLL Response e Thank you

HaskeLL Response e Reading plaintext from sussman.txt
HaskeLL Response e Writing ciphertext to sussman.txt.ctx

underline indicates OS echo

HaskeLL Resp/OS EcHoe Enter key (best if 10 or more characters): functional programming

HaskeLL Response e Thank you ...

HASKELL RESPONSE * ... will use key, then throw into bit-bucket

file: sussman.txt

The ultimate value generated by computer scientistsis
the invention of languages for describing processes ...
What computer science delivers, has delivered, and is
continuing to and will be developing in the future, are
methods of describing complicated processes such that
what used to take hundreds of pages of English text

to describe will take afew linesin aformal language.
Formal isimportant, because it is possible for us to) o
understand it, and to communicate it quickly, and for writes thisfile
it not to be ambiguous and perhaps for usto runiit.

Gerald Sussman (Comm ACM, Nov 1991)

<«— readsthisfile

newline characters
not shown accurately

— file: sussman.txt.ctx

HYMuX[cT]IhUjjD[dOgOY _NfDcTNqJirLcP_d_UZudL]
H]cTc\frRfccWOqQbgNbWXAXgWY rUuQVdLWM{rOc
TpSPcKfZK]QUp[bWWV\gHaoy~wtHQUV pRZ] XieNedb
RTUVWUjXH[XaUZf}}\DapOUT]gNfHR{IQVWrRfcR"
Y dQbfRblpcY qIbTjKL[ZIRMUUNjH["Y VZrRadcWOQNi
eMG{ pLbMt*"NhK~AS]|gWY rMY VRaTRQbWjWR_WY K
UeNWd_aZSMgdNfdbdNWihY JgcfWL ciidNWdc]ldI_Uj\
X]SJULFrXYd_PRU[UNU(QVWY[r]Y[bo_NXVIWUXQ
Od_]] TUWPZOgIuwWN;jd[XY U[uZVuCpUZbUU\j D]V Q
oY

i:RaL[i]cj]P_MdIbduuETRLe[XrRgdXa ' WgdRvVOSpQ_Z

.. €tc. ...

19 Interactive Programs with File Input/Output

100Q

Fractional Numbers 20

All of the software developed so far in this textbook has dealt primarily with strings or, in some
casesintegral numbers, but even then with some sort of string processing as an ultimate goal. This
chapter discusses a computing application that makes use of non-integral numbers — that is,
numbers in the Haskell class Fractional. This class encompasses the intrinsic typesin Haskell
that represent numbers with fractional parts.

There are six intrinsic typesin this class. Two of them, the Complex types, are used to build mod-
els of many phenomena studied in mathematics, physics, and engineering. You can learn about
Complex types on your own, using the Haskell Report as areference, if you decide to build soft-
ware that requires them. The types used in the examplesin this chapter fall into the subclass Real-
Frac.

The term “real number,” in mathematics, refers to the kinds of numbers used to count things and
measure things. They can be whole numbers, which Haskell represents by the class Integral, or
numbers with fractional parts, which Haskell represents by the class RealFrac. The most com-
monly used typesin this class are Float and Double.

Numbers of type Float and Double have two parts. a mantissa and an exponent. The mantissa
can be viewed as a whole number with a fixed number of digits (maybe decimal digits, but proba-
bly binary digits — the Haskell system uses a radix compatible with the computer system’s
instruction set), and the exponent as another whole number that specifies a scaling factor for the

The Class of Numbers

Classes
& Num
AR

Fractional
RealFrac

Floating
Integral

20 Fractiona Numbers 101Q

mantissa. The scaling factor will be a power of the radix of the number system used to represent
the mantissa. In effect, the exponent moves the decimal point in the mantissa (or binary point ...
or whatever) to the right or left. The decimal point moves to the right when the exponent is posi-
tive and to the left when it is negative. Thisis called afloating point representation. It isthe basis
of most numerical computations in scientific computing. All computers intended for use in study-
ing models of scientific phenomenainclude, in their basic instruction sets, operatorsto do arith-
metic with floating point numbers at speeds ranging from thousands of floating point operations
per second on inexpensive systems to billions per second on computers intended for large-scale
scientific computation.

floating point numbers and scientific notation

Because the numbers that occur in measuring physical phenomena range from very small to very large, and
because the precision with which they can be measured runs from afew decimal digits to many, but usually not
more than ten or twenty decimal digits of precision, measurements are often expressed as numbers that specify
quantities in the form of a mantissa times a power of ten. In effect, the power of ten shifts the decimal point to
scale the measured quantity appropriately. This scheme for denoting numbers, known as scientific notation, isa
form of floating point representation.

1.89533 x 1023 1.05522 x 10724

\ ponent mantissa exponent
mantissa
number of molecules ina 1.05522e-24 ouncesinatypical mol-
P 8 1.89533e+25 ecule of beer written in

written in scientific notation L .
scientific notation

in Haskell notation (Float or Double)

bonafides: Avogadro’s number = 6.0221367e23, molecular weight of H,O = 18.01528, grams per ounce = 28.24952

The difference between type Float and type Double is that numbers of type Double carry about
twice the precision of numbers of type Float (that is, their mantissas contain twice as many dig-
its). Both types are denoted in Haskell scripts by adecimal numeral specifying the mantissa and
another decimal numeral specifying the exponent. The mantissa portion is separated from the
exponent portion by the letter e.

The exponent portion is optional. It may be either negative (indicated by a minus sign beginning
the exponent) or positive (indicated by a plus sign beginning the exponent or by the absence of a
sign on the exponent). If the exponent part is present, then the mantissa must contain a decimal
point, and that decimal point must be imbedded between two digits. Negative numbers have a
minus sign at the beginning of the mantissa.

This chapter illustrates the use of fractional numbers through an example that builds a graphical
representation of a numeric function. That is, given a function that, when supplied with afrac-
tional number, delivers a new fractional number, the software will deliver a string that represents
the curve the function describes. When printed, this string will look like a graph of the function.t

1. Not avery good picture of the graph, really. It will be printed as ordinary text, so the resolution (distance
between discrete points on the display device) will be poor. But, in principle, the ideas developed in the
chapter could be applied to a graphical display device capable of any level of resolution.

20 Fractiona Numbers 102Q

A key step in the computation of a graphical representation of a numeric function is the conver-
sion of analog valuesto digital values. The plotting device is a printer or screen, which has a cer-
tain number of positions along the horizontal axisin which it can display marks, and, likewise, a
discrete resolution in the vertical direction. A printer is, in this sense, adigital display device.

Analog display devices are not limited to certain fixed display points. In principle, an analog dis-
play device would be able to display a point anywhere within a given range.! The numeric func-
tion whose graph will be plotted has an analog character. It's input will be afractional number,
and itsoutput will be afractional number. Both numberswill be of high enough precisionthat itis
reasonable to view them as analog measurements. The software will have to convert each analog
measurement into adigital level that represents a position in which a printer can make a mark.

analog to digital conversion

n —digital levels={0, 1, ... n-1}
X — analog measurement
A= 03 :: 0.84 b=19 a<x<b —analog range
- dx —stepsize, analog domain
\| | L | L1 L |/
03 07 | 11 15 1.9 n=8
digital level 0 digital level 4 digital level 7=n-1 dx = b-a _ 0.2

digital level of x=floor((x-a) / dx) = 2

Suppose the analog measurements x fall in the range a < x < b, for some fractional numbers a and
b, and the available digital levelsare {0, 1, 2, ..., n-1} for some integral number n. Theideaisto
divide the analog range into n segments, label the segments from smallest to largest, 0, 1, ... n-1,
and figure out which segment x fallsin. The label of that segment will be the digital level of the
analog measurement X.

Thereis an arithmetic formula that producesthe digital 5oy -

level from the analog measurement X, given the analog (RealFrac x, Integral n) => x ->n
range (a, b) and the number of digital levelsn. It works floor x = largest integer not exceeding x
like this: divide x - &, which is the distance between x
and the low end of the analog range, by dx = (b - a) / n, which is the length of the segmentsin the
analog range corresponding to the digital levels (dx is called the step size in the analog domain),
then convert the quotient to a whole number by dropping down to the next smaller integer (if by
chance the quotient falls on an integral boundary, just use that integer as the converted quotient —
this next-lower-integer, or, more precisely, the largest integer not exceeding X, is known as the
floor of x). The whole number delivered by this processisthe digital level of the analog measure-
ment X.

digital level of x = floor((x - a) / dx)

This formula aways works properly when the computations are exact. Floating point numbers,
however, involve approximate arithmetic because the precision of the mantissais limited. Impre-

1. In practice, thiswill not be so. Any physical device is capable of a certain amount of precision. The real
difference between digital devices and analogue devices isthat digital representations are exactly repro-
ducible. You can make an exact copy of adigital picture. Analog representations, on the other hand, are
only approximately reproducible. A copy will be almost the same, but not exactly.

20 Fractiona Numbers 103Q

cise arithmetic causes no problems for most of the range of values of the analog measurement x.

At worst, the digital level is off by one when x is very close to a segment boundary — no big deal.
No big deal, that is, unless off by one can put the digital level outside the set of n possible digital
levels{0, 1, 2, ...,n-1}.

If that happens, it’s a disaster, because the software will need to use the digital level to control a
digital device that cannot operate with digital levels outside its expectations. So, it is best to make
aspecial casein the calculation when x is near the low end of the range, a, or near the high end of
the range, b.

These ideas are put together in the following definition of the function digitize. It selects a special
formulato avoid the out-of-range disaster when the analog value is within a half-step of either end
of the analog range and uses the standard formula otherwise.

The definition has two other notable features. One, it signals an error if invoked with zero or a
negative number of digital levels— no way to make sense out of such arequest. Two, it uses the
function fromIntegral to make the divisor compatible with the dividend in the computation of the
step size. The function is packaged with some other utilities for numeric computation in amodule
called NumericUtilities, (provided in the Appendix).

¢ HASKELL DEFINITION ? -- N-way analog-to-digital converter fora <=x<b

¢ HASKELL DEFINITION ? digitize:: RealFrac num => Int -> num -> num -> num -> Int

¢ HASKELL DEFINITION ? digitize n a b x -- you write this function
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ? xDist=x - a

¢ HASKELL DEFINITION ? dx = analogRangeSize/(fromintegral nSafe)

¢ HASKELL DEFINITION ? halfStep = dx/2

¢ HASKELL DEFINITION ? nSafe |n>0 =n

¢ HASKELL DEFINITION ? | otherwise = error "digitize: zero or negative levels"

¢ HASKELL DEFINITION ? analogRangeSize =b - a 1

The function digitize is polymorphic: it can deal with any representation of analog valuesin the
class RealFrac. Thisincludes not only floating point numbers, but also rational numbers. Ratio-
nal numbers are constructed from a numerator and denominator, both of which are integral num-
bers. If the numerator and denominator have type Integer, then the rational number has type
Rational (short for Ratio Integer). If they have type Int, then the rational number has type
Ratio Int. Rational numbers are written as a pair of Haskell integral numbers with a percent sign
between them. The graph-plotting function, showGraph, will make use of arational number
denoted in this way.

With the digitizing function understood, the next step isto construct the graph-plotting function.
Thiswill be donein steps, from aversion that isrelatively easy to design, but not very desirableto
use, to aversion that has more complex formulas, but is more convenient to use.

20 Fractiona Numbers 104Q

Haskell notations for numbersin class RealFrac
numbers of type Float or Double numbers of type Rational or Ratio Int
3.14159 >1< 3%5 — three fifths
0.31415926e+01 dangling degmel point| | 5%3 —fivethirds
31415926356.0e-10 ”\mﬂ"wed -279%365 — negative two hundred sev-
-3.1415926 @9@ enty-nine three hundred
' ' sixty-fifths
-0.31416e+01

The graph-plotting function will deliver astring that, when displayed on the screen, will appear as
lines containing asterisks to form the curve that represents the graph of the function being plotted.
The arguments supplied to the graph-plotting function will include the function to be plotted, the
extent of the domain over which to plot the function, and the desired number of digitizing levelsto
break the range into.

graph-plotting function — showGraph
arguments
w — number of digitizing levels for the abscissa (a value of type Int)
f — function to plot (type num->num, where num is atype in the class RealFrac)
a — left-hand endpoint of the domain over which to plot the function
b — right-hand endpoint of the domain over which to plot the function
result delivered
string that will display a curve representing the function-graph {f x| a< x< b}

The function will first build a sequence of strings, unlines :: [String] -> String
each to become one linein the result, then apply the o
intrinsic function unlines to convert this sequence | concatenates all the stringsin the argu-

of stringsin to one string with newline characters | Ment together and inserts newline charac-

separating the strings in the original sequence. ter at the end of each

The string will display the curve with the abscissa | uUnlines ["IEEE”, "(ulomputer"] =)
running down the screen' for w linesin all (oneline IEEE\nComputen\n
for each segment in the digitized version of the unlines = concat . map(++"\n")

abscissa). The function will need to choose some
appropriate level of digitization for the ordinate. Initially, thiswill be 20, corresponding to 20
character positions across aline, but it could be any number, aslong the printed characters will fit
on aline of the printing device. (If they wereto wrap around or get lopped off, the graph wouldn’'t
look right.)

The step size in the direction of the abscissawill be dx = (b - a) / w, so digital level k corresponds
to the segment a + k[tx < x < a + (k+1)[dx. The function’s value at the centers of these segments
will be plotted. This means that the function values must be computed at the set of points

{a+dx/2+kdx | nO{0,1, ..., w-1} }

1. Thisisnot very desirable. The abscissais normally plotted along the horizontal axis. Thisis one of the
things to be improved in subsequent versions of the showGraph function.

20 Fractiona Numbers 105Q

The maximum and minimum of the function values at maximum, minimum ;.
Real num =>[num] -> num

A i L computing the largest or smallest
digitized into 20 |evels by applying digitize to each of the | | her in a sequence

these points (call them yMaxand yMin) determine the
range of values on the ordinate scale. This scale will be

function values.

maximum(5, 9, 2] =9
The sketch of the function showGraph outlinesthisplan. | minimum[4.7, -1.3, 3.14]=-1.3

Try tofill in the details yourself, to make sure you under-
stand how to apply the concepts and formulas presented so far.

¢ HASKELL DEFINITION ? showGraph:: RealFrac num =>

¢ HASKELL DEFINITION ? Int -> (num->num) -> num -> num -> String

¢ HASKELL DEFINITION ? showGraph w f a b = unlines graph

¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ? graph = [spaces y ++ "*" | y <- ysDigitized]

¢ HASKELL DEFINITION ? ysDigitized = -- use the digitize function for this
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? ys = [f x| x<-xs] -- ordinates
¢ HASKELL DEFINITION ? XS = -- centered abscissas (you define xs)
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? dx = -- step size for abscissa (you define dx)

; ?
¢ HASKELL DEFINITION ! —__ fromintegral corvertsw to
¢ HASKELL DEFINITION ? yMax = maximum ys the type ofb-a)

¢ HASKELL DEFINITION ? yMin = minimum ys

HaskeLL Commanp e putStr(showGraph 20 sin (-2*pi) (2*pi))
HASKELL RESPONSE * *

HASKELL RESPONSE ® *
HASKELL RESPONSE * *
HASKELL RESPONSE ® *
HASKELL RESPONSE ® *

HASKELL RESPONSE ® *

HASKELL RESPONSE ® *

HASKELL RESPONSE® ~ *

HASKELL RESPONSE * *

HASKELL RESPONSE ® *

HASKELL RESPONSE ® *
HASKELL RESPONSE ® *
HASKELL RESPONSE ® *
HASKELL RESPONSE ® *
HASKELL RESPONSE * *
HASKELL RESPONSE ® *

HASKELL RESPONSE ® *

HASKELL RESPONSE® ~ *

HASKELL RESPONSE ® *

HASKELL RESPONSE ® *

20 Fractional Numbers

sin :: Floating num =>
num->num
sin is an intrinsic function
that delives the (appoxi-
mate) trigonometric sine of a
floating point agument

pi :: Floating num =>num
pi is an intrinsic variable

whose value appximates the
ratio of the cicumfeence of g
circle to its diameter

106Q

In the definition of showGraph, the variable graph is a sequence of strings, one string for each
line that will appear in the display. Each of these linesis a sequence of spaces (delivered by a
function, spaces — see SequenceUtilities (Appendix) followed by an asterisk. The spaces shift
the asterisk further to the right for larger function values, and the overall effect is a curve showing
the behavior of the function, as shown in the following Haskell command and response.

It'salittle disorienting to see the curve running down the page. Normally the abscissais plotted in
the horizontal direction. The next version of showGraph corrects this situation.

Think of the display of the graph as atable of rows and columns of characters. The rows go across
the page and the columns go up and down. Each row has 20 characters, since that is the number of
digitized levelsin the ordinate, and each column hasw characters, since w specifies the number of
digitized levelsin the abscissa.

To display the graph in the usual orientation (horizontal axis for the abscissa), the last column of
the table (that is, the right-most column) needs to become the top row, the next-to-last column the
second row, and so on. Thisis known as atransposition of rows and columnsin the table. A func-
tion called transpose in the SequenceUtilities module (Appendix) that does this operation.

WEell ... not quite. The function transpose actually makes the left-most column the top row and
the right-most column the bottom row, rather than the other way around.! This can be fixed by
reversing the order of the strings that plot the abscissas before feeding this sequence of stringsto
the unlines function.

However, there is a slight complication that needs to addressed before the transpose function
will work properly in this application. The complication is that the strings in the graph variable
are not full rows. They don’t have all 20 charactersin them. Instead, they have just enough spaces,
followed by an asterisk, to plot a point on the graph in the right position.

For transpose to work as intended, the rows must be full, 20-column units. So, the formulafor a
row must append enough spaces on the end to fill it out to 20 columns. Try to put the proper row-
formulain the following version of showGraph.

¢ HASKELL DEFINITION ? showGraph:: RealFrac num =>

¢ HASKELL DEFINITION ? Int -> (num->num) -> num -> num -> String

¢ HASKELL DEFINITION ? showGraph w f a b = (unlines . reverse . transpose) graph

¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ? graph -- you fill in the formula for graph
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? ysDigitized = [digitize 20 yMin yMax y| y<-ys]

¢ HASKELL DEFINITION ? ys = [f X| x<-xs]

¢ HASKELL DEFINITION ? xs = [a + dx/2 + fromIntegral(k)*dx| k<-[0..w-1]]

¢ HASKELL DEFINITION ? dx = (b-a)/fromintegral(w)

1. Thefunction transpose is designed to work on matrices. According to the usual conventions in mathe-
matics, the transpose of a matrix makes the left-most column into the top row, the second column (from
the left) into the second row, and so on.

20 Fractiona Numbers 107Q

¢ HASKELL DEFINITION ? yMax = maximum ys
¢ HASKELL DEFINITION ? yMin = minimum ys

With this change, the showGraph function displays the graph in the usual orientation (abscissa
running horizontally).

HaskeLL Coumanp e putStr(showGraph 20 sin (-2*pi) (2*pi))
HASKELL RESPONSE * * *

HASKELL RESPONSE ® * * * *

HASKELL RESPONSE ®

HASKELL RESPONSE *

HASKELL RESPONSE *

HASKELL RESPONSE ®

HASKELL RESPONSE® * * * *
HASKELL RESPONSE *

HASKELL RESPONSE ®

HASKELL RESPONSE *

HASKELL RESPONSE *

HASKELL RESPONSE ®

HASKELL RESPONSE *

HASKELL RESPONSE ® * * * *
HASKELL RESPONSE ®

HASKELL RESPONSE *

HASKELL RESPONSE *

HASKELL RESPONSE ®

HASKELL RESPONSE * * o * o
HASKELL RESPONSE ® * *

Wait a minute! Why is the graph all squeezed up?

There are two factors involved in this phenomenon. One is that the program exercises no discre-
tion about how many levelsto usein digitizing the ordinate. It just picks 20 levels, no matter what.
So, some graphs will ook squeezed up, some spread out, depending on scale.

This can befixed by scaling the ordinate to match the abscissa, so that a unit moved in the vertical
direction on the plotting device will correspond to about the same range of numbers as a unit
moved in the horizontal direction. Another way to look at thisisto choose the scaling factor so
that a segment in the range of the abscissa that corresponds to one digitization level has the same
length as a digitization segment in the range of the ordinate. In arithmetic terms, the following
proportions need to be approximated:

height / w = (yMax - yMin) / (b - a)
where height is the number of digitizing levelsin the vertical (ordinate) direction.

The other factor is that the resolution of the printer in the vertical direction is not the same as the
resolution in the horizontal direction. Typically amovement on the printer in the vertical direction
is about twice as far as a movement in the horizontal direction. The exact ratio depends on the
printer, but aratio of about fiveto threeistypical. So, to get the proportions right, horizontal units
need to be adjusted by a factor of three-fifths to make them comparable to vertical units.

20 Fractiona Numbers 108Q

Combining this aspect ratio of the horizontal and vertical resolutions of the printer with the main-
tenance of the above scaling proportions leads to the following formula for the number of digitiz-
ing levelsin the vertical direction:

height = nearest integer to w* g*(yMax -yMin) / (b- a)

The final version of showGraph is packaged in amodule for usein other scripts. The module
assumes that the function digitize can be imported from a module called NumericUtilities and
that the functions spaces and transpose can be imported from a module called SequenceUtili-
ties.

Try to use the above formulas to fill in the details of the function showGraph. To compute the

nearest integer to afractional number, apply theintrinsic function round. Note that the transpose
function has been packaged in the SequenceUtilities module, and the digitize function has been
packaged in the NumericUTtilities module. Both of these modules are contained in the Appendix.

¢ HaskerL Derivimion 2 module PlotUtilities

¢ HASKELL DEFINITION ? (showGraph)

¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ? import SequenceUtilities(transpose)

¢ HASKELL DEFINITION ? import NumericUTtilities(digitize)

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? showGraph:: RealFrac num =>

¢ HASKELL DEFINITION ? Int -> (num->num) -> num -> num -> String

¢ HASKELL DEFINITION ? showGraph w f a b = (unlines . reverse . transpose) graph

¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ? graph = -- you define graph
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? ysDigitized = [digitize height yMin yMax y| y<-ys]

¢ HASKELL DEFINITION ? height = -- you define height
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? ys = [f x| x<-xs]

¢ HASKELL DEFINITION ? xs = [a + dx/2 + fromIntegral(k)*dx| k<-[0..w-1]]

¢ HASKELL DEFINITION ? dx = (b-a)/fromintegral(w)

¢ HASKELL DEFINITION ? yMax = maximum ys

¢ HASKELL DEFINITION ? yMin = minimum ys

¢ HASKELL DEFINITION ? aspect = fromRational(3%5)

20 Fractiona Numbers 109Q

The following command applies showGraph in the usual way.

HaskeLL Derinimion e import PlotUtilities(showGraph)

HaskeLL Commanp e putStr(showGraph 20 sin (-2*pi) (2*pi))
HASKELL RESPONSE ® ~ * * * * * KA KK

HASKELL RESPONSE

Whoops! Poor resolution in the vertical direction. Doubling the resolution gives a better picture.

HaskeLL Comuanp putStr(showGraph 40 sin (-2*pi) (2*pi))
HASKELL RESPONSE * *kokkk ok * kK Kk KKk
HASKELL RESPONSE® ~ * *
HASKELL RESPONSE *
HASKELL RESPONSE ®

* Kk k k% * Kk k k%

* * * * * *
* * * * * * * *

*kkk k% *kkk*k*x

Graph-plotting Program
Main Organization Chart

PlotUtilities

SequenceUtilities NumericUtilities

Review Questions

1 TheHaskell class Fractional includes
a integral, real, and complex humbers
b numbers between zero and one, but not numbers bigger than one
¢ both floating point and rational numbers
d theMandelbrot set

2 The mantissa of afloating point number determines
a wherethe decimal point goes
b therange of the number and itssign
¢ the magnitude and precision of the number
d thesign of the number and the digitsin its decimal numeral

20 Fractiona Numbers 110Q

3 The exponent of afloating point number determines
a wherethe decimal point goes
b therange of the number and its sign
¢ themagnitude and precision of the number
d thesign of the number and the digitsin its decimal numeral

4 Thefollowing denote floating point numbers as the should appear in a Haskell script
a 1.89533e+25, 18.01528974, 1.05522e-24, +27.0

b 1.89533 x 10%°, 18.01528974, 1.05522 x 1024, -27.0
c 1.89533e+25, 18.01528974, 1.05522¢-24, -27.0
d all of the above

5 Anaog to digital conversion converts a number
a fromaset containing a great many numbers to a number from a much smaller set
b tozeroorone
c toapattern of zeros and ones
d by adigital analogy process

6 Which of the following formulas would useful for analog to digital conversion?

a floor((x - a)/dx)
b floor(ndx - a)/(b - a))
¢ floor. (/ dx) . (+(- @)

d all of the above

7 Numbers of type Rational in Haskell scripts are
a compatible with floating point numbers in arithmetic operations
b constructed from two integers by putting a percent-sign between them
c especialy useful when precision is not the most important factor
d al of the above

20 Fractiona Numbers 111Q

Patterns as Formal Parameters 21

When you know something about the structure of an argument that may be supplied to afunction,
you can take advantage of that knowledge to make the definition more concise and easier to
understand. For example, suppose you are writing a function whose argument will be atwo-tuple
of numbers, and the function is supposed to deliver the sum of those numbers. You could write the
definition as follows.

HASKELL DEFINITioN e sumPair 2 Num num => (num, num) -> num
HASKELL DEFINITION e SUMPair (X, y) =X +y

Theformal parameter in this caseis atwo-tuple pattern. When the function isused in aformula, it
will be supplied with atwo-tuple of numbers as an argument. At that point, the first component of
the tuple argument gets associated with the first component of the tuple-pattern in the definition
(that is, x), and the second component of the tuple argument gets associated with the second com-
ponent of the tuple-pattern (that is, y).

HaskeLL Commanp e sumPair(12, 25) — matches x in definition with 12, y with 25
HaskeLL REsPonsE e 37 —ddlivers12 + 25

Thisidea can also be used with arguments that are sequences. For example, the following function
expects its argument to be a sequence of two strings, and it returns a string containing the first
character in the first string and the last character in the second string.

HaskeLL Derinmion e firstAndLast :: [String] -> String
HaskeLL Derinimion e firstAndLast [xs, ys] = [head xs] ++ [last ys]

This function could be generalized to handle arguments with other sequence-patterns. Values to
be delivered for other patterns are smply written in separate equations. The following definition
would cover three cases: (1) an argument with two elements, as above, (2) an argument with one
element, and (3) an argument with no elements.

HaskeLL Derinmion e firstAndLast :: [String] -> String

HaskeLL Derinirion e firstAndLast [xs, ys] = [head xs] ++ [last ys]
HaskeLL Derinmion e firstAndLast [xs] = [head xs] ++ [last xs]
HaskeLL Derinimion e firstAndLast [=[]

This amounts to a function with three separate cases in its definition. The appropriate case is
selected by matching the supplied argument against the patterns in the defining equations and
choosing the defining equation that matches. If no pattern matches the supplied argument, the
function is not defined for that argument. The preceding definition of firstAndLast does not
define the function on sequences with three or more elements.

To define firstAndLast on sequences with any number of elements, a pattern involving the
sequence constructor can be used. The sequence constructor is an operator denoted by the colon
(:) that inserts a new element at the beginning of an existing sequence.

X:XS = [X] ++ xS

21 Patterns as Formal Parameters 112Q

Of course, you aready know how to insert an element at the beginning of an existing sequence by
using the append operator (++). Unfortunately, however, the append operator is not included in
the class of operators that can be used to form patternsin formal parameters. Operatorsin this
class are known as constructors, and it just happens that the colon operator is one of those, but the
plus-plus operator isn't.

Using the sequence constructor, the definition of firstAndLast can be extended to deal with all
finite sequences:

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

firstAndLast :: [String] -> String
firstAndLast (xs : yss) = [head xs] ++ [last(last(xs : yss))]
firstAndLast [] =[]

In this definition, the first equation will be selected to deliver the value if the supplied argument
has one or more elements because the pattern (xs : yss) denotes a sequences that contains at least
the element xs. If the supplied argument has no elements, then the second equation will be
selected.

HASKELL COMMAND *
HASKELL RESPONSE ®
HASKELL COMMAND ©
HASKELL RESPONSE *
HASKELL COMMAND ®
HASKELL RESPONSE *
HASKELL COMMAND *
HASKELL RESPONSE ®

firstAndLast ['A", "few", "words"] — selectsfirst equation
As

firstAndLast["Only", "two"] — selects first equation
Oo

firstAndLast["one"] — selectsfirst equation
oe

firstAndLast []
[]

— selects second equation

Many definitions use patterns involving the sequence constructor (:) because it often happens that
adifferent formula applies when an argument is non-empty than when the argument is empty.1 Of
course, you could always write the definition using guards:

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

firstAndLast :: [String] -> String
firstAndLast xss
| null xss []

| otherwise = [head(head xss)] ++ [last(last xssS)]

But, the pattern-matching form of the definition
has the advantage of attaching names to the com-
ponents of the sequence that can be used directly
in the definition, rather than having to apply
head or tail to extract them. For example, in the
pattern-matching form of the definition of fir-
stAndLast, the first component of the argument sequence in the non-empty case as associated
with the name xs. S0, it can be used in the definition: head xs, rather than the more complicated
head(head xss) required in the definition that does not rely on pattern-matching.

head, last :: [a] ->a —intrinsic functions

tail :: [a] -> [a]

head([x] ++xs) = x tail([X] ++ Xxs) = xS
last = head . reverse

1. InthefirstAndLast function, for example, the an empty argument presents a special case because there
are no strings from which to extract first and last elements.

21 Patterns as Formal Parameters 113Q

Review Questions

1 Theformula (X : xs) isequivaentto
a XxX++xs
b [x]++xs
c [X] ++[xs]
d al of the above

2 Thedéfinition
HaskeLL DeFiniTioN e f(X : XS) = g X XS
HaskeLL Derinmione f[]=h
definesh interms of g
defines f for arguments that are either empty or non-empty sequences
will not work if xs isthe empty sequence
all of the above

3 Thedefinition
HaskeLL Derinmion e (X @ XS) = g X XS
isequivalent to
a fxs|nullxs =gxxs
b fxs=gxxs| h
¢ f xs |not(null xs) =g (head x) (tail xs)
d fxxs = g(x:xs)

o0 T W

4 Which of the following defines a function of type ([Char], Char) -> [Char] ?
f((x: xs), 'X') =[x] ++ reverse xs ++ ['X']

f(x,y:ys) =[] ++reverseys ++[X]

c f((xs:'X), x) =][x] ++ reverse xs ++ ['X]

d al of the above

T o

5 Which of the following formulas delivers every third element of the sequence xs?

a foldrdrop[]xs
b [foldr drop [] suffix | suffix <- iterate (drop 3) xs]
c [x] (x: suffix) <- takeWhile (/=[]) (iterate (drop 3) (drop 2 xs))]

d takeWhile (/=[]) (iterate (take 3) xs)

21 Patterns as Formal Parameters 114Q

Recursion 22

You have learned to use severa patterns of computation that involve repetition of one sort or
another: mapping (applying the same function to each element in a sequence), folding (collapsing
all the elements of a sequence into one by inserting a binary operation between each adjacent
pair), iterating (applying afunction to its own output, repeatedly), filtering (forming a new
sequence from the elements of an existing one that pass a certain criterion), and extracting a prefix
or suffix of a sequence. Most important computations can be described using just these patterns of
repetition. But not all.

Some computations require other patterns of repetition. In fact, thereis no finite collection of pat-
terns that cover all of the possibilities. For this reason, general purpose programming languages
must provide facilities to permit the specification of arbitrary patterns of repetition. In Haskell,
recursion provides this capability.

A definition that contains aformulathat refers to the term being defined is called arecur sive for -
mula. All of the patterns of repetition that you have seen can be described with such formulas.

Take iteration, for example. The iterate function constructs a sequence in which each successive
element is the value delivered by applying a given function to the previous element. It isan intrin-
sic function, of course, but if it weren't, the following equation would define it.

HaskeLL DeriviTion e iterate f x = [x] ++ iterate f (f X)

What does this mean? It means that the value iterate delivers will be a sequence whose first ele-
ment is the same as the second argument supplied to iterate and whose subsequent elements can
be computed by applying iterate to different arguments. Well ... not completely different. The
first argument is the same as the first argument originally supplied to iterate. The second argu-
ment is different, however. What was x beforeis now (f x).

Therefore, the first element of the value delivered by the subformulaiterate f (f x) will be (f x).
This value becomes the second element in the sequence delivered by iterate f x. What about the
third element? The third element will be the second element delivered by the subformula
iterate f (f x).

To see what thisvalue s, just re-apply the definition of iterate:
iterate f (f x) =[(f x)] ++ iterate f (f (f X))

The second element in this sequence is the first element in the sequence delivered by the subfor-
mulaiterate f (f (f x)), and that valueis (f (f X)), asyou can see from the definition of iterate.

And so on. Thisis how recursion works.
Look at another example: the function foldr, defined via recursion:

HaskeLL Derinimion e foldr op z (X : xs) = op x (foldr op z xs)
HaskeLL Derinimion e foldr op z [] = z

You can see the pattern of repetition that this definition leads to by applying the definition to the
formulafoldr (+) 0 [1, 2, 3].

22 Recursion 115Q

foldr (+)0[1,2,3] = (+) 1 (foldr (+) 0[2, 3]) — according to the definition of foldr
= 1+ (foldr (+) 0[2, 3]) — switching to operator notation for (+)
= 1+ ((+)2 (foldr (+) O [3]) — applying the definition of foldr again
= 1+ (2+ (foldr (+) 0 [3])) — switching to operator notation for (+)
=1 +R2+(((+)3(foldr(+)0[]) — applying the definition again
=1 +(2+ 3+ (foldr (+) 0[]))) — switching to operator notation for (+)
=1 +((2+((3+0) — applying the definition again (empty-case this time)

Thisisthe operational view of recursion — how it works. Generally, it’s not a good ideato worry
about how recursion works when you are using it to specify computations. What you should con-
cern yourself with is making sure the equations you write establish correct relationships among
the terms you are defining.

Try to use recursion to define the take function. Thetrick isto make the defining formula push the
computation one step further along (and to make sure your equations specify correct relation-
ships).

¢ HaskeLL Derinmion 2 take n (X @ XS) —you take a stab at the definition
¢ HASKELL DEFINITION ? |n>0 =

¢ HASKELL DEFINITION ? | n== =

¢ HASKELL DEFINITION ? otherwise = error("take (" ++ show n ++ ") not allowed")

¢ HaskeLL Derinimion 2 take n [] = —don't forget this case

So much for using recursion to define what you already understand. Now comes thetimeto try it
on anew problem.

Suppose you have a sequence of strings that occur in more-or-less random order and you want to
build a sequence containing the same elements, but arranged alphabetical order. Thisis known as
sorting. The need for sorting occurs so frequently that it accounts for a significant percentage of
the total computation that takes place in businesses worldwide, every day. It is one of the most
heavily studied computations in computing.

There are lots of ways to approach the sorting problem. If you know something about the way the
elements of the sequence are likely to be arranged (that is, if the arrangement is not uniformly ran-
dom, but tends to follow certain patterns), then you may be able to find specialized methods that
do the job very quickly. Similarly if you know something about the elements themselves, such as
that they are all three-letter strings, then you may be able to do something clever. Usually, how-
ever, you won't have any specialized information. The sorting method discussed in this chapter is,
on the average, the fastest known way? to sort sequences of elements when you don’t know any-
thing about them except how to compare pairs of elementsto see which order they should go in.

Fortunately, it is not only the fastest known method, it is also one of the easiest to understand. It
was originally discovered by C. A. R. Hoare in the early days of computing. He called it quick-
sort, and it goes like this: Compare each element in the sequence to the first element. Pile up the
elements that should precedeit in one pile and pile up the elementsthat should follow it in another
pile. Then apply the sorting method to both piles (thisis where the recursion comesin). When you

1. Thereareall sorts of tricks that can be applied to tweak the details and get the job done faster, but all of
these tricks leave the basic method, the one discussed in this chapter, in place.

22 Recursion 116Q

are finished with that, build a sequence that (1) begins with the elements from first pile (now that
they have been sorted), (2) then includes the first element of the original sequence, and (3) ends
with the elements from the second pile (which have also been sorted at this point).

Try your hand at expressing the quick-sort computation in Haskell.
¢ HaskeLL Derivimion 2 quicksort (firstx : xs) = —you try to define quicksort
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HaskeLL Derinimion 2 quicksort [] =11
HaskeLL Commanp e quicksort["Billy", "Sue", "Tom", "Rita"]

HaskeLL Response e ["Billy”, "Rita”, "Sue", "Tom"] — works on strings
HaskeLL Commanp e quicksort[32, 5280, 12, 8]
HAskeLL REsponse e [8, 12, 32, 5280] —works on numbers, too

HaskeLL Commanp e quicksort[129.92, -12.47, 59.99, 19.95]
HASKELL REsPonsE s [-12.47, 19.95, 59.99, 129.92]
HaskeLL Commanp e quicksort["Poe”, "cummings", "Whitman", "Seuss", "Dylan"]

HaskeLL Response e ['Dylan”, "Poe", "Seuss”, "Whitman", "cummings"] — whoops!

Aswritten, quicksort puts numbersin increasing order and puts stringsin al phabetical order. But,
it seemsto have some sort of lapse in the last of the preceding examples. It puts "cummings” last,
when it should be first, going in aphabetical order.

The problem hereisthat quicksort is using the intrinsic comparison operation (<), and this oper-
ation arranges strings in the order determined by the ord function, applied individually to charac-
tersin the strings. The ord function places capital |etters prior to lower case letters, so
"cummings"” islast because it starts with alower case | etter.

Thiskind of problem applies to many kinds of things you might want to sort. For example, if you
had a sequence of tuples containing names, addresses, and phone numbers of a group of people,
you might want to sort them by name, or by phone number, or by city. The built in comparison
operation (<), no matter how it might be defined on tuples, could not handle all of these cases.

What the quicksort function needs is another argument. It needs to be parameterized with respect
to the comparison operation. Then, an invocation could supply a comparison operation that is
appropriate for the desired ordering.

A version of quicksort revised in thisway is easy to construct from the preceding definition. Try
to doit on your own.

¢ HaskeLL Derinimion 2 quicksortWith precedes (firstx : xs) — you define quicksortWith
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HaskeLL Derinimion 2 quicksortWith precedes [] =[]

Now, if the intrinsic comparison operation (<) is supplied as the first argument of quicksortWith,
it will work as quicksort did before.

HaskeLL Commanp e quicksortWith (<) ["Poe", "cummings”, "Whitman", "Seuss", "Dylan"]
HaskeLL Response e ['Dylan”, "Poe", "Seuss", "Whitman", "cummings"]

22 Recursion 117Q

However, if a special operation is provided to do a better job of alphabetic comparison, then
quicksort can deliver an alphabetical arrangement that is not subject to the whims of ord.

¢

¢

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

HASKELL COMMAND ?
HASKELL COMMAND ?

HASKELL RESPONSE *

import Char -- get access to toLower function
precedesAlphabetically x vy

| xLower == yLower = x<y
| otherwise = xLower < yLower
where

xLower = map toLower X
yLower = map toLower y

— you write the invocation

['cummings”, "Dylan”, "Poe", "Seuss", "Whitman"]

The new version of quicksort isageneral purpose sorting method for sequences. It can be applied
to any kind of sequence, aslong as acomparison operation is supplied to compare the elements of
the sequence.

Review Questions

1 Which of the following defines afunction that delivers the same results as the intrinsic function reverse?
rev(x : xs) =xs ++ [X]

a

b

c

d

rev[] =[]

rev(xs : X) = X : Xs

rev[] =[]

rev(x : xs) = revxs ++ [X]

rev[] =[]

none of the above

2 Which of the following defines a function that would rearrange a sequence of numbers to put it in decreasing
numeric order?

a
b
c
d

sortDecreasing
sortDecreasing
sortDecreasing

al of the above

3 Thefollowing function

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

quickSortWith (>)
quickSortWith (>) [18.01528974, 1.89533e+25, 1.05522e-24, 27.0]
quickSortWith (>) numbers

sorta(x : Xs) = insert x (sorta xs)
sorta[] =]
insert a (X : Xs)

| a<=x =[a, X] ++ xs

| otherwise = [x] ++ (insert a xs)
inserta[]=a]

delivers the same results as quicksort
delivers the same results as quicksortWith (<)

a

b

c both of the above

d neither of the above
22 Recursion

118Q

Ifs, Lets and Unlimited Interactive Input 23

The interactive programs described up to this point have had arigid structure. They all performed
afixed number of input/output directives. In each case, the exact number of input/output direc-
tives had to be known before the script was written. Thisisfine as far as it goes, but what do you
do when you cannot predict in advance how many input items there might be?

For example, suppose you want to write a script that will ask the person at the keyboard in enter a
sequence of names, any number of them, and finally enter some signal string like “no more
names’, to terminate the input process. Then, the program is to display something based on the
names entered, such as displaying the names in alphabetical order (using the quicksortWith func-
tion, which has been packaged in the SequenceUtilities module from the Appendix). In a case
like this, you cannot know in advance how many input directives there will be. So, you cannot use
ado-expression made up of asimple list of input/output directives.

The solution to the problem isto use arecursive formulation of the input function to continue the
process as long as necessary and to select an aternative formulation, without the recursion, when
the special signal (e.g., “no more names’) is entered. The following script does this. It uses two
new kinds of expressions: let expressions and conditional expressions (if-then-else). Take alook
at the script, and try to follow the logic. The new constructs are explained in detail in the text fol-
lowing the script.

HaskeLL Derinirion e import Char(toLower)

HaskeLL Derinirion e import SequenceUtilities(quicksortWith)
HASKELL DEFINITION ©

HASKELL DEFINITION e Main =

HASKELL DEFINITION © do

HASKELL DEFINITION names <- getNames

HASKELL DEFINITION © do

HASKELL DEFINITION * let sortedNames = quicksortWith namePrecedes names
HASKELL DEFINITION * putStr(unlines sortedNames)

HASKELL DEFINITION *
HaskeLL Derinimion e getNames =

HASKELL DEFINITION © do

HASKELL DEFINITION name <- getName

HASKELL DEFINITION * if name == "no more names"
HASKELL DEFINITION * then return []

HASKELL DEFINITION © else

HASKELL DEFINITION © do

HASKELL DEFINITION names <- getNames
HASKELL DEFINITION * return([name] ++ names)

HASKELL DEFINITION *
HaskeLL Derinirion e getName =

HASKELL DEFINITION © do
HASKELL DEFINITION * putStr "Enter name (or \"no more names\" to terminate): "
HASKELL DEFINITION name <- getLine

23 Ifs, Lets and Unlimited Interactive Input 119Q

HASKELL DEFINITION ® return name
HASKELL DEFINITION ©
HaskeLL Derinimion e namePrecedes namel name2 = precedesAlphabetically Infl Inf2

HASKELL DEFINITION where
HASKELL DEFINITION Infl = lastNameFirst namel
HASKELL DEFINITION ® Inf2 = lastNameFirst name?2

HASKELL DEFINITION
HaskerL Derinimion e lastNameFirst name =

HASKELL DEFINITION dropWhile (=="") separatorThenLastName ++ " " ++ firstName
HASKELL DEFINITION ® where
HASKELL DEFINITION * (firstName, separatorThenLastName) = break (=="'") name

HASKELL DEFINITION *
HaskeLL Derinirion e precedesAlphabetically :: String -> String -> Bool
HaskeLL Derinimion e precedesAlphabetically x y

HASKELL DEFINITION | xXLower == yLower = x<y

HASKELL DEFINITION ¢ | otherwise = xLower < yLower
HASKELL DEFINITION where

HASKELL DEFINITION xLower = map toLower x

HASKELL DEFINITION yLower = map toLower y

Directivesin a do-expression have a different nature from operations in ordinary formulas. One
differenceisthat the do-expression imposes a sequence on the directives. Another isthat vari-
ables used to stand for dataretrieved from input directives are accessible only in subsequent direc-
tives within the do-expression. For these reasons, the where clauses and guarded formulas that
you have been using to define functions do not fit into the realm of do-expressions.

Instead, two other notations are used for this purpose: the let expression serves the role of the
where clause and the conditional expression (if-then-else) provides away to select aternative
routes through the sequence of input/output directives, much like guarded formulas provided a
way to select alternative values for ordinary functions.

A let expression may appear at the beginning of a do-expression to give names to values to be
used later in the do-expression. The let expression may contain any number of definitions, each of
which associates a name with a value. These appear as equations following the let keyword, one
equation per line and indented properly to observe the offsides rule for grouping. Variables
defined in let expressions can be used at any subsequent point in the do-expression containing
them, but they are not accessible outside that do-expression.

A conditional expression provides away to select between two alternative sequences of input/out-
put commands. It begins with the keyword if, which is followed by aformulathat delivers aBool-
ean value (True or False). Following the Boolean formulais the keyword then and a sequence of
input/output directives. Fnally, the keyword else followed by an alternative sequence of
input/outpout directives completes the conditional expression. When the Boolean formula deliv-
ersthe value True, the computation proceeds with the input/output commands in the then-branch
of the conditional expression; otherwise, it proceeds with those in the else-branch.

Take another look at the function getNames in the script. Thisis the function that has uses recur-
sion to allow the sequence of input/output directives to continue until the termination signal is
entered, no matter how many names are entered before that point. The key step occurs in the con-

23 Ifs, Lets and Unlimited Interactive Input 120Q

ditional expression. After retrieving a name from the keyboard, getNames testsit in the Boolean
formulafollowing the if keyword in the conditional expression. If the termination string “no more
names’ was entered, then getNames returns the empty list. Otherwise it returns a sequence
beginning with the name retrieved and followed by all the rest of the names entered (asretrieved
by the recursive invocation of getNames). In this way, getNames builds a sequence of names

from the lines entered at the keyboard.

Therest of the script is composed from bits and pieces
that you've seen before. The only other new element is
the break function. Thisis an intrinsic function that
splits a given sequence into two parts, breaking it at
thefirst point in the sequence where an element occurs

break :: (a -> Bool) ->[a] -> ([a],[a])

break breakTest xs =
(takeWhile (not . breakTest) xs,
dropWhile (not . breakTest) xs)

that passes agiven test. The sequence is supplied as the second argument of break, and thetest is
supplied as the first argument of break in the form of afunction that delivers a Boolean value

when applied to an element of the sequence.

23 Ifs, Lets and Unlimited Interactive Input

121Q

Algebraic Types 24

Up to this point, all of the Haskell formulas you have seen or written have dealt with typesthat are
intrinsic in the language: characters, Boolean values, and numbers of various kinds, plus
sequences and tuples built from these types, and functions with arguments and values in these
domains, etc. This system of types provides a great many ways to represent information.

Some classes of computing problems, however, deal with information that isclumsy to describein
terms of Haskell’sintrinsic types. For such problems, it is more effective to be able to design your
own types, then write functions making use of those types. Haskell provides away to do this.

In addition to making it more convenient to describe some computations, types defined by soft-
ware designers also provide an important measure of safety. The type checking mechanismsin
Haskell systems are put to work checking for consistent usage of these newly defined types. Since
they cannot mix in unanticipated ways with other types, these consistency checks often prevent
subtle and hard-to-find defects from slipping into your definitions.

Suppose, for example, you were creating some software that needed to deal with the primary col-
orsred, yellow, and blue. You could define a data type to represent these colors and use it wher-
ever your program needed to record a color:

HaskeLL Derinimion e data Color = Red | Yellow | Blue

This definition of the type Color names the three values the Color can take: Red, Yellow, and
Blue. These values are known asthe constr uctor s of the type, and they are listed in the definition,
one after another, separated by vertical bars.! Constructor names, like datatypes, must begin with
capital letters.

To take the example a bit further, suppose your software needed to deal with two kinds of geomet-
ric figures: circles and rectangles. In particular, the software needs to record the dimensions for
each such figure and its color. The following definition would provide an appropriate type for this
application:

HaskeLL Derinirion e data Figure =
HASKELL DEFINITION * Circle Color Double | Rectangle Color Double Double

This data type specifies two fields for the value that Circle constructs (afield of type Color, to
record the color of the Circle, and afield of type Double, to record its radius) and three fields for
Rectangle (for color, length, and width). The script could use the Figure datatype to define vari-
ables.

HaskeLL Derinimion e circle = Circle Red 1
HaskeLL DeriviTion e rectangle = Rectangle Blue 5 2.5
HaskerL Derinimion e otherCircle = Circle Yellow pi

The above definitions define three variables of type Figure: two circles (ared one with unit radius
and ayellow one with radius 1) and a blue rectangle twice aslong asit iswide.

1. Thisvertical bar isthe same one used in list comprehensions, but in the context of data definitions, you
should read it as “or.” A value of type Color, for example, is either Red or Yellow or Blue.

24 Algebraic Types 122Q

When you define data types, you will normally want them to inherit certain intrinsic operations,
such as equality tests (==, /=) and the show operator, which converts values to strings, so that
they can be displayed on the screen or written to files. To accomplish this, attach aderiving clause
to the definition that names the classes whose operators the type is to inherit.

HaskeLL DeriviTion e data Color =

HASKELL DEFINITION Red | Yellow | Blue

HASKELL DEFINITION ¢ deriving (Eq, Ord, Enum, Show)

HASKELL DEFINITION *

HaskeLL DeFiniTion e data Figure =

HASKELL DEFINITION * Circle Color Double | Rectangle Color Double Double
HASKELL DEFINITION * deriving (Eq, Show)

With the above inheritance characteristics, equality and
show operators can be applied to values of either Color
or Figure type. In addition, order operators (<, >, etc.)
can be applied to Color data, and sequences can be con-
structed over ranges of Color values.

show :: Text a =>a -> String
show 2 = "2"
show (3+7) ="10"
show "xyz" =" \"xyz\" "
show X’ =" 'x
HaskeLL Commanp e Red < Yellow « show deliversastring that would denote,

in ascript, the value of its argument
 useful primarily in putting together

¢ HASKELL RESPONSE ?

HaskeLL Commanp e [Red .. Blue] strings for output to the screen or files
¢ HASKELL RESPONSE ?
HaskeLL Commanp e Circle Red 1 == Circle Red 2

¢ HASKELL RESPONSE ?

HaskerL Commanp e show(Rectangle Blue 5 2.5)

HaskeLL Response e "Rectangle Blue 5.0 2.5"

HaskeLL Coumann e [Circle Red 1 .. Circle Blue 2]

HaskeLL Response» ERROR: Figure is not an instance of class "Enum”

Thelast command makes no sense because the type Figure isnot in the Enum class. The deriving
clause for Figure could not include the Enum class because only enumer ation types (that is,
types whose constructors have no fields) can be in that class.

The fields in type Figure have specific types (Color, Double). But, this need not always be the
case. A field can polymorphic. For example, a script might want to use different kinds of numbers
to represent the dimensions of circles and rectangles— Doublein one part of the script, Integer in
another, and perhaps Rational in athird part of the script.

To define polymorphic types, atype parameter (or several type parameters) can beincluded in the
definition:

HaskeLL Derinirion e data (Real realNumber) =>

HASKELL DEFINITION Figure realNumber =

HASKELL DEFINITION * Circle Color realNumber |

HASKELL DEFINITION * Rectangle Color realNumber realNumber
HASKELL DEFINITION ¢ deriving (Eq, Show)

24 Algebraic Types 123Q

This polymorphic version of the Figure type defines several different types:
* Figure Double — measurements recorded as double-precision, floating point numbers
* Figure Int — measurements recorded as integers
» Figure Rational — measurements recorded as rational numbers

Toillustrate the use of defined typesin an important area of computing science, consider the prob-
lem of analyzing sequences of playsin certain kinds of two-player games. Such gamesfall into a
general pattern that could be called minimax tree-games. Tic-tac-toe, chess, and gin rummy are a
few examples. At each stage, one player or the other is obliged to take an action. The rules specify
the allowabl e actions, and each action by one player presents a new stage of the game to the other
player. That player isthen obliged to select one of the actions permitted by the rules.

The opponents have opposite goals. what is good for one is bad for the other. The software in this
lesson will represent these goals as numeric scores. One player will seek to conclude the game
with the highest possible score, and the other try to force as low a score as possible.

Q Two-move Tree-game
Game startsin position S.

@ e Player A chooses position A, or A,

If Player A chooses A4
then Player B may choose a position with
ascore of 1 or aposition with ascore of 5
If Player A chooses A,
then Player B may has a choice of three
positions, one with score 2, another with
score 3, and athird with score 4.

)

S5

Goals
Player A — highest possible score
Player A moves __ Player B moves - Player B — lowest possible score

To get afeeling for thismodel, study the diagram of the two-move tree-game. In thisgame, Player
A, to maximize his score, will choose position A,. From position A, the worst score Player A can

get is 2, while from position A; he could get ascoreaslow as 1. In fact Player A will definitely
get ascore of 1 of he movesto position A, unless Player B makes a mistake.

When Player A chooses position A, heisusing what is known as aminimax strategy. He
chooses the position that maximizes, over the range of options available, the smallest possible
score he could get. Player B uses the same strategy, but inverted. She chooses the position that
minimizes, over her range of options, the largest possible score that she might obtain (because her
goal isto force the game to end with the lowest score possible).

These games are artificial ones, described directly in terms of diagrams showing possible moves
and eventual scores, but the same sort of structure can be used to describe many two-player

24 Algebraic Types 124Q

Test your understanding of minimax principles by analyzing tlise game.

It requires either tvo or three mees, depending on whitmove is dosen first.

Tree-game with
@ two or three meoes

e @ Game startsin position S
Goals

Player A — highest possible score
Player B — lowest possible score

Player A moves Player B moves Player A moves
- T T

games. If you have following three pieces of information about a game, you can draw diagram for
the game similar to these tree-game charts:

1. moves— arulethat specifies what moves can take place from a given position,
2 score— afunction that can compute the score from a position that ends a game, and
3 player — arulethat, given a game position, can determine which player isto play next.

Diagrams of this form occur frequently in computer science. They are called tree diagrams, or,
more commonly, just trees. In general, atree consists of an entity known asitsroot, plus a collec-
tion of subtrees. A subtreeis, itself, atree.

In these terms, the two-move game in the diagram is atree with root S and two subtrees. One of
the subtreesis atree with root A1 and two subtrees (each of which has aroot and an empty collec-
tion of subtrees). The other subtreeisatree with root A2 and three subtrees (each of which, again,
has aroot and an empty collection of subtrees).

The goal of this chapter will be to write a function that, given the three necessary pieces of infor-
mation (in the form of other functions: moves, score, and player) and a starting position for a
game will build a representation of atree-diagram, use it to carry out a game played perfectly by
both players, and report the position at the end of the game.

One piece of information the software will need to deal with from time to time is the identity of
the player whose turn it isto proceed. This information could be represented in terms of intrinsic
typesin many ways. A player’sidentity could be known by a character for example, perhaps’A’
for Player A and 'B’ for Player B. Or, integers could be chosen to designate the players, perhaps 1
for Player A and 2 for Player B.

24 Algebraic Types 125Q

Instead of using one of these alternatives, the identity of the player will be represented by anewly
defined data type called Player. Thiswill take advantage of the Haskell system’s type checking
facility to keep from mixing up a player’sidentity with a character or number used for some other
purpose. The functions that need the player’s identity will get avalue of the newly defined type
and will not be ableto use it asif it were a character or integer or some other type of value. This
reduces the number of ways that the program can bein error.

This definition establishes the Player type with two constructors, PlayerA and PlayerB:
HaskerL Derinimion e data Player = PlayerA | PlayerB

A type need not have more than one constructor. For example, the following type will be used to
represent game trees.

HaskerL Derinimion e data Game position = Plays position [Game position]

The type Game is polymorphic. The parameter that makes it polymorphic (denoted by the name
position in the definition), can be any type. Therefore, Game isreally afamily types, one for
each possible type that position might be (Int, String, [Int], or whatever).

Any value of type Game will be built by the constructor Plays and will take the form of the con-
structor name Plays followed by a value of type position, followed in turn by a sequence of val-
ues of type Game. The definition is recursive, as you might expect it to be, sinceagameisatree
and atreeisaroot and a collection of subtrees.

The name position in the definition of Game is simply a placeholder. A variable of type Game
will actually have type Game Int if the placeholder isthe type Int. On the other hand, the variable
will have type Game [Int] if the placeholder isthe type [Int]. The polymorphic nature of the type
Game is necessary because the function to be written is supposed to work regardless of the
details of the game itself. Different games, of course, would need to record different information
to represent a position in the game. One representation of position would not fit all games.

The function to carry out agame from a given position, afunction called perfectGameFromPo-
sition, will be packaged in amodule called Minimax. Since al computations requiring an under-
standing of the details of avalue of type position will be performed by functions supplied as
arguments to perfectGameFromPosition, the module Minimax can treat position in an entirely
abstract way. It matters not at all to functions in the module Minimax how the type position is
represented.

There are two components of the computation that perfectGameFromPosition carries out: one
to generate the game tree and the other to use the minimax strategy to find the final position of a
game played perfectly from the point of view of both players.

Consider first the problem of building the game tree. This can be done in stages. Starting from a
given position, compute all of the positions attainable in one move from that position. (One of the
functions supplied as an argument to perfectGameFromPosition isresponsible for delivering
this collection of positions— this function is referred to as moves in the module Minimax.)

The positions computed from the initial position become the starting positions of the subtrees of
the root in the game tree Their game trees can, of course, be computed in the same way. The com-
putation is recursive in the same way that the type representing game treesis recursive.

24 Algebraic Types 126Q

HAskeLL DEFiNITIoN e gameTree:: (position -> [position]) -> position -> Game position
HaskeLL Derinirion e gameTree moves p = Plays p (map (gameTree moves) (moves p))

Depending on the game, this tree could be infinite, in which case the minimax strategy won't
work. To use the minimax strategy, potentially infinite games, such as checkers, must be arbi-
trarily cut off at some stage by the moves function. (Thisiswhat people do, in asense, when they
try to plan ahead a few moves in games like checkers. They analyze the situation as far ahead as
they can manage, then guess that the final score will be related to the quality of their position at
that point.) However, the game tree will be finite if every route down through the subtrees eventu-
ally comesto atree containing an empty sequence of subtrees.

Now consider the problem of choosing a move from a collection of aternatives in the game tree.
If itisPlayer A’sturn to move, hewill need to look at the scores Player B could get by making her
best move from each of the positions Player A can move to. Once thisis computed, al Player A
has to do is choose the move that maximizes his score. The following definition of the function
play follows this strategy, but only for the case when it is Player A’sturn to play. (The function
score in this definition is the function supplied to perfectGameFromPosition, which can com-
pute the score in the game, given a game-ending position.)

HaskerL Derinimion e play PlayerA score (Plays p gs)

HASKELL DEFINITION |[nullgs =p

HASKELL DEFINITION * | otherwise = foldrl (maxPosition score)

HASKELL DEFINITION * (map (play PlayerB score) gs)
HaskeLL DerFiniTion e maxPosition score p q

HASKELL DEFINITION * | scorep>scoreq =p

HASKELL DEFINITION * | otherwise =q

HaskeLL Derinirion e Player B would, of course, follow the same strategy, but looking for
a minimal rather than a maximal score:
HaskeLL Derinmion e play PlayerB score (Plays p gs)

HASKELL DEFINITION * |nullgs =p

HASKELL DEFINITION * | otherwise = foldrl (minPosition score)

HASKELL DEFINITION * (map (play PlayerA score) gs)
HaskeLL DeFINITIoN - miNPosition score p q

HASKELL DEFINITION * | scorep<scoreq =p

HASKELL DEFINITION * | otherwise =q

All that isleft to do to put together the function perfectGameFromPosition is to apply the play
function to the game tree generated from the initial position supplied as an argument. Try tofill in
the definition of perfectGameFromPosition yourself, as part of the module Minimax, which
pulls together the functions defined so far in this chapter.

¢ HaskeLL Deriviion 2 module Minimax

¢ HASKELL DEFINITION ? (Player(PlayerA, PlayerB),
¢ HASKELL DEFINITION ? perfectGameFromPosition)
¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? data Player = PlayerA | PlayerB

24 Algebraic Types 127Q

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

data Game position = Plays position [Game position]

perfectGameFromPosition :: Real num =>
(position->[position]) -> (position->num) -> (position->Player)
-> position -> position
perfectGameFromPosition moves score player p =

--you define this function

gameTree:: (position -> [position]) -> position -> Game position
gameTree moves p =
Plays p (map (gameTree moves) (moves p))

play :: Real num =>

Player -> (position -> num) -> Game position -> position

play PlayerA score (Plays p gs)

[nullgs =p

| otherwise = foldrl (maxPosition score)

play PlayerB score (Plays p gs)

[nullgs =p

(map (play PlayerB score) gs)

| otherwise = foldrl (minPosition score)

(map (play PlayerA score) gs)

minPosition, maxPosition:: Real num =>

(position -> num) -> position -> position -> position
minPosition score p q

| scorep<scoreq =p

| otherwise

=q

maxPosition score p q
| score p>scoreq =p

| otherwise

=q

A notable feature of the module Minimax isthat it exports not only the function that carries out
the minimax strategy, but also the type Player and its constructors. Thisis necessary because any
other module using the facilities of Minimax will have to define afunction that delivers the iden-
tity of the player whose turn it isto play, given a particular position in the game. To supply this
function, the module will require access to the type used in module Minimax to represent players.

24 Algebraic Types

128Q

The other type defined in the module Minimax, that is the type Game position, does not need to
be visible outside the module. So, Game position is not exported. The module Minimax does not
import the facilities of any other module, but it will inherit the type position from any module that
uses Minimax to carry out a game computation. In this sense, the type position, is abstract with
respect to the module Minimax, while the type Player is concrete in Minimax and will also be
concrete in any module using Minimax.

To see how the module Minimax can be used, consider the game of tic-tac-toe. Players take turns
marking squares on athree-by-three grid. If one player marks three squaresin aline (horizontally,
vertically, or diagonally), that player wins. The game is sometimes called noughts and crosses
because the first player to mark the grid normally marks with an X, the other an O.

One way to represent a position in tic-tac-toe isto position and game history

use a sequence of nine integers. The first three The minimax computation delivers the final posi-
positions in the sequence represent the top row of | tion of agame played perfectly from asupplied
the grid, the next three the middle row, and the last | starting position. Normally, one would like to see
three the bottom row. If an integer in the sequence | the sequence of moves leading to thefinal position.
iszero, it indicates that the corresponding squarein | ©néWway to get that information is to design the
the grid is unmarked. If the integer isanon-zero | "ePresentation of positions so that each position

. . contains the entire sequence of movesleading up to
valuen, itindicates that the corresponding square it. The encoding chosen for TicTacToePosition

was marked in the n™ move of the game. follows this strategy.

From this representation, you can figure out which player marked each square: if the integer is
odd, the X player marked it, and if it is even the O player marked it. You can also figure out which
player'sturn it isto play (the largest integer in the grid indicates which player played last — the
other player is next to play). This provides away to write the necessary player function:

HaskeLL Derinirion e ticTacToePlayer(Grid g)

HASKELL DEFINITION * | even(maximum g) = PlayerA
HASKELL DEFINITION * | otherwise = PlayerB

You can also determine from a position represented in odd :: Integral num => num -> Bool
this form whether or not the gameisover and, if itis even :: Integral num => num -> Bool
over, which player won. To do this, just extract from |intrinsic functions

the grid each of thetriples of integers correspondingto | odd = True iff argument is an odd integer
eight straight lines through the grid (top row, middle even = not . odd

row, bottom row, left column, middle column, right

column, diagonal, and back diagonal).t Then check to see of any of these triples contains three
X’s (odd integers) or three O’s (even integers other than zero).

If there are three X’sin arow, then X wins; scorethat as 1. If there are three O’sin arow, then O
wins; score that a-1 (since the Minimax module is set up so that PlayerB, the nameit usesfor the
O player, tries to force the game to a minimum score). If the grid is entirely marked with X’s and
O’sand thereis no place left to mark, then the game is over, and it is adraw; score that as zero.

1. These elements of the grid could be extracted using combinations of head and tail, but it is more concise
to use the indexing operator (!!). If xs isasequence and n is an integer, the xs!!n is element n of xs. Ele-
ments are numbered starting from zero, so xs!'0 is head(xs), xs!!1 is head(tail(xs)), and so on. Of
course, xs!!n is not defined if xs has no element n.

24 Algebraic Types 129Q

HaskeLL Derinirion e ticTacToeScore p

HASKELL DEFINITION * | win PlayerAp =1
HASKELL DEFINITION | win PlayerBp =-1
HASKELL DEFINITION * | otherwise = 0

The win function used in the definition of ticTacToeScore is abit awkward because it has to
extract al the lines from the grid and deal with other technicalities. Nevertheless, it follows the
above outline in a straightforward way. You can work out the details for yourself more easily than
you can read an explanation of them.

The other function that the Minimax module usesto carry out the minimax calculation is the func-
tion that generates the possible moves for a player from agiven position. Since a player can make
amark in any open sguare, this computation amounts to locating the unmarked squares, that isthe
squares with zeros in them. Given an existing position and the location of an open square, you can
build a new position by copying the grid representing the old one, except that in the open square,

you put an integer that is one greater than the largest integer in the existing grid.

HaskeLL Derinimion e ticTacToeMoves:: TicTacToePosition -> [TicTacToePosition]

HaskeLL Derinirion e ticTacToeMoves p

HASKELL DEFINITION * | ticTacToeGameOverp =[]

HASKELL DEFINITION * | otherwise = map (makeMark p) (openSquares p)
HASKELL DEFINITION ®

Again, the details (buried in the functions makeMark and openSquares) are more easily under-
stood by working them out for yourself than by reading someone else's explanation..

Tic-Tac-Toe Program
Main Organization Chart

ticTacToe

TicTacToe

Minimax SequenceUtililities

The preceding explanation will help you work your way through the following module. It imports
severa functions from the SequenceUtilities module (in the Appendix). And, you will need to
either work out for yourself some way to display the information in agrid, or just accept the

24 Algebraic Types 130Q

showGrid function defined in the module as a suitable display generator. It builds a three-line
seguence containing a picture of the grid marked with X’s and O’s and another picture marked
with integers, so you can follow the progress of the game.

HaskeLL Derinimion e module TicTacToe(ticTacToe)

HASKELL DEFINITION * where

HASKELL DEFINITION import Minimax

HASKELL DEFINITION * (Player(PlayerA, PlayerB), perfectGameFromPosition)

HASKELL DEFINITION * import SequenceUtilities

HASKELL DEFINITION * (pam, indicesOfOccurence, blocks, packets, transpose)
HASKELL DEFINITION * import Char(toUpper)

HASKELL DEFINITION *

HASKELL DEFINITION ticTacToe =

HASKELL DEFINITION showGrid .

HASKELL DEFINITION * perfectGameFromPosition

HASKELL DEFINITION ticTacToeMoves ticTacToeScore ticTacToePlayer .
HASKELL DEFINITION * positionFromString

HASKELL DEFINITION *

HASKELL DEFINITION data TicTacToePosition = Grid [Int]

HASKELL DEFINITION * -- Grid g :: TicTacToePostition means
HASKELL DEFINITION -- g = [mark-1, mark-2, ..., mark-9] and
HASKELL DEFINITION --0<=mark-i<=9
HASKELL DEFINITION * -- mark-i = 0 means empty square
HASKELL DEFINITION * -- mark-i = odd means X occupies square
HASKELL DEFINITION -- mark-i = even, > 0 means O occupies square
HASKELL DEFINITION *

HASKELL DEFINITION * data Gridline = Slice [Int]

HASKELL DEFINITION * -- row, column, or diagonal of grid (length 3)
HASKELL DEFINITION * -- Slice [mark-1, mark-2, mark-3] :: Gridline means
HASKELL DEFINITION * --0<=mark-i<=9
HASKELL DEFINITION *

HASKELL DEFINITION * positionFromString :: String -> TicTacToePosition

HASKELL DEFINITION * positionFromString =

HASKELL DEFINITION Grid . map intFromDigit . takeWhile(/=".") .

HASKELL DEFINITION convert '# empties .

HASKELL DEFINITION convert 'O' movesO .

HASKELL DEFINITION * convert 'X' movesX .

HASKELL DEFINITION * (++".") . filter(Celem” "XO#") . map toUpper

HASKELL DEFINITION * where

HASKELL DEFINITION empties = repeat '0’

HASKELL DEFINITION movesX = "13579"

HASKELL DEFINITION movesO = "2468"

HASKELL DEFINITION *

HASKELL DEFINITION ¢ intFromDigit :: Char -> Int

HASKELL DEFINITION * intFromDigit digit = fromEnum(digit) - fromEnum('0")

HASKELL DEFINITION *

HASKELL DEFINITION ¢ convert :: Char -> String -> String -> String

24 Algebraic Types 131Q

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

24 Algebraic Types

convert thisMoveSymbol moveDigits =
concat . zipWith pasteln moveDigits .
packets(== thisMoveSymbol)
where
pasteln moveDigit otherMoveSymbols =
otherMoveSymbols ++ [moveDigit]

ticTacToeMoves:: TicTacToePosition -> [TicTacToePosition]
ticTacToeMoves p

| ticTacToeGameOverp =[]

| otherwise = map (makeMark p) (openSquares p)

ticTacToeScore:: TicTacToePosition -> Int
ticTacToeScore p

| win PlayerAp =1
| win PlayerBp =-1
| otherwise =0

ticTacToeGameOver:: TicTacToePosition -> Bool
ticTacToeGameOver =
or . pam[gridFull, win PlayerA, win PlayerB]

openSquares:: TicTacToePosition -> [Int]
openSquares(Grid g) = indicesOfOccurence 0 g

makeMark:: TicTacToePosition -> Int -> TicTacToePosition
makeMark (Grid g) indexOfSquare =
Grid(take indexOfSquare g ++ [maximum g + 1] ++
drop (indexOfSquare + 1) g)

diag, backdiag, toprow, midrow, botrow, Iftcol, midcol, rgtcol ::
TicTacToePosition -> Gridline

diag(Grid g)

backdiag(Grid g)

toprow(Grid g)

midrow(Grid g)

botrow(Grid g)

Iftcol(Grid g)

midcol(Grid g)

rgtcol(Grid g)

= Slice[g!"0, g!!4, g!'8]
= Slice[g!!2, g!'4, g!!6]
= Slice[g!0, g!!1, g"'2]
= Slice[g!'3, g!!4, g!5]
= Slice[g!!6, g!!7, 98]
= Slice[g!"0, g!!3, g!'6]
= Slice[g!'1, g!!4, g!'7]
= Slice[g!!2, g!!5, g!!8]

gridlines:: [TicTacToePosition -> Gridline]
gridlines = [diag, backdiag,
toprow, midrow, botrow, [ftcol, midcol, rgtcol]

gridlineFilledByPlayer :: Player -> Gridline -> Bool

132Q

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

gridlineFilledByPlayer PlayerA (Slice s) = (and . map odd) s
gridlineFilledByPlayer PlayerB (Slice s) =

(and . map positiveEven) s

where

positiveEven k =k >0 && evenk

win:: Player -> TicTacToePosition -> Bool
win player =
or . map(gridlineFilledByPlayer player) . pam gridlines

gridFull:: TicTacToePosition -> Bool
gridFull(Grid g) = maximum g ==

showGrid:: TicTacToePosition -> String
showGrid(Grid g) =
(unlines . map concat . transpose)

[gridMarkedXO, map (" "++) gridMarkedByMoveNumber]

where

gridMarkedXO = blocks 3 (map markFromMoveNumber g)

gridMarkedByMoveNumber =

blocks 3 (map digitFromMoveNumber g)

markFromMoveNumber m
| m ==
| odd m

=#

=X

| otherwise ='O'

digitfromMoveNumber m
| m ==

='#

| otherwise = head(show m)

ticTacToePlayer :: TicTacToePosition -> Player
ticTacToePlayer(Grid g)

| odd(maximum g) = PlayerB

| otherwise = PlayerA

The following module imports the tic-tac-toe module and defines a few game setups.The com-
mands then show the results that the minimax strategy produces for these situations. The first two
of the setups begin from a partially played game, played imperfectly, to show that the minimax
strategy will if it has an opportunity.

HASKELL DEFINITION ®
HASKELL DEFINITION ®

import TicTacToe(ticTacToe)

HaskeLL Derinirion e advantageO =
HASKELL DEFINITION UXXH! ++
HASKELL DEFINITION ® "HHHE" ++
HASKELL DEFINITION ® "#H#HO"
HASKELL DEFINITION

HaskeLL DerFiniTion e advantageX =

24 Algebraic Types 133Q

HASKELL DEFINITION ®

IIX##II ++

HASKELL DEFINITION "HHA" ++
HASKELL DEFINITION ® "O##"
HASKELL DEFINITION

HASKELL DEFINITION ® Ccat8 =
HASKELL DEFINITION ® "HHHE" ++
HASKELL DEFINITION ® "HEXH" ++
HASKELL DEFINITION “HHH"
HASKELL DEFINITION

HaSKeLL DEFiNiTioN e cat9 =
HASKELL DEFINITION "HHA" ++
HASKELL DEFINITION ® "HHHE" ++
HASKELL DEFINITION ® "

HASKELL DEFINITION ®

HASKELL COMMAND ©
HASKELL RESPONSE *
HASKELL RESPONSE ®
HASKELL RESPONSE *

HASKELL COMMAND
HASKELL RESPONSE

putStr(ticTacToe advantageO)
XXO 134
##0O ##6
#XO #52

putStr(ticTacToe advantageX)
X#EX 1#7

HaskeLL Responsee #OX #65
HaskeLL Responsee OOX 243
HaskeLL Commanp e putStr(ticTacToe cat8)
HaskeLL REsponsee XOO 948
HaskeLL Responsee OXX 615
HaskeLL Responsee XXO 732
HaskeLL Commanp e putStr(ticTacToe cat9)
HaskeLL REsponsee XOX 985
HaskeLL Responsee XOO 726
HaskeLL Responsee OXX 431

Some of the game sequences generated by minimax analysis may look like one player isinten-
tionally throwing the game. When there are more routes than one to awin for one player or the
other, the minimax computation will select one of those routes, without regard to whether it may
or may not look competitive to an experienced player. The essential fact is this: when one player
isin aposition to win, there is nothing the other player can do to keep that player from winning.
So, thelosing player can make arbitrary moves without affecting the result. The minimax strategy
examines all of the relevant possibilities, but the game it selects as its route to the end could be
any of the possible routes. The winning player will never give the losing player an opportunity to
win. But, the player in alosing position may give the other player an opportunity to win easily.

Finally, you may be interested in knowing that most game playing programs, such as chess play-
ers, checkers players, go players, backgammon players, and so on, use the minimax strategy for at
least part of their analysis. However, they use a form of the computation that involves substan-
tially less computation.

24 Algebraic Types 134Q

2a

This more efficient form of the computation is known as the alpha-beta algorithm. It looks ahead
in the game tree and eliminates, without further analysis on the subtree, options that cannot
improve the situation for a given player.! This almost always makes it possible to complete the
computation in something like a small multiple of the square root of the time it would take using
the naive form of the minimax agorithm (the one presented in this chapter). The analysis can then
proceed about twice as far down the game tree as it could have with naive minimax analysis.

Nevertheless, even with the alpha-beta form of minimax analysis, it isimpractical to analyze very
deeply in game trees for large games like chess because such game trees increase in size so rap-
idly with the number of moves analyzed that even the square root of the minimax timeis still
impossibly long. So, practical game playing programs combine minimax analysis (in its alpha-
beta form) with specialized analysis methods designed around particular approaches to playing
the game.

Review Questions

1 A tree in computer science, isan entity
a witharoot and two subtrees
b witharoot and a collection of subtrees, each of whichisalso atree
¢ withacollection of subtrees, each of which has one or more roots
d described in adiagram with circles, lines, and random connections

2 A sequence, in Haskell, is an entity
a with one or more el ements
b thatisempty or has afirst element followed by a sequence of elements
¢ whose elements are also sequences
d with ahead and one or more tails

3 Thefollowing definition specifies
HASkeLL DEFINITION e data WeekDay =
HASKELL DEFINITION ® Monday | Tuesday | Wednesday | Thursday | Friday
atype with five constructors
atype with five explicit constructors and two implicit ones
atree with five roots
a sequence with five elements

o0 T W

4 Given the definition in the preceding question, what is the type of the following function f?
HASkeLL DEFiNITIoN e f Tuesday = "Belgium”
a f: WeekDay -> String
b f:: Tuesday -> "Belgium"
c f:: Day-> Country
d typeof f cannot be determined

1. You can find out how it doesthisin any standard text on artificial intelligence. Also, the text Introduction
to Functional Programming by Bird and Wadler, Prentice-Hall, 1988, contains an elegant derivation of
the alpha-beta algorithm as a Haskell-like program from a form of the minimax program similar to the
one in this chapter.

24 Algebraic Types 135Q

10

11

Types defined in Haskell scripts with the data keyword

a must begin with acapital letter

b may beimported from modules

c must be used consistently in formulas, just likeintrinsic types
d all of the above

What kind of structure does the following type represent?
HASKELL DEFINITION » - data BinaryTree = Branch BinaryTree BinaryTree | Leaf String
a atypewith four constructors
b adigita structure
c atree made up of ones and zeros
d atreein which each root has either two subtrees or none

Given the preceding definition of the type BinaryTree, which of the following defines a function that computes
the total number of Branch constructorsin an entity of type BinaryTree?
a branches binaryTree = 2
b branches (Branch left right) = 2
branches (Leaf x) =0
¢ branches (Branch left right) = 1 + branches left + branches right
branches (Leaf x) =0
d branches (Branch left right) = 2[branches left + 2[branches right
branches (Leaf x) = 1

The formulaxs!!(length xs - 1)

a isrecursive

b hasthe sametypeasxs

Cc ddiversthe sameresult as last xs
d none of the above

Given the definition of the function pam in the module SequenceUstilities, the formula
pam (map (+) [1.. 5]) 10

a dediversthesameresultasmap (1+) [1..5]

b ddiversthe sameresult aspam [1 .. 5] (map (1+))

c deiverstheresult [11, 12, 13, 14, 15]

d al of the above

Given the Grid [1,3,0, 0,0,0, 0,0,2] (asin the tic-tac-toe script), what is the status of the game?
a (gameover, X wins

b gameover, Owins

¢ O'sturntoplay

d X'sturntoplay

Which of the following formulas extracts the diagonal of agrid (asin the tic-tac-toe program)?
(take 3 . map head . iterate(drop 4)) grid

[head grid, head(drop 4 grid), head(drop 8 grid)]

[head grid, grid!'4, last(grid)]

all of the above

o0 T

24 Algebraic Types 136Q

Appendix —Some Useful Modules

The following modules contain functions of various types that you may find useful additionsto
the intrinsic functions of Haskell. Whenever you need one of these functions, you can download
the modul e containing through the Supplied Software page of the website

http://www.cs.ou.edu/cs1323h/

and import it into your scripts.

Haskell Def o
Haskell Def
Haskell Def
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def
Haskell Def
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def
Haskell Def ¢
Haskell Def ¢
Haskell Def o

> nodul e SequenceUtilities
(al I Equal ,
apply,
bl ocks,
bl ocksRi gi d,
centerlnField,
concat Wt hSpacer,
decr easi ng,
decreasingStrictly,
dr opFronRi ght,
dr opWi | eFronRi ght ,
i ncreasing,
increasingStrictly,
i ndi cesOF Cccur ence,
| eft JustifyWth,
nonot oni c,
mul ti pl ex,
packets,
pam
prefixes,
qui cksort,
qui cksort Wt h,
reps,
rightJusti fywWth,
splitFronR ght,
suf fi xes,
t akeFr onRi ght ,
t akeUnti |,
t akeWhi | eFronRi ght,
transpose)
wher e

VVVVVVVVVVVVVVVVYVVVVVYVYVVVYVVYVYVYV

group el enents of sequence in blocks of given size
Note: For any sequence xs, n::Int with n > 0,
concat (bl ocks n xs) = xs

blocks :: Int ->[a] ->[[a]]
bl ocks bl ockSi ze =
takeWhile(not . null) . map fst
iterate(splitAt blockSize . snd) . splitAt bl ockSize

V V V V

group el enents of sequence in blocks of given size
pad last group if necessary to nake it the right length

> blocksRigid :: Int ->a ->7J[a] ->[[a]]
> bl ocksRi gi d bl ockSi ze pad =
> map(l eftJusti fyWth pad bl ockSi ze) . bl ocks bl ockSi ze

Appendix — Some Useful Modules

137

Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o

package sequence into subsequences term nated by delimter;

if xsis x1 ++ [dl] ++ x2 ++ [d2] ++ ... ++ xn ++ [dn] or

if xs is x1 ++ [d1] ++ x2 ++ [d2] ++ ... ++ Xxn
where each d satisfies (isDelimter d),
and no element e of any x-i satisifies

(isDelinmter e)

then (packets xs) is [x1, x2, ..., xn]

> packets :: (a -> Bool) ->[a] ->[[a]]

> packets isDelimter =

> map fst . takeWhile(not . and . map null . panffst, snd])

> iterate(break isDelimter . drop 1 . snd) . break isDelimter

mul tiplex a sequence of streans into one stream

using round-robin alternation anong streans with el ements rensining
Note: if s and t are different elements of the argument of multiplex

and length(s) >= length(t), then the delivered sequence contains
an element froms between each succesive element fromt

Exanpl e: mul tipl ex["abc", "12345", "wxyz"] = "alwb2xc3y4z5"

> multiplex :: [[a]] -> [a]

> mul ti plex = concat . foldr multilnsert []

insert elenents of the first argunent as initial elenents of the

sequences in the second argunent
> multilnsert :: [a] -> [[a]] -> [[a]]
> mul tilnsert xs yss = matchingPairs ++ tail O Longer One
> wher e
> mat chi ngPairs = zipWth (:) xs yss
> tail Of LongerOne = (map(:[]) . drop n) xs ++ drop n yss
> n = |l ength matchingPairs
prefixes delivers all of the non-enpty prefixes of its argunent:
prefixes [x1, x2, x3, ...] =[[x1], [x1, x2], [x1, x2, x3], ...]
> prefixes :: [a] -> [[a]]
> prefixes =drop 1 . scanl (++) [] . map(:[1)
suffixes delivers all of the non-enpty suffixes of its argunent:
suffixes [x1, x2, x3, ...] =[[x1, x2, x3, ...],
[x2, x3, ...],
[x3, ...1,
o]
> suffixes :: [a] ->[[a]]
> suffixes = takeWiile(not . null) . iterate(drop 1)
find indices in a sequence where an item occurs
> indicesOCccurence :: Eq a =>a ->[a] -> [Int]
> indicesOfCccurence itemitens =

Appendix — Some Useful Modules

138

Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o

V V VYV YV

foldr addIndex [] (zip items [0..])
where
addindex (x,index) indexes
| x ==item = [index] ++ indexes
| otherwise = indexes

justify a sequence in a field of a given width
(deliver original sequence if given field-width is too narrow)

VVVYVYVVVVVYVYVYVYV

leftJustifyWith, rightJustifyWith, centerinField ::
a->Int->[a] -> [a]
leftJustifyWith pad fieldWidth xs =
xs ++ reps (max 0 (fieldwidth - length xs)) pad
rightJustifyWith pad fieldwidth xs =
reps (max 0 (fieldWidth - length xs)) pad ++ xs
centerinField pad width xs =
reps leftPadLength pad ++ xs ++ reps rightPadLength pad
where
leftPadLength = max O ((width - lengthOfSequence) “div’ 2)
rightPadLength
= max 0 (width - (leftPadLength + lengthOfSequence))
lengthOfSequence = length xs

form a sequence consisting of n copies of a given element

>
>

reps :: Int->a->[a]
reps n = take n . repeat

shortest prefix of a sequence containing an element
that satisfies a given predicate

>
>
>
>

takeUntil :: (a -> Bool) -> [a] -> [a]

takeUntil predicate xs = prePredicate ++ take 1 others
where
(prePredicate, others) = break predicate xs

from-the-right versions of take, drop, and split

>
>
>
>
>
>
>
>
>

takeFromRight, dropFromRight :: Int -> [a] -> [a]
takeWhileFromRight, dropWhileFromRight ::

(a->Bool) ->[a] -> [a]
splitFromRight :: Int -> [a] -> ([a], [a])
takeFromRight n xs = drop (max 0 (length xs - n)) xs
dropFromRight n xs = take (max O (length xs - n)) xs
splitFromRight n xs = splitAt (max 0 (length xs - n)) xs
takeWhileFromRight p = reverse . takeWhile p . reverse
dropWhileFromRight p = reverse . dropWhile p . reverse

concatenate, but include a standard element between appendees
Note: if ws::[String], then concatWithSpacer " " ws = unwords ws

>
>
>

concatWithSpacer :: [a] -> [[a]] -> [a]
concatWithSpacer spacer [] =[]
concatWithSpacer spacer nonEmptyList@(x : xs) =

Appendix — Some Useful Modules

Haskell Defe > foldrl insertSpacer nonEnptylLi st

Haskell Defe > wher e

Haskell Defe > i nsert Spacer x1 x2 = x1 ++ spacer ++ x2
Haskell Def ¢

Haskell Def »

Haskell Defe apply a function to an argunent

Haskell Def »

Haskell Defe > apply :: (a->b) ->a->b

Haskell Defe > apply f x = f x

Haskell Def

Haskell Def ¢

Haskell Defe dual of map: apply sequence of functions to argument
Haskell Def »

Haskell Defe > pam:: [a -> b] ->a ->[b]

Haskell Defe > pamfs x = zipWth apply fs (repeat x)

Haskell Def

Haskell Def ¢

Haskell Defe arrange sequence el enents in increasing order
Haskell Def »

Haskell Defe > quicksort :: Oda =>[a] -> [a]

Haskell Defe > qui cksort (firstx : xs) =

Haskell Defe > quicksort[x | x <- xs, x < firstx] ++ [firstx] ++
Haskell Defe > qui cksort[x | x <- xs, not(x < firstx)]
Haskell Defe > quicksort [1 =1 1

Haskell Def »

Haskell Def »

Haskell Defe arrange sequence el enents in order according to given ordering
Haskell Def ¢

Haskell Defe > quicksortWth :: (a ->a -> Bool) ->[a] -> [a]

Haskell Defe > qui cksortWth precedes (firstx : xs) =

Haskell Defe > qui cksortWth precedes [x | X <- xs, precedes x firstx] ++
Haskell Defe > [firstx] ++

Haskell Defe > qui cksortWth precedes [x | x <- xs, not(precedes x firstx)]
Haskell Defe > qui cksortWth precedes [] =1]

Haskell Def »

Haskell Def »

Haskell Defe check to see if a sequence is nmonotonic wt a given transitive relation
Haskell Def »

Haskell Defe > monotonic :: (a -> a -> Bool) -> [a] -> Bool

Haskell Defe > nonot oni ¢ precedes xs = (and . zipWth precedes xs . drop 1) xs
Haskell Def

Haskell Def »

Haskell Defe check to see if a sequence is increasing, decreasing, or flat

Haskell Def »

Haskell Defe > al |l Equal :: Eq a => [a] -> Bool

Haskell Defe > i ncreasing, increasingStrictly,

Haskell Defe > decreasi ng, decreasingStrictly :: Od a => [a] -> Bool
Haskell Defe > al | Equal = nonot oni c(==

Haskell Defe > i ncreasi ng = nonot oni c(<=)

Haskell Defe > increasingStrictly = nonotonic(<)

Haskell Defe > decr easi ng = nonot oni c(>=)

Haskell Defe > decreasingStrictly = nonotonic(>)

Haskell Def »

Haskell Def »

Haskell Defe i nt erchange rows and colums in a col um of rows;

HaskellDefe the i-th el enent of the j-th sequence of the delivered result
HaskellDefe is the j-th el ement of the i-th sequence of the argunent

Haskell Defe Not e: successive rows may decrease in |ength;

Haskell Def » that is, transpose works properly on upper-triangular nmatrices

Appendix — Some Useful Modules 140

Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o

Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o

>
>
>
>
>

transpose :: [[a]] -> [[al]]

transpose = foldr patchRowAcrossColumns []

where

patchRowAcrossColumns row columns =

zipWith () row (columns

++ repeat [])

end of SequenceUtilities module

> module IOutilities

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

V V V V

>

(capitalizeWord,
centerString,
displayStringsinColumns,
getCookedLine,
integralFromsString,
interpretBackspaces,
isEmptyLine,
leftJustify,
realFloatFromString,
rightJustify,
scientificFormatRealFloat,
spaces,
standardFormatRealFloat,
trim,
trimRight)

where

import SequenceUtilities

(blocks, centerinField, concatWithSpacer,
leftJustifyWith, rightJustifyWith,
splitFromRight, reps, transpose)

import Char(isSpace)

convert string denoting Integral number to class Integral

>
>
>
>

integralFromString :: (Integral i, Read i) => String -> i
integralFromString intStringWithOptionalSign = x

where

[(x,)] = reads intStringWithOptionalSign

convert string denoting RealFloat number to class RealFloat

>
>
>
>
>
>
>
>
>
>
>
>
>

realFloatFromsString :: (RealFloat r, Read r) => String -> r
realFloatFromString floatString = x

where

[(x, _)] = reads(fixedUpFloatString ++ exponentAndAfter)

fixedUpFloatString
| null beforeDecimalPt
| null decimalPtAndAfter

=sign ++ "0" ++ decimalPtAndAfter
= sign ++ afterSign ++ ".0"

| otherwise = floatString
(beforeExponent, exponentAndAfter) = break atE floatString
(beforeSign, signAndAfter) = break (== '-') beforeExponent

(sign, afterSign)
| null signAndAfter = (™,

beforeSign)

| otherwise = splitAt 1 signAndAfter

Appendix — Some Useful Modules

141

Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o

(beforeDeci mal Pt, decimal Pt AndAfter) = break (== "'."') afterSign
(deci mal Pt, afterDecimal Pt)

| null decimal Pt AndAfter = ("", beforeDecinmal Pt)
| otherw se = splitAt 1 decinmal Pt AndAfter
atEc = 'e' == toLower c

deliver string denoting a Real Fl oat nunber in standard format

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

standardFormat Real Float :: RealFloat r => Int ->r -> String
st andar dFor nat Real Fl oat nunber Of Deci nal Pl aces x =

signPart ++ integerPart ++ "." ++ fractionPart
wher e
XAsString = (stripParentheses . show) x
(signPart, significand, exponent) =
conponent sO Real Fl oat String xAsString
shi ftDi st AndDi recti on = exponent + nunber O Deci nal Pl aces + 1
roundedSi gni fi cand
| significand ==
| shift >= 0 (significand*shift + 5) “div' 10
| shift < 0 (significand "div' shift + 5) “div' 10
shift = 107(abs shiftDi st AndDirection)
roundedSi gni fi candAsString =
(leftJustifyWth 'O nunber O Deci nal Pl aces . show)
roundedSi gni fi cand

0

(integerPart, fractionPart) =
splitFronRi ght nunber O Deci mal Pl aces roundedSi gni fi candAsStri ng

deliver string denoting a Real Float nunber in scientific notation

VVVVVVVVVYVVVVVVYVVVVYVYVYVYVVYVYVYVY

scientificFormatReal Float :: RealFloat r => Int ->r -> String
scientificFormatReal Fl oat nunberOf SignificantDigits x =

signPart ++ integerPart ++ "." ++ fractionPart ++
"E" ++ exponent Sign ++ exponent Part

wher e
xAsString = (stripParentheses . show) x
(signPart, significand, exponent) =

conmponent sOf Real Fl oat String xAsString
nurmber O Di gi t sInSignificand = | engt h(show si gni fi cand)
shift = nunberOfSignificantDigits + 1 - nunber O Di gi tsl nSignificand
roundedSi gni fi cand

| significand == 0 =0

| shift >= 0 = (significand * 10"shift + 5) “div' 10

| shift < 0 = (significand "div' 107(-shift) + 5) "div' 10
shi ft edExponent

| roundedSignificand == =0

| otherwi se = exponent - shift + nunberOfSignificantDigits

exponent Part = rightJustifyWth '0" 2
((stripParentheses . show . abs) shiftedExponent)
exponent Si gn
| shiftedExponent >= 0
| shiftedExponent < O
roundedSi gni fi candAsStri ng
(leftJustifyWth "0 nunmberOFSignificantDigits . show)
roundedSi gni fi cand

(integerPart, fractionPart) =
splitAt 1 roundedSi gnificandAsString

Appendix — Some Useful Modules 142

Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o

break string denoting Real Fl oat nunber into sign/significand/ exponent

conponentsO Real Float String :: String -> (String, Integer, Int)
conponent sOf Real Fl oat String real FloatString =

(signAsString, significand, decinmal Poi ntPosition)
wher e
(signAsString, unsignedPart) =

span ("elem ['-', " '"]) realFloatString
(integerPartAsString, fractionPl usExponent) =

span isDigit unsignedPart
(fractionPart Wt hDeci mal Poi nt Maybe, exponent Part Wt hE) =

break (‘elem ['e', '"E']) fractionPl usExponent
(deci mal Point, fractionPartAsString) =
span (== "'.") fractionPartWthDeci nal Poi nt Maybe

(ePart, exponentAsStringWthSi gnMaybe) =

span ("elem ['e', "E']) exponentPartWthE
exponent AsString = dropWile (== "'+") exponentAsStringWthSi gnMaybe
exponent

| null exponent AsString =0

| otherw se = integral FronStri ng exponent AsString
significandAsString = integerPartAsString ++ fractionPart AsString
significand = tolnteger(integral FronString significandAsString)
deci nal Poi nt Posi ti on = exponent - length fracti onPartAsString

VVVVVVVVVVVVVYVYVYVYVYVYVYVYV

renove all parentheses fromstring

> stripParentheses :: String -> String
> stripParentheses = filter(/="(") . filter (/=")")

justify string within field of given width

> |eftJustify, centerString, rightJustify ::
> Int -> String -> String

> rightJustify rightJustifyWth

> leftJustify leftJustifyWth

> centerString centerlnField

string conprising a given nunber of spaces

> spaces :: Int -> String
> spaces nunber O Spaces = reps nunber O Spaces

capitalize first character in string, nake rest |ower case

> capitalizewrd :: String -> String

> capitalizewrd w

> | null w ="

> | otherw se = [toUpper firstLetter] ++ nap tolLower others
> wher e

> ([firstLetter], others) = splitAt 1 w

deliver string that will display a sequence of strings as a sequence
of pages, with strings appearing in sequence down successive colums

Appendix — Some Useful Modules

143

Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def o
Haskell Def ¢
Haskell Def ¢
Haskell Def o

> di spl ayStringsl nCol ums ::

> Int ->1Int ->1Int ->1Int ->1Int ->[String] -> String

> di spl ayStringsl nCol uims pageW dt h gapBet weenPages stri ngsPer Col umm
> col utmW dt h gapBet weenCol utms =

> concat Wt hSpacer (reps gapBet weenPages '\n')

> map di spl ayPage . map transpose . map(bl ocks stringsPer Col um)
> bl ocks stringsPerPage . map(leftJustify col umW dt h)

> wher e

> number O Col utms = (pageW dth + gapBetweenCol utms) “di v’

> (col umW dt h + gapBet weenCol unms)

> stringsPerPage = stringsPerCol um * nunber O Col umms

> di spl ayPage =

> unlines . map(concat WthSpacer (spaces gapBet weenCol ums))

renove | eading and trailing whitespace froma string
> trim:: String -> String

> trim= trinmeft . trinRight

renove | eadi ng whitespace froma string

> trinmLeft :: String -> String

> trinmLeft = dropWile isSpace

renove trailing whitespace froma string

> trinRight :: String -> String

> trinRight = reverse . dropWile isSpace . reverse
deliver True iff argument contains no characters other than bl anks
> i sEnmptyLine :: String -> Bool

> i sEmptyLine = (=="") . dropWile(==" ")

retrieve line fromkeyboard and interpret backspaces

> get CookedLine :: 1Q(String)

> get CookedLi ne =

> do

> rawLi ne <- getLine

> return(interpretBackspaces rawLi ne)

interpret backspaces in string, delivering string free of BS
> i nterpretBackspaces :: String -> String

> interpretBackspaces =

> reverse . foldl interpretlfBS []

> interpretlfBS :: String -> Char -> String

> interpretlfBS [] "\b' =1]

> interpretlfBS (¢ : ¢cs) '"\b' = cs

> interpretlfBS cs ¢ =[c] ++ cs

Appendix — Some Useful Modules

144

Haskell Defe > nmodul e NunericUtilities

Haskell Defe > (aver age,

Haskell Defe > correl ation,

Haskell Defe > digitize,

Haskell Defe > st andar dDevi ati on,

Haskell Defe > st andar dDevi at i onUnbi ased,

Haskell Defe > nudge)

Haskell Defe > wher e

Haskell Defe > i nport Vector Qperations(innerProduct, norm

Haskell Def »

Haskell Defe n-way anal og-to-digital converter for a <= x < b

Haskell Def »

Haskell Defe > digitize:: Real Frac num=> Int -> num-> num-> num-> Int
Haskell Defe > digitize n a b x

Haskell Defe > | xDist < halfstep = 0-- avoid boundary glitches
Haskell Defe > | xDist > lastHalfstep =n

Haskell Defe > | otherwi se = fl oor (xDi st/ dx)

Haskell Defe > wher e

Haskell Defe > xDist = x - a

Haskell Defe > dx = span/(from ntegral n)

Haskell Defe > hal fstep = dx/2

Haskell Defe > |l astHal fstep = span - halfstep

Haskell Defe > span = b - a

Haskell Def »

Haskell Defe i ncr ease magni tude by an al nost negligi bl e anount

Haskell Def »

Haskell Defe > nudge :: Real Frac num => num -> num

Haskell Defe > nudge x = (Il ast takeWiile(/=x) . take 100 .

Haskell Defe > map (x+) iterate (/2)) x
Haskell Def »

Haskell Defe arithnetic mean

Haskell Def »

Haskell Defe > average :: Fractional num=> [nun] -> num

Haskell Defe > average = foldl includeAnotherSample 0 . zip[1l ..]

Haskell Defe > wher e

Haskell Defe > i ncl udeAnot her Sanpl e runni ngAver age (sanpl eNunber, sample) =
Haskell Defe > runni ngAver age + (sanple - runni ngAverage)/fronReal Frac sanpl eNunber
Haskell Def »

Haskell Defe st andard devi ati on

Haskell Def ¢

Haskell Defe > standardDevi ation :: Floating num=> [nun]l -> num

Haskell Defe > st andar dDevi ati on sanples =

Haskell Defe > (sqrt average . map devi ati onSquar ed) sanpl es

Haskell Defe > wher e

Haskell Defe > mu = average sanpl es

Haskell Defe > devi ati onSquared x = abs(x - nmu)”2

Haskell Def »

Haskell Defe st andard devi ation - unbi ased estinate

Haskell Def »

Haskell Defe > st andar dDevi ati onUnbi ased :: Floating num=> [nun] -> num
Haskell Defe > st andar dDevi ati onUnbi ased sanples =

Haskell Defe > (standardDevi ati on sanples)*((fromntegral n)/fromntegral (n - 1))
Haskell Defe > wher e

Haskell Defe > n = | ength sanpl es

Haskell Def »

Haskell Defe correl ati on

Haskell Def »

Haskell Defe > correlation :: Real Float num=> [nun] -> [numM -> num
Haskell Defe > correlation xs ys = innerProduct xs ys / (normxs * normys)

Appendix — Some Useful Modules

145

Appendix — Some Useful Modules 146

Index

A

abstract data types. See types.
abstraction 20, 73
addition. See operators.
aggregates. See structures
algebraic types 122
alphabet. See characters, ASCII.
alpha-beta algorithm 135
alphabetizing. See sorting.
also. See commands.
analog/digital conversion 103, 104
apostrophe, backwards 54
apostrophes 17
append. See operators.
applications. See functions.
arguments 7
omitted. See functions, curried
omitted. See functions, curried.
arithmetic. See operators.
arrows
(<-) Seeinput/output operations. 98
(->). See functions, type of.
ASCII. See characters.
aspect ratio 108
assembly lines. See functions, composition.
associative 43

B

backquote 54

backslash. See escape.

bang-bang (!!). See operators, indexing.
bar (]). See vertical bar.

base of numeral 73

batch mode 15

begin-end bracketing. See offsides rule.
binary numerals. See numerals.

Bird, Richard 135

Bool 33

Boolean (True, False) 8, 33

brackets (begin-end). See offsidesrule.
break. See operators.

Index

C
Caesar cipher 77, 78, 79, 80, 81, 82
Chalmers Haskell-B Compiler 16
character strings. See strings.
characters

ASCII 78

in formulas 17

VS. strings 18
choice. See definitions, alternativesin.
ciphers 77, 78, 79, 80, 81, 82, 84, 87

block substitution 84

DES 84
classes 38

Complex 101

Enum 123

equality (Eq) 38, 39, 50

Floating 101

Fractional 101

Integral 48

Num 57

order (Ord) 40, 50

RealFrac 101

Show 123
clock remainder (mod). See operators.
coded message 77, 78, 79, 80, 81, 82, 84, 87
coded, ASCII. See characters.
colon. See operators.
commands

:? 15

-also 15

-edit 14

‘load 14

:quit 15

Haskell 5

typeinquiry 34
comparing

See als0, operators, equality-class.

strings 6, 7, 8
compilers

Chamers Haskell-B Compiler

Glasgow Haskell Compiler
Complex. See classes.
composition of functions. See functions, com-

position

147

comprehensions, list 17, 77
computation
lazy 98
non-terminating 64
patterns of 25
computer science 100
concat. See operators.
concatenation. See operators.
conditional expressions 119, 120
constructors
sequences. See operators (2).
types 122
conversion
letter case. See toLower, toUpper.
operators/functions 27, 54

curried invocations. See functions, curried.

D

Data Encryption Standard (DES) 84
data types. Seetypes.
data. See algebraic types.
datatypes. See types.
decimal numerals 73, 74

See also, numerals.

See numerals.
decimal numerals. See numerals.
decipher 77, 78, 79, 80, 81, 82, 84, 87
definitions

alternativesin 79, 80

Haskell 10, 11, 12

parameterized 11

private (where) 48, 49
delivering input values. See return.
deriving 123
digital/analog conversion 103, 104
Dijkstra, E. W. 90
display. See operators, unlines.
division

fractional (/). See operators
division. See operators.
divMod. See also: operators, division. 54
do-expression. See input/output.
do-expressions. See input/outpuit.
Double. See numbers.

Index

Dr Seuss 79
drop. See operators.
dropWhile. See operators.

E
echoing, operating system 94
edit. See commands.
embedded software 64
encapsulation 46, 71
encipher 77, 78, 79, 80, 81, 82, 84, 87
encryption 84, 87
enumeration types 123
equality

class. See classes.

operator (==). See operators.
equations. See definitions.
error. See operators.
errors

type mismatch 33
escape (strings) 29, 30
evaluation

lazy 98

polynomial 73
exit. See command (quit).
exponent. See numbers.
exponentiation. See operators.
exporting definitions 72, 74

F

False. See Boolean.
feedback. See iteration.
fieldsin algebraic types 122
polymorphic 123
files 97
filter. See operators.
Float. See numbers.
floating point. See numbers.
Floating. See classes.
floor. See operators.
folding 26, 64
See operators (foldr, foldrl).
foldr. See operators.

148

foldrl
pronunciation 26
See operators.
vs. foldr 51
formulas 10, 11, 12
Fractional. See classes.
functions
applications 33
as operators 54
composition (.) 21, 22, 23, 25, 26
curried 23, 42, 43, 78
higher order 43
invocation 11, 22

missing arguments. See functions, curried.

42
polymorphic 37, 38
See also, operators.
type declaration 39
type of 37, 38
VS. operators 7

G

games 124, 135

tree 124, 125
generators (in list comprehension) 17, 29
generic functions. See polymorphism.
getLine. See input/output.
Glasgow Haskell Compiler 16
graphing 105, 106, 107, 108, 109
greater (>, >=). See operators.
guards

in list comprehension 17

See definitions, aternativesin 80
guards. See definitions, alternativesin.

H
Haskell
commands 5
definitions 10, 11, 12
programs 12
Haskell Report 3
head. See operators.
help. See command.

Index

hexadecimal numerals. See numerals.
hiding information. See encapsulation.
higher order. See functions.

Hoare, C. A. R. 116

Horner formula 47, 48, 49, 51, 73
Hugs 14, 75

I
if-choice. See definitions, aternativesin.

if-then-else. See conditional expressions.

import. See importing definitions.
importing definitions 72, 73, 74
indentation 18, 48, 49
indexing. See operators
inequality (/=). See operators.
information
hiding. See encapsulation.
representation of 46
inheriting operators. See deriving.
input/output 93
do-expression 93, 94, 119
do-expression 120
getLine 94
putStr 91, 93
readFile 97
return 99
unlimited 119
writeFile 97
integers
from fractional numbers. See floor.
range 58
integers. See numbers.
integral division. See operators.
integral numbers
ambiguous 48
Integer, Int 48
literals 48
interactive mode 15
invocation. See function.
10O type 93
1SO8859-1. See characters, ASCII.
iterate. See operators.
iteration 61, 64

149

J
Jones, Mark 14

K
kinds. See types.

L

language definition. See Haskell Report.
last. See operators.
lazy evaluation 98
length. See operators.
less (<, <=). See operators.
let expressions 119, 120
letters
lower case. SeetoLower
libraries, software 84
lines display. See operators, unlines.
lines on screen 95
list comprehensions 17, 77
list constructor. See operators (;).
lists. See sequences.
literals
Booleans 8
characters 18
floating point numbers 102, 105
Integral, See integral numbers.
rational numbers 105
sequences 34
strings 6, 30
looping. See mapping, folding, zipping, itera-
tion, recursion.
lower case. SeetoLower.

M

main module 93

mantissa. See numbers.

map. See operators.

mapping 28, 64, 77

match error (See also: types, errors) 33
matrix transpose 107

maximum. See operators.

Méllish, Fielding 93

message, coded 77, 78, 79, 80, 81, 82, 84, 87

Index

minimax strategy 124, 134
minimum. See operators.
mod
See operators.
modularity. See encapsulation.
module, main 93
modules 71, 72, 73, 75, 84
See also, program organization charts
monomorphism restriction. See type specifica
tions, explicit required.
multiplication. See operators.

N

names. See variables.
newline characters 95
non 64
non-terminating 64
not-equal-to operation (/=) 17
Num. See classes.
numbers
class Complex. 101
class Fractional. 101
classNum. 57
class RealFrac. 101
Double 101, 105
exponent 101, 102
Float 101, 105
floating point 102
imaginary. See Complex
Int 48
Integer 48
mantissa 101, 102
pi 106
precision 102
Rational 104, 105
numerals 86
arbitrary radix 74
base 73
binary 46
decimal 46, 47, 50, 51, 73, 74
hexadecimal 46
positional notation 46
Roman 46
vS. numbers 46

150

O

offsidesrule 18, 48, 49
operands 7
operating system 93
operating system echo 94
operations
repeated. See repetition.
operators
addition(+) 48
append (++, concat) 88
as arguments 27
asfunctions 27, 54
break 121
colon 112
comparison 17
composition (.) 21, 22, 23, 25, 26
concatenation (++, concat) 88
division, fractional (/) 104
division, integral (div, mod) 48, 54, 55
drop 66
dropWhile 66, 67
equality (==) 6, 7, 17, 39, 50
error 79, 104
exponentiation, integral () 48
filter 64
floor 103
foldr 51, 64
foldrl 26, 44
greater(>, >=) 17, 50
head 113
indexing (!!) 129
inequality (/=) 17,50
input/output, See input/output.
integral remainder (mod) 48
iterate 62, 63, 64
last 113
length 83
less(<, <=) 17,50
map 64, 77
maximum 106
minimum 106
mod 48
multiplication(*) 48
not equal to (/=) 17

Index

order of application 9

plus-plus 88

precedence 9

reverse 5

round 109

section 68

sequence constructor (:) 112

show 123

sin 106

subscripting (1) 129

subtraction (-) 48

tail 113

take 66

takeWhile 66, 67

toLower 28, 37

unlines 95, 105

vs. functions 7

ZipWith 64
order class. See classes.
order of operations. See operators.
ordering. See sorting.
output. See input/output.

P

palindromes 11
parameterization 20
parameterized definitions 11
patterns
as parameters 112
See also, computation patterns.
See also, repetition patterns. 64
sequences 112
tuple 54
period operator. See functions, composition.
persistent data. Seefiles.
Peterson, John 3
pi. See numbers.
pipelines. See functions, composition.
plotting 105, 106, 107, 108, 109
polymorhic fields 123
polymorphism 37, 38
polynomial evaluation 73
positional notation. See numerals.
precedence. See operators.

151

precision. See numbers.

private definitions. See where clause, modules.
program organization charts 75

programming, procedural vs Haskell 4

putStr. See input/output.

Q
qualifiers 17
quick-sort 117, 118
quit. See command.
guotation marks (") 6
guotient. See operators, division.

R
radix 73
range of Int. See integers.
rational numbers. See numbers.
Rational. See numbers.
readFile. See input/output.
reading files. See input/output.
RealFrac. See classes.
rearranging in order. See sorting.
recursion 62, 115, 116

in input/output 120
Reid, Alastair 14
remainder (mod). See operators.
repetition

patterns of 62, 115

See mapping, folding, zipping, iteration, re-

cursion.

report on Haskell. See Haskell Report
representation of information 46
return. See input/output.
reverse. See operators. 5
Roman numerals. See numerals.
round. See operators.

S

scaling factor. See numbers, exponent.
scientific computation 102

scientific notation 102

sections. See operators.

selection. See definitions, alternativesin.

Index

sequences 17, 27, 77

all but first element. See operators, tail.

constructor (:). See operators.

first element. See operators, head.
initial segment. See operators, take
last element. See operators, last.
See also types.

trailing segment. See operators, drop.

truncation. See operators, take, drop
Set, notation for 17
Seuss, Dr 79
Show. See classes.
show. See operators.
significand. See numbers, mantissa.
sin. See operators.
software libraries 84
software, embedded 64
sorting 116, 117
strings 6
equality of (==) 6,7, 8
special charactersin 29, 30
vs. characters 18
structures
See program organization charts.
See sequences.
tuples 54, 55
subscripts. See operators.
subtraction. See operators.
Sussman, Gerald 100

T

tail. See operators.

take. See operators.
takeWhile. See operators.
tic-tac-toe 129

toLower. See operators.
transposing a matrix 107
tree games 124, 125

trees 125

trigonometric operators. See operators.
True. See Boolean.

tuple patterns. See patterns.
tuples. See structures.

type inquiry. See commands.

152

type specifications
explict required 78

type variables 34

types 18, 33, 34
abstract vs. concrete 129
algebraic 122
declaration 39
enumeration 123
of functions 38, 43

of functions. See functions.

polymorphic 126
recursive 126
See also: classes.
sequences 34

U
unlines. See operators. 95

Index

Vv

variables 46
type 34

vertical bar (])
See constructors, type 122
See definitions, alternativesin.
See list comprehensions.

wW

Wadler, Phil 135

where clause 48, 49
writeFile. See input/output.
writing files. See input/output.

Y
Y ale Haskell Project 3, 14

Z
Zipping, See operators (zipWith).

153

Index

154

