Algebraic Graph Derivations for Graphical
Calculi

WoOLFRAM KAHL

Department of Computing Science, German Armed Forces University Munich
e-mail: kahl@informatik.unibw-muenchen.de

1 Introduction

Relational formalisations can be very concise and precise and can allow short,
calculational proofs under certain circumstances. Examples are can be found
in [SS93], and also in the formalisation of second-order term graph rewriting
in [Kah95b, Kah96]; for further applications of relational methods see also the
book [BKS97].

In situations corresponding to the simultaneous use of many variables in
predicate logic, however, either a style using predicate logic with point variables
has to be adopted or impractical and clumsy manipulations of tuples have to be
employed inside relation calculus. In the application of relational formalisation
to term graphs with bound variables [Kah95b, Kah96] we have been forced to
employ both methods extensively, and, independently of other approaches, have
been driven to develop a graphical calculus for making complex relation algebraic
proofs more accessible.

It turns out that, although our approach shares many common points with
those presented in the literature [BH94, CL95], it still is more general and more
flexible than those approaches since we draw heavily on additional background
in algebraic graph rewriting (see [EKL90] for a tutorial overview).

The part of the structure of relation algebra that can readily be exploited
in graphical calculi is that of a unitary pretabular allegory (UPA, introduced in
[FS90]). Allegories are a generalisation of categories to cope with relation-like
structures; we shall not need any allegory theory in this paper, but only refer to
it for comparison with one of the main streams of related work in the literature.
In [BH94], an approach to transformations of expressions in UPAs via transfor-
mations of graphs has been presented and proven correct. The approach has been
developed with a bias towards VLSI circuit development and the formalisation
and drawings reflect this.

More or less building on the approach of [BH94], another approach to graph-
ical calculi has been presented in [CL95], where a gentler introduction is given
and an attempt is made to somewhat generalise beyond UPAs.

Both approaches, however, present the transformation rules as low-level graph
manipulation rules and do not resort to any established graph transformation
mechanism. As a result, there is only a fixed set of transformation rules that

correspond to the basic axioms of the calculus, but no general mechanism to
formulate new rules corresponding to proven theorems or special definitions.

In this paper we start from a slightly more general definition of diagram as
basic data structure for our graphical calculus, and we proceed to give algebraic
definitions of rule application and derivation. We cleanly separate the syntax
and the semantics of our diagrams and we define correctness of rules on a high
level.

For reasons of space we do not present any proofs, but concentrate on giving
ample motivation and at least a few examples. I gratefully acknowledge the
comments of an anonymous referee.

2 Type and Relation Terms

The structure we are going to exploit in our diagram proofs is that of a locally
complete unitary pretabular allegory (LCUPA) [FS90], which is essentially an
abstract relation algebra in the sense of [SS93] (without negation), equipped
with all direct products (which are understood to be formed in the underlying
category of total functions throughout this paper).

For improving understandability we shall use the more widespread nomen-
clature of abstract relation algebra (rather than that of LCUPAs) and also its
notation as agreed upon in [BKS97]. So we call the morphisms relations; com-
position of two relations R : A < B and S : B & C is written R;S; the
converse of a relation R : A +> B is R™: B + A; intersection of two relations
R,S: A& Bis RMS, and their union is R U B; for any object A, the identity
relation is I 4; for two objects A and B the universal relation is T 4 g, and
the empty relationis 1 4 p. Inclusion of R: A <> Bin S : A & B, i.e. the
fact that RM S = R, is denoted by R C S.

Among the binary operators, relational composition ” has higher priority
than union “L1” and intersection “I1”.

For the direct product A x B of two objects A and B, T,z and p, o
denote the first resp. second projection mapping. For two products A x B and
C x D and two relations R: A < C and S : B & D, the product (R]|S) : (A x
B) & (CxD)of Rand S is defined as (R||S) = m, i Rim, Np, piSip, .

The laws that are required to hold are the usual laws of relation calculus
which we do not restate here.

For a set A we denote the set of finite sequences of elements of A with
A*. Two sequences s and t can be concatenated to form the sequence s°t. For a
function f : X — Y, we denote the mapping of f to sequences by f* : X* — Y*.

A sequence of objects of a LCUPA is understood to be the corresponding
finite product.

We write set-comprehensions according to the Z-notation [Spi89], which uses
the pattern “{ signature | predicate e term }” instead of the otherwise fre-
quently observed pattern “{ term | predicate }”. So we can write, as an exam-
ple, the set containing the first four square numbers as {n : N | n < 4 e n?} =
{0,1,4,9} .

We now introduce type terms and relation terms as the syntactic basis of our
calculus. We reuse the operator symbols introduced above, but we shall employ
“=" for syntactical equality of terms.

Definition 2.1 A type term can be
— a type constant, including 1 for the unit type,
— a type variable (o, 3,7, ...),
— a product type T x U of two type terms T and U, or
— a constructor type C(T1,..., Ty) created from n type terms T4,..., Ty, by
application of an n-ary type term constructor C'. O

Obviously, the product type could be considered as just another constructor

type, but since it has a special status in LCUPAs, we rather treat it separately.
A type substitution is a partial function with finite domain from type

variables to type terms. Application of a type substitution is defined as usual.

Definition 2.2 A relation term of type A <+ B for two type terms A and B
can be
— a relation constant, including T (if A = B), T, L, «m (if there is a type
term C such that A = B x '), and p (if there is a type term C such that
A= C x B),
— a relation variable,
— the converse R of a relation term R of type B <> A (also written R : B +
A)a
— the composition R; S of two relation terms R: A+ C and S : C & B,
— the intersection RM S or the union R U S of two relation terms R: A & B
and S: A& B,
— a constructor term ¢(Ry, ..., Ry) created from n relation terms R; by appli-
cation of an n-ary relation term constructor ¢, with type constraints on the
R; depending on c.
Additionally, in any composite term, all occurrences of a relation variable must
be of the same type. O

A relation substitution is a partial function with finite domain from rela-
tion variables to relation terms. Application of a substitution is again defined as
usual.

Finally, an atomic relational formula is either an equality R = S or an
inclusion R C S for two relational terms R and S of the same type.

3 Relational Diagrams

3.1 Syntax

We now introduce relational diagrams as a special kind of labelled graphs or
hypergraphs. Although hypergraphs are of course more general, we include the
graph case for offering the reader a smoother access:

Definition 3.1 A relational diagram is a labelled directed (hyper-)graph
(N, €,s,t,n,e) with A its node sets, £ its edge set, s : £ — N (resp. s : £ = N¥)
the source mapping, t : £ — N (resp. t : £ — N*) the target mapping, n is
the node labelling, assigning every node a type term, and e is the edge la-
belling, assigning every edge a relation term of type n(s(e)) < n(t(e)) (resp.
n*(s(e)) < n*(t(e))). O

Homomorphisms between relational diagrams are defined as usual:

Definition 3.2 A relational diagram homomorphism f from one relational
diagram Gy to another Gs is a pair (fn, fe) of functions, with

= fo: N = Ny, fe: &1 — &,

— sa(fe(a)) = f(s1(a)), t2(fe(a)) = fm(ti(a)), or, in the case of hypergraphs,
sa(fe(a)) = fa(si(a)), t2(fe(a)) = f(ta(a)),

— there 1s a type substitution 7 such that for all nodes v we have

;(fn(v)) = 7(n1(v)) ,

— there is a relation substitution ¢ such that for all edges a we have

es(fe(a)) = o(ei(a)) .

A homomorphism is called plain if 7 and o can be set to empty substitutions.[]

For any relational diagram G = (N, &, s, t,n, e) we define its emptied dia-
gram as the corresponding discrete graph: G° := (N, 0,0,0,n, 0).

In contrast with the graphs of [CL95], which are equipped with a designated
source and a designated target node, and with the pictures and networks of
[BH94], which use a connection mechanism that is also based on a source-target
view, but includes the possibility of considering multiple ports, our diagrams are
not equipped with any such indication of direction.

Therefore, when considering the semantics of a diagram, a direction has to
be imposed from the outside, and we use interfaces for this purpose.

In the simple graph case, an interface essentially is just a graph with two
nodes and one variable-labelled edge inbetween together with a homomorphism
that essentially just serves to flag a source node and a target node in the diagram
in question. The general definition that also copes with hyperedges has a more
complicated formulation:

Definition 3.3 An interface (/,j) for a relational diagram G consists of a
relational diagram I and a homomorphism j from 7° to G, where I has only one
edge (|€7] = 1) that is in addition labelled with a variable, and I does not have
any isolated nodes. O

j could be considered as a restricted kind of partial morphism from 7 to G.
For graph rules, we have an inclusion semantics “L T R” in mind. Since it is
usually advisable to preserve previously established information, we can arrive
at a useful rule concept by just asking for a homomorphism between the rule
sides. This homomorphism has to be plain since otherwise there could be clashes
in the instantiation of variables:

Definition 3.4 A rule (L—-R) consists of two relational diagrams L and R
together with a plain homomorphism r from L to R. O

An example rule is draw in the following diagram; here a and 3 are type
variables, @ syntactically is a constant (an arbitrary equivalence relation) and
P and @ are relation variables; the rule then reads, that if @ : § « 3, for all
A:a & pand B :a & f the following inclusion holds:!

(A;@NB);OC (AN B;O);6

) 3) e

—»ﬁ—» — —

N S

o ——»

According to the definition of rules as single homomorphisms, rewriting will be
defined by a single pushout construction? — the difference to the single-pushout
approach of [Ken90, Low90] is that here we still consider total homomorphisms:

Definition 3.5 A rewrite step for a rule (L—R) and a relational diagram
G together with a homomorphism f from L to G is the pushout

L—-L+R

I

G—S+H

of r and f; the result diagram is the pushout object H.
A derivation of H := G, from G := Gy is a sequence of rewrite steps

Li —t+ R,

|

Gi—1-2L. G,

and we let the derivation morphism be s1;...;s,. O

! Actually, the diagram given here is a little bit stronger than the original inclusion,
in that we did not draw an independent second “B”-edge, but this stronger version
follows easily from the symmetry of the equivalence relation @ and is easier to draw.

2 In a category, for three objects 4, B, and C and two arrows f : A — B and
g: A — C, a pushoutis an object D together with two arrows h : B — D and
j: C = D with f;h = g;j, such that for everyobject D’ together with two arrows
h': B — D" and j': C — D' with f;h' = g;j' there is a unique arrow u : D — D’
such that h;u = h’ and j;u = j'. For an introduction to the use of the pushout
concept in graph rewriting see [EKL90].

With the example rule above, we can obtain the following rewrite step:

5(9 o 656

Ay —— AR
[a% a_A>
i 7 gl
~ K ﬂ C) ﬂ @ ﬂ S ~ K ﬂ C) ﬂ C) ﬂ
Ylyﬂﬁsv Z*l — Ylyﬂ Q %V
) e’ g) a—p5> B

3.2 Semantics

For abbreviating the formal treatment, we informally treat the product type
constructor as associative, and we consider a sequence (T, ..., T,) of type terms
as denoting the product term Ty x --- x Ty,. For the image of a set S : P(A)
under a function f : A — B we just write f(5) : P(B).

Definition 3.6 (Readout) Let a relational diagram G and an interface 7 =
(I,7) for G with the one hyperedge az be given. Let {my, ..., mex) be a sequen-
tialisation of the nodes of G outside the range of j (this could be made uniquely
determined by for example demanding a total ordering on the node set).

Then let Tg,z be the following type term representing all nodes of the inter-
face together with all other nodes of G:

Tox =0 (" (s(az)) x 0° (5" (t(az))) x 0" (mi ..., me))

Furthermore, let min : 7oz = n*(7*(s(az))) and mout : Taz — n*(5*(t(az))) be
the projections onto the source and target of the interface image. Let for every
node z € Ny of the interface diagram 7, : T,z — n(j(z)) be the projection onto
its component, and for every node sequence s € N* let 7, : Toz — n*(s) be a
projection onto the components of 7 7 corresponding to s. (Since j need not be
injective, there can be a choice of projections for g, but as we shall see by the
construction below, this does not influence the result significantly. We can choose
a canonic construction that assigns to z € j(N;) the projection corresponding
to that node z € A that is the first one in the sequence s(az) t(az), for which
z=j(z))

The readout of G via 7 is now defined to be the relation term
Gz :n*(57(s(az))) < 0" (57 (t(az)))
with (see example and explanation below):
Gn =7 ([THa: € o (ms(ar)ie(a) M Tt(ag)) i T}

MKz, y: Nr |z #yAjx) =5(y) o (meMmy)i T}
|_|71-0u1:) D

(The intersections over sets strictly speaking also present choices wrt. the con-
struction of Gi7).)

What we have done here is to construct in a canonic way a relational ex-
pression that corresponds to that encoded in the graph — using the laws of
relational calculus with products it can be transformed into equivalent expres-
sions that may be more appealing for one or the other reason.

Below, for an example, to the left a relational diagram G consisting of four
hyperedges is shown together with a three-input, one-output interface Z. To the
right, we have drawn an intermediate diagram that should clarify the construc-
tion of Gi77. All simple edges there are labelled with the identity I. Collapsing
those edges returns the original diagram G, so the two are obviously equivalent.

4 4
B)»

6

On the other hand, the three main layers of nodes in the right diagram ob-
viously correspond to the input type n*(j*(s(az))), 7,z and the output type
n*(j*(t(az))) respectively. The nodes ending the hyperedges can be regarded as
the input of T in the first set component of (§77; the readout is

T1933((mag; AN me) ;s T M (765 BMmg); T M (w9 CMag)s T M (w535 DMag); T Mary)
This is equivalent to
Tyagi((m1sm 1 Mags Asm g)imes B (M2 Cim 5 Mmesm 3)ims33 D)5y
and again (under the assumption of an appropriately nested input product and
using the isomorphism PAass : @ x (3 x v) = (a x 3) x) with:
(I||A); B 11 PAass;(C||T); D ,

which is easy to relate to the original diagram G.

The second set component from the readout definition is empty here, since
the interface is injective; otherwise there would be additional T-edges between
nodes of the middle layer.

Unlike [CL95], we did not switch to predicate logic formulae, so we could
stay inside the language of relation calculus extended with direct products (i.e.,
the language of LCUPASs).

Unlike [BH94], we started from a graph without additional hierarchic struc-
ture, so we had to construct Gz by “brute force”. But since we consider G

to be only an intermediary result anyway, the artificialness of its structure does
not hurt our approach at all.

A different approach would have been to use the algorithm proposed in
[VH91] for transforming any predicate logic formula into a relational expression,
but that algorithm has to be capable to deal with more general situations than
those reflected in relational diagrams, and the result would have been similarly
artificial in 1ts nature anyway.

We now start considering an arbitrary model R for our formalism, that is, a
relation algebra (or LCUPA) together with interpretations for all constants and
term constructors. When we write R = F for some relational formula F' then
that has to be taken to mean that for every valuation of type variables with
objects of R and every valuation of relation variables with relations from R the
semantics of F' in R is true.

The central result about the readout construction then is that all the choices
encountered there do not influence the semantics of the result:

Proposition 3.7 For every relational term X resulting from changing any

choices made while constructing Giz), we have R |= Gz = X. O

We also obtain the fact that plain homomorphisms can only decrease the
semantics:

Lemma 3.8 TFor every interface (7,7) for K and every plain homomorphism k
from K to G, the following holds: R |= Gir jixy C K 5y -

Accordingly, for every interface (I, 7) for G and every subgraph K of G with
natural injection k, whenever j(I°) C k(K) then R |= Guan C K gie-1y. O

Based on the semantics, we can now form a general concept of admissibility
of rules:

Definition 3.9 A rule (L—5R) is correct if for all interfaces (I, 5) for L,

R E Ly = B - O

It is not difficult to construct concrete rules where this equality holds for some
interfaces, but not for others, and where application of these rules leads to invalid
proofs. This equality is, however, guaranteed to hold for all interfaces for L
whenever it holds for any interface (I,j) for L where j is surjective on the
nodes.

For all the specific rules listed in [BH94, CL95] corresponding diagram rules
can be formulated, and the correctness proofs carry over for any R.

Application of correct rules yields derivations with a useful semantics:

Proposition 3.10 Let an interface (I, j) for a relational diagram G and a rule
(LL>R) with a matching homomorphism f from L to G be given, and consider
the rewriting step yielding the pushout object H and the homomorphism s from
G to H, then we have R |= Gz jy = Hrjis)-

Accordingly, for every interface (I, j) for the starting diagram G of a deriva-
tion from G to H with derivation morphism o, we have R |= Grgy = HrgionO

With all this, we can formulate a strategy for finding a proof of the inclusion
formula R C S as a graph derivation on relational diagrams:

i) Construct a diagram G together with an interface (I,) such that R = R =
Grin-
ii) Perform a suitable graph derivation on G, yielding H and the derivation
morphism o.
iii) Factorise ¢ into ¢’ from G to a suitable diagram H' and k from H' to H
iv) Recognise ' as a diagram with R |= 5 = H(1 501y -

Only in rare cases the full derivation result H will be needed (yielding an equal-
ity), usually only an inclusion is required anyway.

3.3 Examples without Hyperedges

For our first example, a part of the proof of [Kah95b, Lemma 4.2.3], let us assume
an object O and relations C';, V and W in the underlying relation algebra R for
which the following two rules are correct:

N o
N

W;C CC;W™

For both rules we have drawn the right hand side; the left hand side is the
subgraph induced by the boldened edges — as long as the rule morphism is
injective, this abbreviating method of representation is possible. (The different
layout of the two rules has been chosen for better fitting to the application
below. Furthermore note that the first rule could also have been read C'; W™ C
W™; C — the rules are valid no matter wich interface into the left-hand side is
considered.)

Now, for a derivation of T;(CNV;W)C Ts(CNV;W);C, first these two
rules are applied in order and then Lemma 3.8:

1..2.0 1..2..0 1.2.0 1.2Z.0
c \Y c w c w c
0o—-V0 0—Y20 0o—VY0 0
\Ic c w}c* c W
W
0 0o—-V0 0—Y0

T;(CnV; W)
CT;Vy(wWnv™;0) modal rule
CTy(V MmW;C7);C T;V C T, modal rule
CTy(V nC;w7);C W;C"CC;w~
CT;C5(WncC;V7T);C modal rule
CTy(wnvs;o);0 T;CTCET,C;vVTE VT C
CT;V(Ccnv;w);C modal rule
CT(CNV;W);C T,V ET

A different way to present the diagrammatic proof could be via one graph with
additional annotation of the edges with their “generation” (in addition, the edges
needed in the result have been boldened):

Obviously, the diagram proof is simpler and more intuitive than the linear (term)
proof. The main reason for this are the frequent “changes of point of view” that
are reflected in applications of modal rules or of the Dedekind rule. Not every
proof, however, exhibits such a behaviour. For our second example consider a
part of the proof of [Kah95b, Lemma 3.5.9]: (“R” is the complement of “R”; since
it does not play any part in the graphical part of the calculus, we omitted it in
the introduction. From the point of view of Def. 2.2, the complement operator
is just a unary term constructor.)

(1: Start)
ZNZ;B
C (modal rule)
(Z;B"NZ);B
C <2:R univalent = g;R“ES;R“>
(z;B~NZ);B
C (3:VReRtotal = ILC R;R")
w3 (Z;BNZ); B
C <4: (BiZ-nZ7)im = Q>

75 Q7; B
L % C (5:B7:5Q=0C)
m; C”

Here, only one “change of the point of view” was necessary. Therefore, the dia-
gram proof has almost the same length as the linear proof.

When, however, in addition to changes of the point of view there are also
references to many previously introduced nodes, then the linear proof would
have to resort to heavy use of tuple constructions and manipulations, and the
proof would become unreadable.

One example 1s a part of a proof that would be pretty hard to understand
even in a mixed style using point variables in a predicate logic argument; it has
been taken from [Kah95b, page 160] and uses quite a few special symbols and
laws from the context there; these are however irrelevant for getting a general
impression of the bandwith and graph size involved here, since it is these factors
that make other approaches extremely hard to handle on such a problem:

3.4 Example with Hyperedges

To see the beneficial effect the introduction of hyperedges can have, consider the
following law (valid in the context of [Kah95b, Kah96]) which we want to use as

a rule:
(T]|eonc); Z E PAass;(Z||1); Z

The middle diagram below directly depicts that rule:

V x (E* x E*)
V x (B* x B*) PAass,_(y « F*y x E* p
(I}jconc) (Z||0) V x E* E*'x EB*
p ™
VxFE VxFE o
VA n conc
7 P
V x B
1% p
Y

E*

On the left we have drawn a hypergraph diagram denoting the same law, and it
obviously is far simpler and more intuitive.

Although the term rule and its immediate rendering as a diagram rule still
look simple enough, the problem is that for applicability of this rule usually lots
of auxiliary laws for tuple manipulation would be necessary. The same applies
to making use of the transformation results.

When one tries to avoid this by expanding the definitions of (_||-) and PAass,
the result is the diagram rule on the right, which is far more complicated than
the hypergraph rule, although it presents exactly the same information.

4 Extension to Branching Derivations

So far, the only operations that have been reflected in the calculus are compo-
sition and intersection.

Although these are already the most useful, we still can extend our approach
without too much effort to cover laws that have a union as the outermost con-
structor of the right-hand side. We call the corresponding rules branching rules,
since they give rise to several branches inside one derivation.

Definition 4.1 A branching rule R = (L, (ri,Ri)iepR) is a relational
diagram L together with a I'g-family of diagrams R; with respective plain ho-
momorphisms r; from R; to L. O

Every rule according to Def. 3.4 can be considered as a branching rule with
a one-element index set, so our approach so far integrates smoothly with the
extension.

A derivation tree is then defined in the obvious way, with every edge re-
sembling a single rewriting step from Def. 3.5, and the semantics carries over
without any problems:

Definition 4.2 A branching rule is correct, if for all interfaces (I,j) for I,
RE Lugy =W TR @ R ging - -

Proposition 4.3 For every derivation tree for G with leaves (H;)jer+ and
derivation morphisms s; for the respective paths j defined accordingly, we have
for any interface (7, j) of G that

R Ky = [0 e iy i g) -

An example rule is the following, with type variables o and § and a relation
variable R:

N

O{—»ﬁ Of—»ﬁ

It corresponds, of course, to T C R U R.

Even joining rules could be imagined, with union as outermost operator on
the left-hand side, giving rise to derivations in the form of directed acyclic graphs
(DAGs), but so far T have not yet encountered any useful examples for this.

5 OQOutlook and Conclusion

The rules we have considered could merge nodes through non-injective rule mor-
phisms, but they could not delete any nodes or edges.

For this, the single-pushout approach we have presented here (albeit with
total morphisms!) would have to be replaced with a double-pushout approach.

A nice application of this could be the restriction of derivations to rules that
never increased the total number of nodes — the DANGLING condition in the
gluing condition (see [Ehr78]) guarantees that with the applicability of such a
rule the necessary nodes can in fact be deleted.

Restriction to three nodes would correspond to what is possible in the conven-
tional relation calculus without resorting to direct products, and Roger Maddux
has expressed interest in the class of theorems derivable with a “bandwidth” of
at most four or five.

Summarising, we have seen that we can express

— intersection and composition inside relational diagrams,
— products via hyperedges and multiple nodes,
— Dedekind and modal rules via “changing point of view”,
transitivity of inclusion in derivations and

— union in branching rules.

Therefore, relational diagram proofs are useful whenever these concepts have
to be used heavily, either explicitly in relational formulae or implicitly, as for
example for products, that are used implicitly in predicate logic formulations
with many variables.

The most important difference of our approach to those of [BH94] and [CL95]
is that we have introduced an independent rule concept that can be used for
arbitrary applications, and that we have exploited the categorical concepts of
the algebraic approach to graph rewriting as the driving mechanism behind our
derivation concept.

At the same time, we have created a rule mechanism that supports rule
parameters and genericity in the typing of the rules at the same time — this
is of course motivated by our work on typed term graph rewriting [Kah95a] in
the context of the graphically interactive functional programming and program
transformation system HOPS [ZSB86, Kah94, BK94].

References

[BH94] Carolyn Brown and Graham Hutton. Categories, allegories and circuit de-
sign. In Proceedings, Ninth Annual IEEE Symposium on Logic in Computer
Science, pages 372-381, Paris, France, 4-7 July 1994. IEEE Computer Society
Press.

[BK94] Arne Bayer and Wolfram Kahl. The Higher-Object Programming System
“HOPS”. In Bettina Buth and Rudolf Berghammer, editors, Systems
for Computer-Aided Specification, Development and Verification, Bericht
Nr. 9416, pages 154-171. Universitat Kiel, 1994. URL: http://inf2-
www.informatik.unibw-muenchen.de/HOPS /papers/Bayer-Kahl-94.ps.gz.

[BKS97] Chris Brink, Wolfram Kahl, and Gunther Schmidt, editors. Relational Meth-
ods in Computer Science. Advances in Computing. Springer-Verlag, Wien,
New York, 1997. ISBN 3-211-82971-7.

[CL95] Sharon Curtis and Gavin Lowe. A graphical calculus. In Bernhard Méller,
editor, Mathematics of Program Construction, Third International Confer-
ence, MPC 95, Kloster Irsee, Germany, July 1995, volume 947 of LNCS,
pages 214-231. Springer Verlag, 1995.

[Ehr78]

[EKL90]

[EKR90]

[Kah95a]

Hartmut Ehrig. Introduction to the algebraic theory of graph grammars.
In Volker Claus, Hartmut Ehrig, and Grzegorz Rozenberg, editors, Graph-
Grammars and Their Application to Computer Science and Biology, Inter-
national Workshop, volume 73 of Lecture Notes in Computer Science, pages
1-69, Bad Honnef, November 1978. Springer-Verlag.

Hartmut Ehrig, Martin Korff, and Michael Lowe. Tutorial introduction to the
algebraic approach of graph grammars based on double and single pushouts.
In Ehrig et al. [EKR90], pages 24-37.

Hartmut Ehrig, Hans-Jorg Kreowski, and Grzegorz Rozenberg, editors.
Graph-Grammars and Their Application to Computer Science, 4th Interna-
tional Workshop, volume 532 of Lecture Notes in Computer Science, Bremen,
Germany, March 1990. Springer-Verlag.

Peter J. Freyd and Andre Scedrov. Categories, Allegories, volume 39 of
North-Holland Mathematical Library. North-Holland, Amsterdam, 1990.
Wolfram Kahl. Can functional programming be liberated from the applica-
tive style? In Bjorn Pehrson and Imre Simon, editors, Technology and Foun-
dations, Information Processing '94, Proceedings of the IFIP 13th World
Computer Congress, Hamburg, Germany, 28 August — 2 September 1994,
Volume I, volume A-51 of IFIP Transactions, pages 330-335. IFIP, North-
Holland, 1994.

Wolfram Kahl. Aspects of typed term graphs. In Tiziana Margaria, edi-
tor, Kolloqguium Programmiersprachen und Grundlagen der Programmierung,
Adalbert Stifter Haus, Alt Reichenau, 11.-13. Oktober 1995, Bericht MIP-
9519, pages 104 109. Universitat Passau, Fakultat fir Mathematik und In-
formatik, December 1995.

[Kah95b] Wolfram Kahl. Kategorien von Termgraphen mit gebundenen Variablen.

[Kah96]

[Ken90]
[Low90]
[Spi&9]

[$593]

[VHO1]

[ZSBS6]

Technischer Bericht 9503, Fakultat fir Informatik, Universitat der Bun-
deswehr Miinchen, September 1995. 191 pages.

Wolfram Kahl. Algebraische Termgraphersetzung mit gebundenen Variablen.
Reihe Informatik. Herbert Utz Verlag Wissenschaft, Munchen, 1996. ISBN 3-
931327-60-4; also doctoral dissertation at Fakultat fur Informatik, Universitat
der Bundeswehr Minchen.

Richard Kennaway. Graph rewriting in some categories of partial morphisms.
In Ehrig et al. [EKR90], pages 490-504.

Michael Lowe. Algebraic approach to graph transformation based on single
pushout derivations. Technical Report 90/05, TU Berlin, 1990.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall, 1989.

Gunther Schmidt and Thomas Strohlein. Relations and Graphs, Discrete
Mathematics for Computer Scientists. EATCS-Monographs on Theoretical
Computer Science. Springer Verlag, 1993.

Paulo A. S. Veloso and Armando M. Haeberer. A finitary relational algebra
for classical first-order logic. Bulletin of the Section on Logic of the Polish
Academy of Sciences, 20(2):52-62, 1991.

Hans Zierer, Gunther Schmidt, and Rudolf Berghammer. An interactive
graphical manipulation system for higher objects based on relational alge-
bra. In Gottfried Tinhofer and Gunther Schmidt, editors, Proc. 12th Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science, LNCS
246, pages 68-81, Bernried, Starnberger See, June 1986. Springer-Verlag.

