
Collagories for Relational Adhesive Rewriting

Wolfram Kahl∗

kahl@cas.mcmaster.ca

Software Quality Research Laboratory

Department of Computing and Software, McMaster University

Hamilton, Ontario, Canada L8S 4K1

July 2009

Abstract

We define collagories essentially as “distributive allegories without zero morphisms”, and show
that they are sufficient for accommodating the relation-algebraic approach to graph transforma-
tion. Collagories closely correspond to the adhesive categories important for the categorical DPO
approach to graph transformation. but thanks to their relation-algebraic flavour provide a more
accessible and more flexible setting.

McMaster University

SQRL Report No. 56

∗This research has been supported by the National Science and Engineering Research Council (NSERC),
Canada



2 CONTENTS

Contents

1 Introduction 3

2 Categories, Allegories 3

3 Collagories 5

4 Tabulations and Co-tabulations 6

5 Maps in Collagories form Adhesive Categories 11

6 Collagories of Semi-Unary Algebras and Bisimulations 14

7 Reducts Along Signature Homomorphisms 20

8 Reduct-Restricted Σ-Algebra Categories 21

9 Conclusion 23



Wolfram Kahl: Collagories for Relational Adhesive Rewriting 3

1 Introduction

One of the hallmarks of the relation-algebraic approach to graph transformation [Kaw90, Kah01,
Kah04] is that it allows an abstract characterisation of the gluing condition for the double
pushout approach. Nevertheless, the categorical approach to graph transformation has contin-
ued to use the node-and-edge-based formulation of the gluing condition even in the handbook
chapter [CMR+97]. Recently, the literature of the categorical approach, starting essentially
with [EPPH06] has adopted the “adhesive categories” of Lack and Sobociński [LS04], where
however the details of the gluing condition are completely sidestepped.

Although the toposes of graph structures that give rise to the relational categories used in
the relational approach are examples of adhesive categories, the latter also include, for example,
categories of pointed set, which do not give rise to distributive allegories due to the failure of
the zero law.

In this paper we show that dropping the zero law still produces a relational formalism that
can accommodate the necessary tools for graph transformation, and furthermore relates nicely
with adhesive categories.

We first re-develop, in sections 2–4, the fundamentals of the relation-algebraic approach
to graph transformation using our new bi-tabular collagories, and show in Sect. 5 that these
provide adhesive categories. Sections 6–8 are then devoted to constructing concrete bi-tabular
collagories of algebras.

A shorter version of this work appears as [Kah09].

2 Categories, Allegories

This section only serves to fix notation and terminology for standard concepts, see [FS90,
SS93, Kah04]. Like Freyd and Scedrov and a slowly increasing number of categorists, we use
denote composition in “diagram order” not only in relation-algebraic contexts, where this is
customary, but also in the context of categories. We will always use the infix operator “.,” to
make composition explicit: R ., S = A R-B S-C.

Definition 2.1 A category C is a tuple (ObjC, MorC, src, trg, I, .,) where

• ObjC is a collection of objects.

• MorC is a collection of arrows or morphisms.

• src (resp. trg) maps each morphism to its source (resp. target) object.

Instead of src(f ) = A ∧ trg(f ) = B we write f : A → B.

The collection of all morphisms f with f : A → B is denoted as MorC[A,B] and also called
a homset.

• “.,” is the binary composition operator, and composition of two morphisms f : A → B and
g : B′ → C is defined iff B = B′, and then (f ., g) : A → C; composition is associative.

• I associates with every object A a morphism IA which is both a right and left unit for
composition.



4 2 CATEGORIES, ALLEGORIES

Definition 2.2 An ordered category is a category C such that

• for each two objects A and B, the relation ⊑A,B is a partial order on MorC[A,B] (the
indices will usually be omitted), and

• composition is monotonic with respect to ⊑ in both arguments.

Definition 2.3 An upper-semilattice category is an ordered category where

• each homset is a distributive lattice with binary join ⊔,

• composition distributes over binary joins from both sides.

For homsets that have least or greatest elements, we introduce corresponding notation:

Definition 2.4 In an ordered category, for each two objects A and B we introduce the following
notions:

• If the homset MorC[A,B] contains a greatest element, this is denoted ⊤⊤A,B.

• If the homset MorC[A,B] contains a least element, this is denoted ⊥⊥A,B.

For these extremal morphisms and for identities we frequently omit indices where these can be
induced from the context.

Definition 2.5 An allegory is an ordered category such that

• each morphism R : A → B has a converse R
` : B → A,

• the involution equations hold for all R : A → B and S : B → C:

(R`)` = R I
`

A = IA (R ., S )` = S
` ., R

`

• conversion is monotonic with respect to ⊑.

• each homset is a lower semilattice with binary meet ⊓.

• for all Q : A → B, R : B → C, and S : A → C, the modal rule holds:

Q ., R ⊓ S ⊑ (Q ⊓ S ., R
`) ., R .

Many standard properties of relations can be characterised in the context of allegories:

Definition 2.6 A morphism R : A → B in an allegory is called:

• univalent iff R
` ., R ⊑ IB,

• total iff IA ⊑ R ., R
`,

• injective iff R ., R
` ⊑ IA,

• surjective iff IB ⊑ R
` ., R,

• a mapping iff it is univalent and total,

• bijective iff it is injective and surjective,

• difunctional iff R ., R
` ., R ⊑ R. (See [SS93, 4.4] for more about difunctionality).

For an allegory A, we write MapA for the sub-category of A that contains only the mappings
as arrows.



Wolfram Kahl: Collagories for Relational Adhesive Rewriting 5

Definition 2.7 For a morphism R : A → B in an allegory, we define its difunctional closure

R ∗⊡ : A → B as the least difunctional morphism containing R (if this exists), and we further
define R∗⊲ : A → A and R ∗⊳ : B → B as:

R∗⊲ := I ⊔ R ∗⊡ ., (R ∗⊡)
`

and R ∗⊳ := I ⊔ (R ∗⊡)
` ., R ∗⊡ .

For endomorphisms, there are a few additional properties of interest:

Definition 2.8 A morphism R : A → A in an allegory is called:

• reflexive iff I ⊑ R,

• transitive iff R ., R ⊑ R,

• co-reflexive or a sub-identity iff R ⊑ IA,

• symmetric iff R
` ⊑ R,

• an equivalence iff it is symmetric, reflexive and transitive.

Definition 2.9 [FS90, 2.15] An object U in an allegory is a partial unit if IU = ⊤⊤U ,U . The
object U is a unit if, further, every object is the source of a total morphism targeted at U . An
allegory is said to be unitary if it has a unit.

We use the symbol “1l” for an arbitrary but fixed unit object.

3 Collagories

κóλλα: glue

In Freyd and Scedrov’s treatment, although allegories do not require zero-ary meets, distributive
allegories do require zero-ary joins (least elements) together with distributivity of composition
over them, that is, the zero law ⊥⊥ ., R = ⊥⊥. We define an intermediate concept that does not
assume anything about zero-ary joins:

Definition 3.1 A collagory is an allegory that is also an upper-semilattice category.

For Kleene star, we use Kozen’s axioms [Koz94]:

Definition 3.2 A Kleene collagory is a collagory where, on homsets of endomorphisms, there
is an additional unary operation ∗ which satisfies the following axioms for all R : A → A,
Q : B → A, and S : A → C:

R∗ = IA ⊔ R ⊔ R∗ ., R∗ recursive star definition

Q ., R ⊑ Q ⇒ Q ., R∗ ⊑ Q right induction

R ., S ⊑ S ⇒ R∗ ., S ⊑ S left induction



6 4 TABULATIONS AND CO-TABULATIONS

Proposition 3.3 In a Kleene collagory, all difunctional closures exist, and:

R∗⊲ = (R ., R
`
)∗ , R ∗⊳ = (R

` ., R)∗ , R ∗⊡ = R∗⊲ ., R = R ., R ∗⊳ .

Alternatively, we also can fore-go the Kleene star and directly axiomatise difunctional closure:

Definition 3.4 A difunctionally closed collagory is a collagory where, there is an additional
unary operation ∗⊡ which satisfies the following axioms for all R : A → B, Q : C → A, and
S : A → C: Q ′ : C → B, and S ′ : B → C:

R ∗⊡ = R ⊔ R ∗⊡ ., (R ∗⊡)` ., R ∗⊡ recursive definition

Q ., R ⊑ Q ′ ∧ Q ′ ., R
` ., R ⊑ Q ′ ⇒ Q ., R ∗⊡ ⊑ Q ′ right induction

R ., S ⊑ S ′ ∧ R ., R
` ., S ′ ⊑ S ′ ⇒ R ∗⊡ ., S ⊑ S ′ left induction

Proposition 3.5 In a difunctionally closed collagory, the operation ∗⊡ produces difunctional
closures.

Proof: Containment R ⊑ R ∗⊡ and difunctionality R ∗⊡ ., (R ∗⊡)` ., R ∗⊡ ⊑ R ∗⊡ follow directly from
the recursive definition.

For minimality, assume that C is difunctional with R ⊑ C . Then we have I
., R ⊑ C and

C ., R
` ., R ⊑ C ., C

` ., C ⊑ C and therefore, with the right induction rule, R ∗⊡ = I
., R ∗⊡ ⊑ C .

4 Tabulations and Co-tabulations

Central to the connection between pullbacks and pushouts in categories of mappings on the
one hand and constructions in relational theories on the other hand is the fact that a square of
mappings commutes iff the “relation” induced by the source span is contained in that induced
by the target co-span. The proof of this does not need the modal rule.

A
¡

¡
¡ª
P

@
@
@R

Q

B C
@

@
@R
R ¡

¡
¡ª
S

D

Lemma 4.1 [FS90, 2.146] Given a square of mappings in an allegory as drawn above, we have
P ., R = Q ., S iff P

` ., Q ⊑ R ., S
`.

This provides a first hint that in the relational setting, the identity of the two mappings P

and Q does not matter when looking for a pushout of the span B P¾ A Q-C — we only need to
consider the diagonal P

` ., Q . Dually, when looking for a pullback of the co-span B R-D S¾ C,



Wolfram Kahl: Collagories for Relational Adhesive Rewriting 7

only R ., S
` needs to be considered. The gap between the two ways of calculating the horizontal

diagonal can be significant since R ., S
` is always difunctional.

Producing the result span of a pullback (respectively the result co-span of a pushout) from
the horizontal diagonal alone is, in some sense, a generalisation of Freyd and Scedrov’s splitting
of idempotents; [Kah04] contains more discussion of this aspect.

Definition 4.2 [FS90, 2.14] In an allegory, let a morphism V : B → C be given. The span

B P¾ A Q-C of mappings P and Q is called a tabulation of V iff the following equations hold:

P
` ., Q = V P ., P

`
⊓ Q ., Q

`
= IA .

A
¡

¡
¡ª
P

@
@

@R

Q

B V
- C

The following equivalent characterisation provided by [Kah04] has the advantage that it is
fully equational, without the implicit inclusion conditions in the requirement that P and Q are
mappings. This frequently facilitates calculations. Notice that I ⊓ V ., V

` = domV ; we use the
expanded form to emphasise the duality with Prop. 4.6 below.

Proposition 4.3 In an allegory, the span B P¾ A Q-C is a tabulation of
V : B → C if and only if the following equations hold:

P
` ., Q = V

P
` ., P = I ⊓ V ., V

`

Q
` ., Q = I ⊓ V

` ., V
P ., P

`
⊓ Q ., Q

`
= IA .

Tabulations in an allegory are unique up to isomorphism (this uses the modal rule), and include
the following special cases:

• In a tabulation of a sub-identity, both tabulation morphisms are the induced sub-object

injection [FS90, 2.145].

• We can define a direct product of A and B to be a tabulation of a ⊤⊤A,B, provided that greatest
morphism exists.

• If a co-span B R-D S¾ C of mappings is given, then its pullback in MapA is obtained as a
tabulation of R ., S

` [FS90, 2.147].

If an allegory in known to have all direct products and subobjects, then these can be used to
construct a tabulation for each morphism.

Lemma 4.4 If a co-span B R-D S¾ C of mappings is given with R injective, and B P¾ A Q-C
is a tabulation for R ., S

`, then Q is injective, too.

Proof: First we use Prop. 4.3 to show Q ., Q
` ⊑ P ., P

`:

Q ., Q
` = Q ., Q

` ., Q ., Q
` = Q ., (I ⊓ (R ., S

`)` ., R ., S
`) ., Q

`

⊑ Q ., S ., R
` ., R ., S

` ., Q
` = P ., R ., R

` ., R ., R
` ., P

` = P ., P
`



8 4 TABULATIONS AND CO-TABULATIONS

Together with the tabulation condition, this implies Q ., Q
` = P ., P

` ⊓ Q ., Q
` = IA, that is,

injectivity of Q .

While a tabulation can be seen as a certain kind of decomposition of an arbitrary morphism
in an allegory into a span, the dual of a tabulation is then a certain kind of decomposition of a
difunctional morphism in a collagory into a co-span. Although the formal material here is dual
to that above, we still spell it out in full detail for reference and better intuition.

Definition 4.5 [Kah04] In a collagory, let a morphism W : B → C be given. The co-span

B R-D S¾ C of mappings R and S is called a co-tabulation of W iff the following equations
hold:

R ., S
`

= W R
` ., R ⊔ S

` ., S = ID .

B W
- C

@
@

@R

R ¡
¡

¡ª
S

D

The first equation implies W ., W
` ., W = R ., S

` ., S ., R
` ., R ., S

` ⊑ R ., S
` = W (using univalence

of R and S ), so if W has a co-tabulation, it has to be difunctional.

Co-tabulations also have an equivalent characterisation that does not involve the mapping
concept explicitly and is perfectly “bi-dual” to the tabulation characterisation in Prop. 4.3:

Proposition 4.6 In a collagory, the span B R-D S¾ C is a co-tabulation of W : B → C iff
the following equations hold:

R ., S
`

= W
R ., R

` = I ⊔ W ., W
`

S ., S
` = I ⊔ W

` ., W
R

` ., R ⊔ S
` ., S = ID .

In a collagory, co-tabulations are unique up to isomorphism [SS93, 4.4.10], and we have the
following special cases:

• In a co-tabulation of an equivalence, both R and S are the induced quotient projections.
• We can define a direct sum of A and B to be a co-tabulation of ⊥⊥A,B, if that least morphism

exists.

If direct sums and quotients are available, then a co-tabulation can be constructed for each
difunctional morphism.

To establish the relationship between the relation-algebraic co-tabulation definition and the
universal characterisation of pushouts in categories, we first establish a generalised factorisation
property for co-tabulations:

Lemma 4.7 In a collagory, let W : B ↔ C be a difunctional morphism.

If the cospan B R-D S¾ C is a co-tabulation of W , and if the cospan B R′-D′ S ′¾ C consists
of mappings that satisfy

W ., S ′ ⊑ R′ and W
` ., R′ ⊑ S ′ ,

then U : D → D′ with U := R
` ., R′ ⊔ S

` ., S ′ is a mapping such that R′ = R ., U and S ′ = S ., U .



Wolfram Kahl: Collagories for Relational Adhesive Rewriting 9

Proof: Factorisation follows easily from the assumptions:

R ., U = R ., R
` ., R′ ⊔ R ., S

` ., S ′ = (I ⊔ W ., W
`) ., R′ ⊔ W ., S ′ = R′

S ., U = S ., R
` ., R′ ⊔ S ., S

` ., S ′ = W
` ., R′ ⊔ (I ⊔ W

` ., W ) ., S ′ = S ′

Univalence follows from factorisation and univalence of R′ and S ′:

U
` ., U = (R′` ., R ⊔ S ′` ., S ) ., U = R′` ., R ., U ⊔ S ′` ., S ., U = R′` ., R′ ⊔ S ′` ., S ′ ⊑ I

Totality of U uses totality of R′ and S ′, and the last co-tabulation condition:

U ., U
` ⊒ R

` ., R′ ., R′` ., R ⊔ S
` ., S ′ ., S ′` ., S Definition of U

⊒ R
` ., R ⊔ S

` ., S Totality of R′ and S ′

⊒ I R, S cotabulation

This helps to show that co-tabulations are unique up to isomorphism:

Theorem 4.8 In a collagory, let W : B ↔ C be a difunctional morphism.

If the cospans B R-D S¾ C and B R′-D′ S ′¾ C are both co-tabulations for W , then there
is a bijective mapping U : D → D′ such that R′ = R ., U and S ′ = S ., U .

Proof: With the co-tabulation conditions for B R′-D′ S ′¾ C and univalence of R′ and S ′ we
obtain:

W ., S ′ = R′ ., S ′` ., S ′ ⊑ R′ and W
` ., R′ = S ′ ., R′` ., R′ ⊑ S ′ .

With Lemma 4.7 we know that U := R
` ., R′ ⊔ S

` ., S ′ is a mapping that factorises R′ and S ′.

By the same argument for U
`, we obtain that U is also bijective.

A co-tabulation for a difunctional closure Z ∗⊡ satisfies the following equations:

R ., S
`

= Z ∗⊡ R ., R
`

= Z ∗⊲ S ., S
`

= Z ∗⊳ R
` ., R ⊔ S

` ., S = ID .

This was introduced as a gluing for U in [Kah01]. Kawahara is the first to have characterised
pushouts relation-algebraically in essentially this way [Kaw90]; he used relation-algebraic op-
erations on relations arising in toposes.

The proof that this characterisation produces pushouts also in collagories is easily adapted
from the proof of [Kah01, Theorem 5.3.5]:

Theorem 4.9 Let C be a collagory, and let B P¾ A Q-C be a span in MapC, that is, P and
Q are mappings.

If the cospan B R-D S¾ C in the collagory C is a co-tabulation for W := (P` ., Q) ∗⊡, then

it is a pushout for B P¾ A Q-C in MapC.

Proof: The co-tabulation properties imply that R and S are mappings. For commutativity,
we first show one inclusion:

P ., R ⊒ P ., R ., ran S = P ., R ., S
` ., S = P ., (P

` ., Q) ∗⊡ ., S ⊒ P ., P
` ., Q ., S ⊒ Q ., S

The opposite inclusion is derived in the same way, so we have equality.



10 4 TABULATIONS AND CO-TABULATIONS

Now assume another cospan B R′-D′ S ′¾ C in MapC such that P ., R′ = Q ., S ′. This
commutativity together with univalence of P and Q implies

P
` ., Q ., S ′ = P

` ., P ., R′ ⊑ R′ and Q
` ., P ., R′ = Q

` ., Q ., S ′ ⊑ S ′ .

Using left induction for difunctional closure, this gives us:

W ., S ′ = (P
` ., Q) ∗⊡ ., S ′ ⊑ R′ and W

` ., R′ = (Q
` ., P) ∗⊡ ., R′ ⊑ S ′ .

With Lemma 4.7 we then know that U := R
` ., R′ ⊔ S

` ., S ′ is a mapping that factorises R′

and S ′. So we only have to show that U is uniquely determined. Assume U ′ : D → D′ with
R ., U ′ = R′ and S ., U ′ = S ′. Then:

U ′ = (R
` ., R ⊔ S

` ., S ) ., U ′ = R
` ., R ., U ′ ⊔ S

` ., S ., U ′ = R
` ., R′ ⊔ S

` ., S ′ = U

For pushouts along injective mappings, the difunctional closure becomes trivial:

Lemma 4.10 If a span B P¾ A Q-C of mappings is given with Q injective, then P
` ., Q is

difunctional (and therefore (P` ., Q) ∗⊡ = P
` ., Q).

Proof: Since P , as a mapping, is difunctional, we have

P
` ., Q ., Q

` ., P ., P
` ., Q = P

` ., P ., P
` ., Q = P

` ., Q .

Furthermore, co-tabulations preserve injectivity:

Lemma 4.11 If a span B P¾ A Q-C of mappings is given with Q injective, and B R-D S¾ C
is a co-tabulation for P

` ., Q , then R is injective, too.

Proof: Using injectivity of Q and univalence of P in one of the equations from Prop. 4.6 gives
us injectivity of R:

R ., R
`

= I ⊔ P
` ., Q ., (P

` ., Q)
`

= I ⊔ P
` ., Q ., Q

` ., P = I ⊔ P
` ., P = I .

With that, we can show that, essentially, a pushout over an injective mapping is also a pullback:

Lemma 4.12 If a span B P¾ A Q-C of mappings is given with Q injective, and B R-D S¾ C
is a co-tabulation for P

` ., Q , then B P¾ A Q-C is also a tabulation for R ., S
`.

Proof: Cross-commutativity R ., S
` = P

` ., Q is already contained in the co-tabulation condi-
tions. Since Q is injective and P is total, we also obtain

P ., P
`
⊓ Q ., Q

`
= P ., P

`
⊓ IA = IA .

Definition 4.13 If a collagory has a tabulation for each morphism and a co-tabulation for each
difunctional morphism, then we call it bi-tabular.



Wolfram Kahl: Collagories for Relational Adhesive Rewriting 11

5 Maps in Collagories form Adhesive Categories

Adhesive categories as a more specific setting for double-pushout graph rewriting have been
introduced by Lack and Sobociński [LS04, LS05]; the following two definitions are taken from
there:

Definition 5.1 A van Kampen square (i) is a pushout which satisfies the following condition:
given a commutative cube (ii) of which (i) forms the bottom face and the back faces are
pullbacks (where C is considered to be in the back), the front faces are pullbacks if and only if
the top face is a pushout.

C
¡

¡
¡ª

M
@

@
@R

F

A B
@

@
@R

G
¡

¡
¡ª

N

D

(i)

C′ f -B′

¡
¡ª
m ¡

¡ª
n

A′ g-

c
?

D′

?

b

a

?

C -
F

?

d

B
¡

¡¡ª M
¡

¡¡ª N
A -

G D

(ii)

Definition 5.2 A category C is said to be adhesive if

1. C has pushouts along monomorphisms;

2. C has pullbacks;

3. pushouts along monomorphisms are van Kampen squares.

For more concise formulations, we define:

Definition 5.3 A van Kampen setup in a category C for a square as in Def. 5.1(i) is a com-
muting cube in C as in Def. 5.1(ii) where the bottom square is a pushout and the two back
squares are pullbacks.

For reference, we expand this into the collagory setting:

Lemma 5.4 In a collagory C, a van Kampen setup in MapC means that the following hold:

Bottom pushout:

G ., N
` = (M` ., F ) ∗⊡ G

` ., G ⊔ N
` ., N = ID G ., G

` = (M` ., F )∗⊲

N ., N
` = (M` ., F ) ∗⊳

Back pullbacks:

c
` ., m = M ., a

`
c ., c

` ⊓ m ., m
` = IC′ c

` ., c = IC ⊓ M ., a
` ., a ., M

`

m
` ., m = IA′ ⊓ a ., M

` ., M ., a
`

c
` ., f = F ., b

`
c ., c

` ⊓ f ., f
` = IC′ c

` ., c = IC ⊓ F ., b
` ., b ., F

`

f
` ., f = IB′ ⊓ b ., F

` ., F ., b
`

Remaining commutative squares:

m ., g = f ., n g ., d = a ., G n ., d = b ., N



12 5 MAPS IN COLLAGORIES FORM ADHESIVE CATEGORIES

These equations are now used to prove the following:

Lemma 5.5 In the category of maps MapC over a collagory C, pushouts along injective maps

are stable under pullbacks, that is, in a van Kampen setup where M is injective, if the front
squares are pullbacks, then the top square is a pushout.

Proof: Besides the assumptions in Lemma 5.4, we also have in particular the following equa-
tions for the top sides of the two front pullbacks:

g
` ., g = ID′ ⊓ d ., G

` ., G ., d
`

n
` ., n = ID′ ⊓ d ., N

` ., N ., d
`

This gives us (without requiring injectivity of M ):

g
` ., g ⊔ n

` ., n = ID′ ⊓ (d ., G
` ., G ., d

` ⊔ d ., N
` ., N ., d

`) front pullbacks

= ID′ ⊓ d ., (G` ., G ⊔ N
` ., N ) ., d

` join-distr.

= ID′ ⊓ d ., ID
., d

` bottom pushout

= ID′ ⊓ d ., d
` identity law

= ID′ d total

With Lemmas 4.4 and 4.11, injectivity of M implies injectivity of m, N , and n. Therefore
we also have cross-commutativity G ., N

` = M
` ., F . With this, we can establish also cross-

commutativity for the top pushout:

g ., n
` = g ., n

` ⊓ g ., d ., d
` ., n

`
d total

= (g ⊓ g ., d ., d
` ., n

` ., n) ., n
`

n difunctional

= (g ⊓ a ., G ., N
` ., b

` ., n) ., n
` front squares commute

= (g ⊓ a ., M
` ., F ., b

` ., n) ., n
` bottom pushout

= (g ⊓ a ., M
` ., c

` ., f ., n) ., n
` back pullback

= (g ⊓ a ., M
` ., c

` ., m ., g) ., n
` top square commutes

= (g ⊓ a ., M
` ., M ., a

` ., g) ., n
` left pullback

= (I ⊓ a ., M
` ., M ., a

`) ., g ., n
` allegory property [Kah01, A.2.1(v)]

= m
` ., m ., g ., n

` back pullback

= m
` ., f ., n ., n

` top square commutativity

= m
` ., f n total and injective

Theorem 5.6 In the category of maps MapC over a collagory C, pushouts along injective maps

are van Kampen squares.

Proof: Since Lemma 5.5 already showed the “only if” part of the definition of can Kampen
squares, we only need to show that, in a van Kampen setup where M is injective, if the top
square is a pushout, then the front squares are pullbacks.

With Lemmas 4.4 and 4.11, injectivity of M implies injectivity of N , m, and n. With
Lemma 4.10 we obtain simpler forms for the pushout equations for the top and bottom squares
— we show only those we will use below:



Wolfram Kahl: Collagories for Relational Adhesive Rewriting 13

G ., N
` = M

` ., F G ., G
` = IA ⊔ M

` ., F ., F
` ., M

g ., n
` = m

` ., f g
` ., g ⊔ n

` ., n = ID′ g ., g
` = IA′ ⊔ m

` ., f ., f
` ., m

This first gives us d ., N
` = n

` ., b:

d ., N
` = (g` ., g ⊔ n

` ., n) ., d ., N
` top pushout

= g
` ., g ., d ., N

` ⊔ n
` ., n ., d ., N

` distributivity

= g
` ., a ., G ., N

` ⊔ n
` ., b ., N ., N

` front squares comm.

= g
` ., a ., M

` ., F ⊔ n
` ., b bottom pushout, N inj.

= g
` ., m

` ., c ., F ⊔ n
` ., b left pullback

= n
` ., f

` ., f ., b ⊔ n
` ., b top, back squares commute

= n
` ., b f univalent

Similarly, we can also derive d ., G
` = g

` ., a:

d ., G
` = (g` ., g ⊔ n

` ., n) ., d ., G
` top pushout

= g
` ., g ., d ., G

` ⊔ n
` ., n ., d ., G

` distributivity

= g
` ., a ., G ., G

` ⊔ n
` ., b ., N ., G

` front squares comm.

= g
` ., a ., (ID ⊔ M

` ., F ., F
` ., M ) ⊔ n

` ., b ., F
` ., M bottom pushout

= g
` ., a ⊔ g

` ., m
` ., c ., F ., F

` ., M ⊔ n
` ., f

` ., c ., M back pullbacks

= g
` ., a ⊔ g

` ., m
` ., f ., b ., F

` ., M ⊔ g
` ., m

` ., m ., a back, top squ. comm.

= g
` ., a ⊔ g

` ., m
` ., f ., b ., F

` ., M g
` ., m

` ., m ., a ⊑ g
` ., a

= g
` ., a ⊔ g

` ., m
` ., f ., f

` ., c ., M back pullback

= g
` ., a ⊔ g

` ., m
` ., f ., f

` ., m ., a left square comm.

= g
` ., a see below

The last step is justified since:

g
` ., m

` ., f ., f
` ., m ., a ⊑ g

` ., g ., g
` ., a m

` ., f ., f
` ., m ⊑ g ., g

`

= g
` ., a g difunctional

The second tabulation condition on the “injective side” follows immediately:

n ., n
` ⊓ b ., b

` = IB′ ⊓ b ., b
`

n total and injective

= IB′ b total

The other side requires more effort:

g ., g
` ⊓ a ., a

` = (IA′ ⊔ m
` ., f ., f

` ., m) ⊓ a ., a
` top pushout

= (IA′ ⊓ a ., a
`) ⊔ (m` ., f ., f

` ., m ⊓ a ., a
`) distributivity

= IA′ ⊔ (m` ., f ., f
` ., m ⊓ a ., a

`) a total

= IA′ (see below)



14 6 COLLAGORIES OF SEMI-UNARY ALGEBRAS AND BISIMULATIONS

The last step is justified by showing the inclusion m
` ., f ., f

` ., m ⊓ a ., a
` ⊑ IA′ :

m
` ., f ., f

` ., m ⊓ a ., a
` ⊑ m

` ., (f ., f
` ⊓ m ., a ., a

` ., m
`) ., m modal rule

= m
` ., (f ., f

` ⊓ c ., M ., M
` ., c

`) ., m left square commutes

= m
` ., (f ., f

` ⊓ c ., c
`) ., m M total and injective

= m
` ., IC′

., m back pullback

⊑ IA′ m univalent

The main result of this section is now an immediate consequence of this theorem; note that we
do not need difunctional (or transitive) closure for this:

Corollary 5.7 For a bi-tabular collagory C where all monos in MapC are injective in C, the
mapping category MapC is adhesive.

(The restriction on monic mappings is necessary since there might, for example, be an object
A in C for which the only mapping with target A is IA; in that case, all mappings f : A → B
would automatically be monos in MapC regardless whether they are injective in C. Note that
f (together with identities) itself forms a tabulation and a co-tabulation for f .)

This result immediately makes the rewriting concepts and results from [LS04], including
the local Church-Rosser theorem and the concurrency theorem, available for DPO rewriting
defined via tabulations and co-tabulations in the context of collagories.

6 Collagories of Semi-Unary Algebras and Bisimulations

In [Kah01, Kah04], relational homomorphisms between unary algebras have been shown to
form a distributive allegory. In this section we generalise this result to collagories by allowing
constant symbols and in turn dropping the zero law requirement.

Most of the mathematical content of this section has been presented and proven in more
detail in [Kah01, Kah04]. Besides the proof of Theorem 6.6, also the reformulation using the
sort-indexed product category and the forgetful functor UΣ is new.

Definition 6.1 A signature is a tuple (S,F , src, trg) consisting of

• a set S of sorts ,

• a set F of function symbols ,

• a mapping src : F → S∗ associating with every function symbol the list of its source sorts,
and

• a mapping trg : F → S associating with every function symbol its target sort.

Such a signature is called semi-unary if length(src(f )) ≤ 1 for each f : F , and unary if
length(src(f )) = 1 for each f : F .

For a function symbol f : F , we usually employ the shorthand “f : s1×· · ·×sn → t” instead
of the rather verbose “src(f ) = 〈s1, . . . , sn〉 and trg(f ) = t”. For a zero-ary function symbol,
also called constant symbol, we write “f : 1l → t”.



Wolfram Kahl: Collagories for Relational Adhesive Rewriting 15

The following example signatures will be used for discussion and results in sections 7 and 8:

sigGraph := 〈 sorts: V, E

ops: s, t : E → V

〉

sigPointedSet := 〈 sorts: S

ops: point : 1l → S

〉

sigPoint := 〈 sorts: P

ops:

〉

sigPointed := 〈 sorts: P, O

ops: p : P → O

〉

sigType := 〈 sorts: T

ops:

〉

sigTyped := 〈 sorts: O, T

ops: t : O → T

〉

sigNELabels := 〈 sorts: NL, EL

ops:

〉

sigLGraph := 〈 sorts: N, E, NL, EL

ops: s, t : E → N,

n : N → NL,

e : E → EL

〉

Definition 6.2 For a set S (of sorts) and a category C, we define CS , the S-indexed product

category of C, as follows:

• an object A of CS consists of C-objects sA for every s : S;

• a morphism Φ : A → B of CS is an S-indexed family of C-morphisms Φ = (Φs)s:S such
that Φs : sA → sB for every sort s : S.

• composition .,S and identities I
S are defined component-wise;

• if C is an allegory, then inclusion ⊑S , meet ⊓S and converse are defined component-wise;

• if C is collagory, then join ⊔S is defined component-wise.

One easily verifies that the resulting S-indexed product categories, allegories, and collagories
all satisfy the respective axioms.

When defining Σ-algebras in the presence of binary function symbols, we need several techni-
cal conditions on direct products [Kah01, Def. 3.1.12]; for the current study, we can do without
direct products (at the cost of some duplication of formalisation for unary and zero-ary function
symbols), but we still need allegories for the characterisation of mappings:

Definition 6.3 Given a signature Σ = (S,F, src, trg) and an allegory C, which has to have a
unit 1l if Σ contains constant symbols, an abstract Σ-algebra over C consists of the following
items:

• an object A of CS ,

• for every function symbol f :F with f : s → t a mapping f A : sA → tA in C.

• for every constant symbol c:F with c : 1l → t a mapping cA : 1l → tA in C.



16 6 COLLAGORIES OF SEMI-UNARY ALGEBRAS AND BISIMULATIONS

It is important to note that, where we use sets as carriers, we have no restriction to non-empty
sets — unlike most of the universal algebra literature.

Since we use this definition to construct an allegory with abstract Σ-algebras as objects, the
generality of discussing abstract Σ-algebras over allegories allows us to stack this construction
at no cost at all, with possibly different signatures at every level, building for example graphs
where the nodes and edges are hypergraphs and hypergraph morphisms.

The morphisms in allegories of Σ-algebras have to behave “essentially like relations”, and
so it is only natural that we consider a relational generalisation of conventional (functional)
Σ-homomorphisms. For arbitrary signatures, this has been presented in [Kah01]. For unary
signatures, one naturally starts with defining L-simulations satisfying Φ`

s
., f A ⊑ f B .,Φ`

t according
to de Roever and Engelhardt [dRE98], and then proceeds to L-simulations for which their
converse is an L-simulation, too; these are called “bisimulations” in [Kah04].

Definition 6.4 Let a signature Σ = (S,F, src, trg), an allegory C, and two abstract Σ-algebras
A and B over C be given.

A Σ-bisimulation from A to B is a CS-morphisms from A to B such that for every function
symbol f ∈ F with f : s → t and every constant symbol c ∈ F with c : 1l → t the following
inclusions hold:

Φs
., f B ⊑ f A ., Φt , and cB ⊑ cA ., Φt .

In the allegory C, this gives rise to the following sub-commuting diagrams (including one for
the n-ary case):

1l cA
- tA

I1l

?
⊑

?

Φt

1l -
cB tB

sA
f A

- tA

Φs

?
⊑

?

Φt

sB -
f B tB

sA1 × · · · × sAn
gA

- tA

Φs1 × · · · × Φsn

?

⊑

?

Φt

sB1 × · · · × sBn
-

gB tB

Using Σ-algebras over C as objects and Σ-bisimulations as morphisms defines a category CΣ

with an obvious “underlying” functor UΣ : CΣ → CS .

This “forgetful” functor UΣ is faithful. If C is an allegory, then UΣ reflects inclusion, meets
and converse in the sense that these can be defined for CΣ via their UΣ images. Therefore, CΣ

is an allegory, too [Kah01, Thm. 3.2.6].

We may observe a few simple facts:

• If C contains an initial object ∅, and Σ contains no constants, then we obtain an initial
object OΣ in CΣ by choosing sOΣ = ∅ for each sort s and f OΣ = I∅ for each function symbol
f .

• If C contains a unit 1l, then we obtain a unit 1lΣ in CΣ by choosing s1lΣ = 1l for each sort s

and f 1lΣ = I1l for each function symbol f .

Conventional Σ-algebra homomorphisms are just mappings in the allegory RelΣ of concrete
Σ-algebras over the allegory Rel of sets and concrete relations.



Wolfram Kahl: Collagories for Relational Adhesive Rewriting 17

If Σ contains a constant symbol, then even if the allegory C has least morphisms, then least
homomorphisms in CS are not generally in the range of UΣ, and even if CΣ does have least
morphisms, the zero law will in general not hold for them, no matter whether it holds in C.

If Σ contains a function symbol of arity at least 2, then even if C is an upper-semilattice
category, then UΣ does not reflect joins, in the sense that UΣ(Φ) ⊔S UΣ(Ψ) is not necessarily in
the range of UΣ. Furthermore, even if CΣ has joins, composition will, in presence of function
symbols of arity at least 2, in general not distribute over these joins (since non-empty joins do
not distribute over the product × occurring in the homomorphism condition) so CΣ will not
be an upper-semilattice category.

For semi-unary signatures, however, UΣ does reflect joins:

Lemma 6.5 If C is an upper-semilattice category, Σ is a semi-unary signature, and Φ, Ψ : A →
B are two Σ-bisimulations, then Φ ⊔S Ψ is a Σ-bisimulation, too, and is the join in CΣ of Φ
and Ψ, that is, Φ ⊔Σ Ψ = Φ ⊔S Ψ.

Proof: We need to check the bisimulation conditions for unary function symbols f : s → t

and for constant symbols c : 1l → t :

(Φ ⊔S Ψ)s
., f B = (Φs ⊔ Ψs)

., f B = Φs
., f B ⊔ Ψs

., f B

⊑ f A ., Φt ⊔ f A ., Ψt = f A ., (Φt ⊔ Ψt) = f A ., (Φ ⊔S Ψ)t

cB ⊑ cA ., Φt ⊔ cA ., Ψt = cA ., (Φt ⊔ Ψt) = cA ., (Φ ⊔S Ψ)t

The equation Φ ⊔Σ Ψ = Φ ⊔S Ψ follows from the reflection of inclusion by UΣ.

Given the closure of Σ-bisimulations under the converse, meet, and join operations in CS ,
properties of C-morphisms for these operations are inherited by Σ-bisimulations because of the
component-wise definitions, and we obtain:

Theorem 6.6 If Σ is a semi-unary signature and C is a collagory, then CΣ is a collagory,
too.

If C has tabulations (respectively co-tabulations), the sort-indexed product category CS ob-
viously has tabulations (respectively co-tabulations), too, and they can be calculated component-
wise. Perhaps surprisingly, these can be extended to the collagory CΣ of bisimulations between
Σ-algebras without problems; we just need to provide definitions for the function symbols of
the “new” objects, and verify all relevant conditions:

Theorem 6.7 If Σ = (S,F, src, trg) is a semi-unary signature and C is an allegory, and

B P¾ A Q-C is a tabulation in CS of the Σ-bisimulation V : B → C, i.e., for each sort
s : S, B Ps¾ A Qs-C is a tabulation of Vs : sB → sC, then we define for each function symbol
f : s → t and each constant symbol c : 1l → t in Σ:

f A := Ps
., f B ., P

`

t ⊓ Qs
., f C ., Q

`

t

cA := cB ., P
`

t ⊓ cC ., Q
`

t

Then A turns into a Σ-algebra and P and Q are Σ-bisimulations, too, so B P¾ A Q-C is a
tabulation in CΣ.



18 6 COLLAGORIES OF SEMI-UNARY ALGEBRAS AND BISIMULATIONS

Proof: We first show the bisimulation conditions for P ; those for Q follow analogously:

Ps
., f B = (Ps ⊓ Qs

., Q
`

s
., Ps)

., f B Qs total

= (Ps ⊓ Qs
., V

`

s ) ., f B tabulation of Vs

⊑ Ps
., f B ⊓ Qs

., V
`

s
., f B meet-subdistributivity

⊑ Ps
., f B ⊓ Qs

., f C ., V
`

t V
` bisimulation

= Ps
., f B ⊓ Qs

., f C ., Q
`

t
., Pt tabulation of Vt

= (Ps
., f B ., P

`

t ⊓ Qs
., f C ., Q

`

t ) ., Pt Pt univalent

= f A ., Pt Def. f A

cB = cB ⊓ cC ., V
`

t V
` bisimulation

= cB ⊓ cC ., Q
`

t
., Pt tabulation of Vt

= (cB ., P
`

t ⊓ cC ., Q
`

t ) ., Pt Pt univalent

= cA ., Pt Def. cA

Next we show that f A and cA are univalent:

(f A)` ., f A = (Pt
., (f B)` ., P

`

s ⊓ Qt
., (f C)` ., Q

`

s )
., (Ps

., f B ., P
`

t ⊓ Qs
., f C ., Q

`

t )

⊑ Pt
., (f B)` ., P

`

s
., Ps

., f B ., P
`

t ⊓

Qt
., (f C)` ., Q

`

s
., Qs

., f C ., Q
`

t

⊑ Pt
., (f B)` ., f B ., P

`

t ⊓ Qt
., (f C)` ., f C ., Q

`

t Ps , Qs univalent

⊑ Pt
., P

`

t ⊓ Qt
., Q

`

t f B, f C univalent

= ItA tabulation of Vt

(cA)` ., cA = (Pt
., (cB)` ⊓ Qt

., (cC)`) ., (cB ., P
`

t ⊓ cC ., Q
`

t )

⊑ Pt
., (cB)` ., cB ., P

`

t ⊓ Qt
., (cC)` ., cC ., Q

`

t )

⊑ Pt
., P

`

t ⊓ Qt
., Q

`

t cB, cC univalent

= ItA tabulation of Vt

For showing totality of f A and cA, we use all the above:

f A ., (f A)` = f A ., (Pt
., (f B)` ., P

`

s ⊓ Qt
., (f C)` ., Q

`

s )

= f A ., Pt
., (f B)` ., P

`

s ⊓ f A ., Qt
., (f C)` ., Q

`

s f A univalent

⊒ Ps
., f B ., (f B)` ., P

`

s ⊓ Qs
., f C ., (f C)` ., Q

`

s P , Q bisim.

⊒ Ps
., P

`

s ⊓ Qs
., Q

`

s f B, f C total

= IsA tabulation of Vs

cA ., (cA)` = cA ., (Pt
., (cB)` ⊓ Qt

., (cC)`)

= cA ., Pt
., (cB)` ⊓ cA ., Qt

., (cC)`
cA univalent

= cB ., (cB)` ⊓ cC ., (cC)`
P , Q bisim.

⊒ I1l cB, cC total



Wolfram Kahl: Collagories for Relational Adhesive Rewriting 19

Theorem 6.8 If Σ = (S,F, src, trg) is a semi-unary signature and C is a collagory, and

B R-D S¾ C is a co-tabulation in CS of the Σ-bisimulation W : B → C, i.e., for each sort
s : S, B Rs-D Ss¾ C is a tabulation of Ws : sB → sC, then we define for each function symbol
f : s → t and each constant symbol c : 1l → t in Σ:

f D := R
`

s
., f B ., Rt ⊔ S

`

s
., f C ., St

cD := cB ., Rt ⊔ cC ., St

Then D turns into a Σ-algebra and R and S are Σ-bisimulations, too, so B R-D S¾ C is a
co-tabulation in CΣ.

Proof: We first show the bisimulation conditions for R; those for S follow analogously:

Rs
., f D = Rs

., (R`

s
., f B ., Rt ⊔ S

`

s
., f C ., St) Def. f A

= Rs
., R

`

s
., f B ., Rt ⊔ Rs

., S
`

s
., f C ., St join distr.

= (IsB ⊔ Ws
., W

`

s ) ., f B ., Rt ⊔ Ws
., f C ., St co-tabulation of Ws

= f B ., Rt ⊔ Ws
., W

`

s ) ., f B ., Rt ⊔ Ws
., f C ., St join distr.

⊑ f B ., Rt ⊔ Ws
., f C ., W

`

t
., Rt ⊔ Ws

., f C ., St W
` bisimulation

⊑ f B ., Rt ⊔ Ws
., f C ., St co-tabulation of Wt

⊑ f B ., Rt ⊔ f B ., Wt
., St W bisimulation

⊑ f B ., Rt co-tabulation of Wt

cD = cB ., Rt ⊔ cC ., St Def. cD

= cB ., Rt ⊔ cB ., W
`

t
., St W

` bisimulation

= cB ., Rt co-tabulation of Wt

Totality and univalence of cD follows immediately from cD = cB ., Rt shown above; for f D, we
easily obtain totality:

f D ., (f D)` = (R`

s
., f B ., Rt ⊔ S

`

s
., f C ., St)

., (R`

t
., (f B)` ., Rs ⊔ S

`

t
., (f C)` ., Ss)

⊒ R
`

s
., f B ., Rt

., R
`

t
., (f B)` ., Rs

., S
`

s
., f C ., St

., S
`

t
., (f C)` ., Ss

⊒ R
`

s
., f B ., (f B)` ., Rs

., S
`

s
., f C ., (f C)` ., Ss Rt , St total

⊒ R
`

s
., Rs

., S
`

s
., Ss f B, f C total

= IsD co-tabulation of Ws

Univalence of f D:

(f D)` ., f D = (R`

t
., (f B)` ., Rs ⊔ S

`

t
., (f C)` ., Ss)

., f D

= R
`

t
., (f B)` ., Rs

., f D ⊔ S
`

t
., (f C)` ., Ss

., f D join distr.

⊑ R
`

t
., (f B)` ., f B ., Rt ⊔ S

`

t
., (f C)` ., f C ., St R, S bisimul.

⊑ R
`

t
., Rt ⊔ S

`

t
., .,St f B, f C univalent

= ItD co-tabulation of Wt



20 7 REDUCTS ALONG SIGNATURE HOMOMORPHISMS

7 Reducts Along Signature Homomorphisms

While the concept of Σ-algebra is sufficient to capture, for example, unlabelled graphs as
sigGraph-algebras, categories of labelled graphs are frequently considered as having fixed label
sets, which means that only certain sub-categories of Set sigLGraph are considered.

We use the concept of reducts to formalise this in a general way. In the example, we
consider the reduct of Set sigLGraph to the sub-signature sigNELabels. The fixed label sets under
consideration form a one-object sub-category K of Set sigNELabels, and in order to obtain graphs
labelled over these label sets, we restrict attention to objects in Set sigLGraph for which the reduct
lies in that sub-category K.

The current section introduces and studies the reduct relator. This is employed in Sect. 8
to implement the restriction of Σ-algebra collagories via reduct-side sub-categories. This single
construction principle for generating concrete bi-tabular collagories corresponds, as shown in
Corollary 8.7, to several categorical constructions that are known for adhesive categories.

Definition 7.1 Let Σ = (S,F , src, trg) and ΣR = (SR,FR, srcR, trgR) be two signatures, and
let σ : ΣR → Σ be a signature homomorphism.

For any Σ-algebra A, such a signature homomorphism σ : ΣR → Σ induces a ΣR-algebra
A⇂σ, the σ-reduct of A, in the following way:

• For every sort r : SR, its carrier is rA⇂σ = (σ r)A;

• for every function symbol f ∈ FR, its interpretation is f A⇂σ = (σ f )A.

It is easy to verify that A⇂σ is indeed a ΣR-algebra.

If σ : ΣR → Σ is a sub-signature embedding, then we also call A⇂σ the ΣR-reduct of A and
write also A⇂ΣR.

Since our signatures are a special case of sketches [BW99, Chapters 4,7,8,10], ⇂σ is a special
case of what Barr and Wells call “model category functor”. We complete the definition and
show that is is a relator:

Definition 7.2 For a signature homomorphism σ : ΣR → Σ, the σ-reduct of a CS-morphism
Φ = (Φs)s:S is the CSR-morphism Φ⇂σ = ((Φ⇂σ)r)r :SR

with (Φ⇂σ)r := Φσ r for every r : SR.

Proposition 7.3 For a signature homomorphism σ : ΣR → Σ, the σ-reduct of a Σ-bisimulation
is a ΣR-bisimulation.

Furthermore, the reduct operation ⇂σ is an allegory relator from CΣ to CΣR and therefore
also a functor from Map (CΣ) to Map (CΣR).

Proof: Bisimulation property: For any n-ary function symbol (we do not need the restriction
to semi-unary signatures here) f : r1 × · · · × rn → q in FR:

((Φ⇂σ)r1 × · · · × (Φ⇂σ)rn )
., f B⇂σ

= (Φσ r1 × · · · × Φσ rn ) ., (σ f )B ⊑ (σ f )A ., Φσ q = f A⇂σ ., (Φ⇂σ)q

Preservation of identities:

IA⇂σ = ((IsA)s∈S)⇂σ = ((I(σ r)A)r∈SR
= ((IrA⇂σ )r∈SR

= IA⇂σ



Wolfram Kahl: Collagories for Relational Adhesive Rewriting 21

Preservation of composition:

(Φ .,Σ Ψ)⇂σ = ((Φ ., Ψ)σ r)r∈SR
= (Φσ r

., Ψσ r)r∈SR

= (Φσ r)r∈SR

., (Ψσ r)r∈SR
= (Φ⇂σ) .,ΣR (Ψ⇂σ)

Preservation of converse:

Φ
`
⇂σ = ((Φ

`
)σ r)r∈SR

= ((Φσ r)r∈SR
)

`
= (Φ⇂σ)

`

Preservation of meet:

(Φ ⊓Σ Ψ)⇂σ = ((Φ ⊓ Ψ)σ r)r∈SR
= (Φσ r ⊓ Ψσ r)r∈SR

= (Φσ r)r∈SR
⊓ (Ψσ r)r∈SR

= (Φ⇂σ) ⊓ΣR (Ψ⇂σ)

Joins that are defined component-wise are preserved in the same way.

Obviously, the reduct relator is in general not full if σ is not injective on sorts.

If σ is injective, we can “replace in A its reduct part along a morphism to A⇂σ”, which will
be useful in the next section:

Theorem 7.4 If σ : ΣR → Σ is an injective signature homomorphism, then the reduct functor
⇂σ is a fibration [BW99, 12.1].

Proof: If A is an object in CΣ, R is an object in CΣR , and φ : R → A⇂σ is a morphism in
CΣR , then we construct an object B in CΣ and a morphism ψ : B → A as follows:

• For every s : S outside the range of σ, we let sB := sA and ψs := IsA .

• For every r : SR, we let (σ r)B := rR and ψσ r := φr .

• For every f : F outside the range of σ, we let f B := ψ
srcf

., f A ., ψ`

trgf
.

• For every g : FR, we let (σ g)B := φ`

srcg

., gR ., φ
trgg

.

Well-definedness is easily verified. We can now show that ψ is cartesian for ψ and A:

If v : Z → A in CΣ and h : Z⇂σ → R such that h ., φ = v⇂σ, then w : Z → B defined by

• for every s : S outside the range of σ, let ws := vs ,

• for every r : SR, let wσ r := hr ,

obviously satisfies w ., ψ = v and w⇂σ = h, and obviously is the unique such arrow.

8 Reduct-Restricted Σ-Algebra Categories

In the following, let σ : ΣR → Σ be an arbitrary but fixed signature homomorphism, and K a
sub-category of CΣR . We will further assume that K is contained in the image of ⇂σ — this
restriction is not essential, but frequently allows more concise formulations.

Definition 8.1 The σ,K-restriction of CΣ contains exactly those objects and morphisms for
which the image under ⇂σ is in K.

We denote this restriction as Cσ|
K .



22 8 REDUCT-RESTRICTED Σ-ALGEBRA CATEGORIES

Because relators preserve identities and composition, and K is a category, the restriction Cσ|
K

is a category again.

The technical importance of the assumption on K is that it provides surjectivity on homsets
for the reduct relator:

Proposition 8.2 If K is contained in the image of ⇂σ, then the restriction of ⇂σ to Cσ|
K is a

full relator.

If σ is a sub-signature embedding, we also write CΣ|
K instead of Cσ|

K . If, in addition, the
restriction category K contains only one object L and its identity, we also write CΣ|L .

This latter case covers in particular the situation where ΣR contains only label sorts and L
fixes the label interpretations, producing for example a category of labelled graphs with fixed
label sets.

Note that every one-object-one-morphism category has all limits and colimits and is not
only an allegory, but even a (trivial) relation algebra, and also a bi-tabular collagory. This
therefore provides an important special case for many of the properties in the remainder of this
paper.

Proposition 8.3 If K is a sub-allegory of CΣR , then Cσ|
K is an allegory.

Proof: Assume that Φ⇂σ and Ψ⇂σ are in K. Since K is closed under converse and meets,
Φ`

⇂σ = (Φ⇂σ)` and (Φ ⊓ Ψ)⇂σ = (Φ⇂σ) ⊓ (Ψ⇂σ) are in K, too.

Therefore, Cσ|
K is closed under converse and meets, too, and therefore is a sub-allegory of

CΣ.

Proposition 8.4 For semi-unary Σ, if K is a sub-collagory of CΣR , then Cσ|
K is a collagory.

Proof: Assume that Φ⇂σ and Ψ⇂σ are in K. With Lemma 6.5 and since K is closed under
joins, the join (Φ ⊔Σ Ψ)⇂σ = (Φ⇂σ) ⊔ΣR (Ψ⇂σ) is in K, too.

So Cσ|
K is closed under joins, too, and therefore is a sub-collagory of CΣ.

This join preservation works in particular in the case where K is a one-object-one-morphism
category, since in that case, non-empty joins in K are still inherited (trivially) from CΣR .

Empty joins, i.e., least morphisms, however, are generally not inherited in the one-object-
one-morphism category, since identity morphisms are rarely least morphisms in CΣR . Therefore
the zero law does in general not hold in Cσ|

K . A simple example for this arises in Set sigPointed|{•} ,
i.e., the allegory of relational homomorphisms between pointed sets: The presence of the point
induces exactly the same counterexamples as the presence of a zero-ary function symbol, for
example if OA = {0, 1}, and the point (respectively the value of the constant) in A is 1, then
⊥⊥OA,OA = {(1, 1)} is a non-trivial closure of the non-inherited least element of K, and with
R := {(0, 1), (1, 1)} we have R ., ⊥⊥ = R 6= ⊥⊥.

Since the reduct relator ⇂σ distributes over all relevant operations, it also preserves tabula-
tions and co-tabulations, i.e.:

• If the span B P¾ A Q-C is a tabulation for the morphism V : B → C in CΣ, then the span
B⇂σ P⇂σ¾ A⇂σ Q⇂σ-C⇂σ is a tabulation for (V ⇂σ) : B⇂σ → C⇂σ in CΣR .



Wolfram Kahl: Collagories for Relational Adhesive Rewriting 23

• If the co-span B R-D S¾ C is a co-tabulation for the difunctional morphism W : B → C
in CΣ, then the co-span B⇂σ R⇂σ-D⇂σ S⇂σ¾ C⇂σ is a co-tabulation for (W ⇂σ) : B⇂σ → C⇂σ in
CΣR .

Theorem 8.5 For semi-unary Σ, if σ : ΣR → Σ is injective, K is a sub-collagory of CΣR ,
the morphism V : B → C has a tabulation B P¾ A Q-C in CΣ, and V ⇂σ has a tabulation
B⇂σ P0¾ A0

Q0-C⇂σ in K, then V also has a tabulation in Cσ|
K .

Proof: Since tabulations in CΣR are unique up to isomorphism, there must be an isomorphism
φ : A0 → A⇂σ. According to Theorem 7.4, we obtain a cartesian morphism ψ : A1 → A for φ

and A, and since this is also an isomorphism, B ψ
.,P¾ A1

ψ
.,Q-C is a tabulation for V in Cσ|

K .

The corresponding statement for co-tabulations is shown in the same way, so we obtain as
result:

Theorem 8.6 For semi-unary Σ and an injective signature homomorphism σ : ΣR → Σ, if C

is a bi-tabular collagory and if K is bi-tabular sub-collagory of CΣR , then Cσ|
K is a bi-tabular

collagory, too.

This includes all the systematically constructed examples for adhesive categories provided
by Lack and Sobociński [LS04], in particular the following uses of a one-object-one-morphism
collagory K:

Corollary 8.7 If C is a bi-tabular collagory, then the following are bi-tabular collagories, too:

• CsigPointed|C for any object C (conflating C in C with the sigPoint-algebra that assigns C to
the sort P) — this is equivalent to the co-slice category C/C,

• CsigTyped|C for any object — this is equivalent to the slice category C/C,

• node- and edge-labelled graphs considered as sigLGraph-algebras with fixed node and edge
label sets.

9 Conclusion

We have streamlined the axiomatic basis of the relation-algebraic approach to graph structure
transformation by introducing collagories, which, in comparison to earlier approaches, remove
consideration of the zero-law and, to a certain extent, of difunctional closure defined via the
Kleene star. We showed that the concepts of tabulation and co-tabulation, which are essential
for the relation-algebraic rewriting approach, can be formalised in collagories, and that the
category of mappings in a bi-tabular collagory forms an adhesive category, thus establishing a
powerful connection to the categorical approach to graph structure transformation. We showed
that all the important examples of adhesive categories can also be obtained as special cases
of powerful collagory constructions; future work will investigate whether (respectively when)
the category of relations [FS90, 1.412] in an adhesive category forms a collagory. Another
interesting goal would be to identify a nicer collagory-level formulation of the van Kampen
property, and establish connections with the characterisation as bicolimits in the bicategory of
spans given by Heindel and Sobociński [HS09].

Further investigations will explore different variations of adhesive categories in a collagory
setting, including the quasiadhesive categories of [LS05], and their applications.



24 REFERENCES

References

[BW99] M. Barr, C. Wells. Category Theory for Computing Science. Centre de recherches
mathématiques (CRM), Université de Montréal, 3rd edition, 1999.

[CMR+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Löwe.
Algebraic Approaches to Graph Transformation, Part I: Basic Concepts and Double Pushout

Approach. In G. Rozenberg, ed., Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations, Chapt. 3, pp. 163–245. World Scientific, Singapore,
1997.

[EPPH06] H. Ehrig, J. Padberg, U. Prange, A. Habel. Adhesive High-Level Replacement

Systems: A New Categorical Framework for Graph Transformation. Fund. Inform. 74(1) 1–
29, 2006.

[FS90] P. J. Freyd, A. Scedrov. Categories, Allegories, North-Holland Mathematical Li-
brary 39. North-Holland, Amsterdam, 1990.

[HS09] T. Heindel, P. Sobociński. Van Kampen Colimits as Bicolimits in Span. In
A. Kurz, A. Tarlecki, eds., Algebra and Coalgebra in Computer Science, CALCO 2009,
LNCS. Springer, 2009. (To appear).

[Kah01] W. Kahl. A Relation-Algebraic Approach to Graph Structure Transformation, 2001.
Habil. Thesis, Fakultät für Informatik, Univ. der Bundeswehr München, Techn. Report 2002-
03, http://sqrl.mcmaster.ca/~kahl/Publications/RelRew/.

[Kah04] W. Kahl. Refactoring Heterogeneous Relation Algebras around Ordered Categories

and Converse. J. Relational Methods in Comp. Sci. 1 277–313, 2004.

[Kah09] W. Kahl. Collagories for Relational Adhesive Rewriting. In R. Bergham-

mer, A. Jaoua, B. Möller, eds., Relations and Kleene Algebra in Computer Science,
RelMiCS/AKA 2009, LNCS 5827. Springer, 2009.

[Kaw90] Y. Kawahara. Pushout-Complements and Basic Concepts of Grammars in Toposes.
Theoretical Computer Science 77 267–289, 1990.

[Koz94] D. Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regular

Events. Inform. and Comput. 110(2) 366–390, 1994.

[LS04] S. Lack, P. Sobociński. Adhesive Categories. In I. Walukiewicz, ed., FOSSACS
2004, LNCS 2987, pp. 273–288, 2004.

[LS05] S. Lack, P. Sobociński. Adhesive and quasiadhesive categories. RAIRO Inform.
Théor. Appl. 39(3) 511–545, 2005.

[dRE98] W.-P. de Roever, K. Engelhardt. Data Refinement: Model-Oriented Proof Meth-

ods and their Comparison, Cambridge Tracts Theoret. Comput. Sci. 47. Cambridge Univ.
Press, 1998.

[SS93] G. Schmidt, T. Ströhlein. Relations and Graphs, Discrete Mathematics for Com-

puter Scientists. EATCS-Monographs on Theoretical Computer Science. Springer, 1993.

http://sqrl.mcmaster.ca/~kahl/Publications/RelRew/

	1 Introduction
	2 Categories, Allegories
	3 Collagories
	4 Tabulations and Co-tabulations
	5 Maps in Collagories form Adhesive Categories
	6 Collagories of Semi-Unary Algebras and Bisimulations
	7 Reducts Along Signature Homomorphisms
	8 Reduct-Restricted -Algebra Categories
	9 Conclusion

