
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 2S03
Exercise Sheet 2
Solution Hints

SFWR ENG 2S03 — Principles of Programming

20 September 2006

Please bring your work to the tutorial!

Exercise 2.1 — Treasure Hunt (45%of Midterm 1, 2003)

Designand implement a C program to play the “blind” board game “treasure hunt”.

• The board has20 × 20fields, from(1, 1)to (20, 20).

• On field(17, 2)there is a treasure.

• The player starts on field(9, 10), but is not told this.

• All fields (x, y) with (x + 2y) divisible by 5 areforbidden, i.e., the player must not be allowed to
move onto such a field.

• The player navigates the board by entering “numeric keypad cursor control commands”:

– “2” movesdown one step
– “8” movesup one step
– “4” movesleft one step
– “6” movesright one step

After each successful move,only the new distance to the treasure is displayed — for this, the
1-norm is used and whether a field is forbidden or not does not matter, so, e.g., the distance from
(9, 10)to (17, 3)is 15 (calculated as8 + 7).

• When the player tries to move off the board or onto a forbidden field, a message is displayed
noting that the move is impossible, butnot why it is impossible.

• When the player moves to the field where the treasure is, a congratulatory message is displayed
and the program terminates.

Assume that the user will input only numbers! Do not use arrays!

Solution Hints

Design:

• State: integer coordinates.

• Structure: loop until treasure found:

– Input direction

– Calculate hypothetical new position into auxiliary variables

– Check whether new position is legal:

If yes, move there and output new distance;

if no, output error message that does not give too much away.

Implementation:

#include <stdio.h>
int main()
{
int target_x=17, target_y=3;

int x_max=20, y_max=20;
int x=9, y=10;
int input, new_x, new_y ;
char * message; /* superfluous luxury */

while (x ≠ target_x || y ≠ target_y)
{
scanf ("%d", &input);
new_x = x ; new_y = y ;

switch(input) {
case 4: new_x = x−1;

message = "cannot move left";
break;

case 6: new_x = x+1;
message = "cannot move right";

break;
case 2: new_y = y−1;

message = "cannot move down";
break;

case 8: new_y = y+1;
message = "cannot move up";

break;
default: printf ("???\n");

}
if (new_x > 0 && new_x ≤ x_max &&

new_y > 0 && new_y ≤ y_max && ((new_x + 2 * new_y) % 5 ≠ 0))
{
x = new_x;
y = new_y ;
printf ("Your distance to the treasure: %d\n",

abs(target_x − x) + abs (target_y − y));
}
else
{

printf ("%s\n", message);
}

}
printf ("Congratulations!You found the treasure at (%d,%d).\n", x , y);
return 0;

}

Exercise 2.2 (Textbook Exercise Recommendation)

Read chapter 4 of the textbook. Doat leastthe following exercises: 4.5–4.14, 4.24, 4.29

Solution Hints

The last two are about Boolean operations and De Morgan — check the “C-Truth” slides and your
logics material if you have any problems.

Exercise 2.3 — ASCII Art: Zig-Zag — (50%of Midterm 1, 2004)

Designand implement a C program that asks the user for a height, and for two offset numbers, and
uses these three numbers to print a combination of two zig-zag lines of the same height, as in the
following example:

 + X + X + X + X +
 + + X X + + X X + + X X + + X X + +
 + + X X + + X X + + X X + + X X + +
 + + X X + + X X + + X X + + X X +
* + X * + X * + X * + X *
 X * + X * + X * + X * + X
 X X + + X X + + X X + + X X + + X
 X X + + X X + + X X + + X X + + X
 X X + + X X + + X X + + X X + + X X
 X + X + X + X + X

Note that one of the zig-zag lines is drawn using the “plus” symbol, the other using the letter “X”,
and where both zig-zag lines intersect, the asterisk “*” is used.

The grid lines are of coursenot part of the output. Here is another example without those grid lines
— any such pattern should be producable:

 + X + X + X + X
 + + X X + + X X + + X X + + X X
+ * X + * X + * X + * X
 X + X + X + X + X + X + X + X
 X + X + X + X + X + X + X + X +
 X + X + X + X + X + X + X + X +
X + X + X + X + X + X + X + X +
 + X + X + X + X + X + X + X +
 + * X + * X + * X + * X
 + + X X + + X X + + X X + + X X
 + X + X + X + X

Assume that the user will input only numbers! Do not use arrays!

Decompose into functions! Design and Document!

Solution Hints

“Only numbers” includes non-positive (or at least negative) numbers, which at least forheight
does not make sense — this has to be caught. If the offset numbers can be negative, this has to
be documented.

My Design:

• Decisions:

– Width is constant 79

– “Offset” means how far from the left margin is the first entry in the first row. Taken strictly,
this implies that offsets lie in the interval[0, 2 ∗ height − 3]. For input, I restrict the offsets to
non-negative numbers, although the modulo calculation would be unaffected by that.

• Solution Structure:

– Input three numbersheight, offset1, offset2:

— functionask takes as argument the minimal aceptable number and insists on input until the
entered number aceptable; that number is then returned.

– Loopheight times for the rows, andwidth times for the columns; each time:

– deciding for each of the two zigzag lines whether they cross the current position (function
onZigZag), and

– printing the corresponding character

– Before the whole loop, and after each row, print a new-line character.

#include <stdio.h>
#include <stdbool.h>

int ask(int); /* interactively obtains from user a number bounded from below */

bool onZigZag (int height, int offset, int x , int y);
/* returns true if (x,y) is on the zigzag defined by height and offset */

int main() {
int height, offset1, offset2;
const int width = 79;
int x ,y ;
bool hit1, hit2;

printf ("For the height of the zig-zag,\n"); height = ask(1);
printf ("For the offset of the first zig-zag,\n"); offset1 = ask(0);
printf ("For the offset of the second zig-zag,\n"); offset2 = ask(0);

printf ("\n");
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
hit1 = onZigZag(height, offset1, x , y);
hit2 = onZigZag(height, offset2, x , y);
if (hit1) {
if (hit2) printf ("*"); /* hit1 && hit2 */
else printf ("+"); /* hit1 */

}
else {
if (hit2) printf ("X"); /* hit2 */
else printf (" ");

}
} /* end for(x) */
printf ("\n");

} /* end for(y) */
return 0;

}

int ask(int min) {
int n = 0;
do {
printf ("enter a number greater or equal to %d: ", min);
scanf ("%d", &n);

}
while (n < min); /* input that is too small leads to re-prompt */
return n;

}

bool onZigZag (int height, int offset, int x , int y) {
int period = 2 * (height − 1); /* length of zig-zag period */
int local = (x + period − offset) % period; /* position in current period */
if (local < height) /* falling flank */
return local == y ;

else /* rising flank without ends */
return (period − local) == y ;

}

Exercise 2.4

What is the output ot the following C program (which prints not more than ten lines):

#include <stdio.h>
int main (void) {

char input[] = "terasse";
char result[] = " "; // six spaces
int i, j = 0, c = 3, q;
for (q = 3; q ≥ 0; q = q − c) {

for (i = 0; i < c; i++) {
printf ("j = %d\tc = %d\tq = %d\ti = %d\n", j, c, q, i);
result[j] = input[q + i];
j = j + 1;

}
c = c − 1;

}

printf ("%s!\n", result);
return 0;

}

What is the value ofq after termination of the outer loop?

Solution Hints

j = 0 c = 3 q = 3 i = 0
j = 1 c = 3 q = 3 i = 1
j = 2 c = 3 q = 3 i = 2
j = 3 c = 2 q = 1 i = 0
j = 4 c = 2 q = 1 i = 1
j = 5 c = 1 q = 0 i = 0
assert!

The program terminates with the following two states before and after the closing brace of the
outer loop:

j = 6 c = -65536 q = 2147450880 i = 0
j = 6 c = -65536 q = -2147450880 i = 0

Note:
162 = 65536
312 = 2147483648
312 − 152 = 2147450880

This program only terminates because ofint wrap-around!

