
SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 2

Chapter 6

Processes

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.1 3

Read…

• BLP: Chapter 11

• Background on Processes in Operating Systems

– Silberschatz: 4.1–4.3
– Tanenbaum: 2.1

• (USP: Chapter 3 — Processes in UNIX)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.15 17

Sequential Processes on a Timesharing System

A process is aprogram in execution.

A processneeds resourcesto accomplish its task: CPU time,
memory, files, and I/O devices.

Theoperating systemis responsible for the following
activities in connection with process management:

• Processcreation anddeletion

• Processsuspensionandresumption

• Provision ofmechanismsfor:

– processsynchronization,e.g. for avoiding conflicts

– inter-process communication,e.g. for letting servers
reload their configuration files

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.24 26

Process Management Overview

• A processis a program in execution

• The CPU issharedamong the processesready to run

– Only one process can run at a time

– The CPU is rapidly switched between processes
— “context switch”

• Processes communicate with the OS usingsystem calls

• A processcan be interrupted at any timeby a device
interrupt or a system call

• A process is represented by a data structure called aprocess
control block (PCB) or aprocess descriptor

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.33 35

Context Switching

A context switchsaves the state of the current running
process and then loads the state of the next process to
be executed.

It needs to save enough information about the current
running process so that it can be resumed lateras if
nothing had happened. This determines important
components of the PCB.

A context switch is initiated by an interrupt:

– software interrupt (system call)
– device interrupt
– timer interrupt (quantum expired)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.37 39

“Calling BIOS Routines”

From SE3F, you know how to “call a BIOS routine” to perform
actions such as output of a character to screen:

– Prepare certain registers to contain certain values

– Call “INT XYh”

How does the CPU execute theINT instruction?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.47 49

CPU Interrupt Handling — “ INT XYh”

• The CPU switches intoprivileged mode
• The lowest ranges of main memory contain theinterrupt

vector
• XYh is used as index into the interrupt vector to retrieve

anaddress
• That address is transferred into the program counter (PC)
SoINT is a complicated kind of indirect jump …

What happens then?

• That address will have pointed to the start of someinterrupt
handler (routine) which is then executed.

• These interrupt handlers are part of the kernel.

• The kernel is responsible to change back to user mode
before resuming execution of a user process.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.57 59

Context Switch Steps

(Assuming a user process is interrupted)

– CPU senses interrupt
– CPU starts the interrupt handlerin privileged mode
– (Interrupt handler may disable all interrupts)
– Interrupt handler stores state of interrupted process
– Interrupt handler executes (kernel) code for the

interrupt
– Interrupt handler ends by calling the CPU scheduler
– CPU scheduler loads the state of the process it selects
– (Interrupt handler would re-enable interrupts)
– CPU switches back touser modeand executes

selected process

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.65 67

PCB Components

• Process identity — UNIX:pid_t getpid(void)

• User information — UNIX:uid_t getuid(), geteuid()

• Process state
• Program counter

• CPU register values

• Allocated memory (for code, data, stack, etc.)

• Allocated resources (I/O devices, files, etc.)

• CPU-scheduling information

• Any other needed information about the process

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.73 75

Process States

• new: A process is being created
– changes toready when created

• ready/runnable: A process is ready to be dispatched
– changes torunning when dispatched

• running : The process’s program is being executed
– changes toblockedwhen issuing a waiting syscall (I/O)
– changes toready when a timer interrupt occurs
– changes toterminated when process terminates

• blocked: The process iswaiting for I/O or a message
– changes toready when I/O is done or message is

received

• terminated: The process has terminated (“zombie”)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.81 83

Process Scheduling

• All processes are on thejob queue / process table
– Somereadyprocesses may be swapped to disk.
– Processesin memorythat are ready to execute are also on

theready queue
– Processes waiting for an I/O device are also on itsdevice

queue

• Thejob schedulerselects processes from the job queue to
load into and out of memory

• When the CPU is free, theCPU schedulerselects one process
from the ready queue to be executed by the CPU
– A process can run until a timer interrupt or some other

interrupt occurs
– The CPU scheduler is called after the processing of each

interrupt

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.89 91

Process Information in UNIX

• POSIX/Solaris:ps -ef , Solaris:/usr/ucb/ps -ucax

Linux: ps ucax

• top(1)

• /usr/bin/time and shell-builtintime

example% time find / -name csh.1 -print

/usr/share/man/man1/csh.1

95.0u 692.0s 1:17:52 16% 0+0k 0+0io 0pf+0w

example% /usr/bin/time find / -name csh.1 -print

/usr/share/man/man1/csh.1

real 1:23:31.5

user 1:33.2

sys 11:28.2

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.90 92

Process Information in UNIX — getrusage(2)

struct rusage {
struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */
long ru_maxrss; /* maximum resident set size */
long ru_idrss; /* integral resident set size */
long ru_minflt; /* page faults not requiring physical I/O */
long ru_majflt; /* page faults requiring physical I/O */
long ru_nswap; /* swaps */
long ru_inblock ; /* block input operations */
long ru_oublock ; /* block output operations */
long ru_msgsnd ; /* messages sent */
long ru_msgrcv ; /* messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw ; /* voluntary context switches */
long ru_nivcsw ; /* involuntary context switches */

};

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.94 96

Process Creation — General

• One process (theparent) can create another process (its
child)

• The child’s resources can be
– allocated by the operating system,
– obtained from the parent, or
– shared with the parent.

• The child’s address space can
– ba a copy of its parent’s address space, or
– have its own program loaded into it.

• The parent can execute
– independently of its child. or
– wait until its child terminates.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.100 102

system — Library Function for Program Execution

• int system(const char *command);

• Passescommand to “/bin/sh -c ”

• Blocks — i.e., returns aftercommand has completed

• But command could go to background… &

• Haskell: System .system : : String → IO ExitCode

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.106 108

exec

Theexecfunctions overwrite the calling process’s program:

• the…p variants search for the command in$PATH

• the…eallow to explicitly pass theenvironment

• argumentscan be passed as anarray (vector), or via
“varargs lists”

These functions returnonly on error!

int execl (const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg, ..., char *const envp[]);
int execv (const char *path, char *const argv []);
int execvp(const char *file, char *const argv []);
int execve(const char *file, char *const argv [], char *const envp[]);

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.114 116

Unix-Style Process Creation

Process creation in Unix involves four system calls:

• fork : Creates an exact copy of the calling process

– Returns process id of child to parent

– Returns0 to child

• execve: Overwrites the calling process’s program

• exit: Causes the calling process to terminate

– Returns process id to waiting processes

• wait: Causes the calling process to wait until one of its
children exits

– Returns process id of exited child to process

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.122 124

fork

fork : Creates anexact copyof the calling process

• only PID and PPID are different

• all data iscopied(lazily)

• both processes run thesame code

• both processes areat the same pointin the execution

• different return values after fork():

– returns PID of child to parent

– returns0 to child

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.123 125

USP Example 3.5

1 #include <stdio.h> /* simplefork.c */
2 #include <unistd .h>
3
4 int main(void) {

5 int x ;

6
7 x = 0;

8 fork();

9 x = 1;

10 printf ("I am process %ld; x=%d\n", (long)getpid(), x);

11 return 0;

12 }

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.124 126

USP Example 3.6

#include <stdio.h> <unistd .h> <sys/types.h> /* abbreviated */
/* twoprocs.c */

int main(void) {
pid_t childpid;

childpid = fork();
if (childpid == −1) {

perror ("Failed to fork");
return 1;

}
if (childpid == 0) /* child code */

printf ("I am child %ld\n", (long)getpid());
else /* parent code */

printf ("I am parent %ld\n", (long)getpid());
return 0;

}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.125 127

Concurrent Actions

#include <stdio.h> /* interleaving1.c */
#include <unistd .h>
#include <sys/types.h>
int main(void) {

pid_t childpid;
int i,k ;
childpid = fork();
if (childpid == −1) { perror ("Failed to fork"); return 1; }

k = (childpid == 0) ? 1: 10; /* distinguish parent and child */
for (i=0; i<10; i++) {
printf ("%2d: %2d --- PId = %ld\n", k , k * i, (long)getpid());
usleep((10 + k) * 20000);

}
return 0;

}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.126 128

USP Example 3.7 (modified)

#include <stdio.h> <unistd .h> <sys/types.h> /* abbreviated */
/* badprocessID.c */

int main(void) {
pid_t childpid, mypid ;

mypid = getpid();
childpid = fork();
if (childpid == −1) { perror ("Failed to fork"); return 1; }
if (childpid == 0) /* child code */

printf ("I am child %ld, ID = %ld\n",
(long)getpid(), (long)mypid);

else /* parent code */
printf ("I am parent %ld, ID = %ld\n",

(long)getpid(), (long)mypid);
return 0;

}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.127 129

USP Program 3.1 — A Chain of Processes (modified)

1 #include <stdio.h> <stdlib.h> <unistd .h> /* abbrev. */
2 /* simplechain.c */
3 int main (int argc, char *argv []) {
4 pid_t childpid = 0;
5 int i, n;
6 if (argc ≠ 2) /* check for no. of cmd-line args */
7 { fprintf (stderr , "Use: %s <n>\n", argv [0]); return 1; }
8
9 n = atoi(argv [1]);
10 for (i = 1; i < n; i++)
11 if (childpid = fork())
12 break;
13 fprintf (stderr ,"i:%d pid:%ld ppid:%ld child:%ld\n",
14 i, (long)getpid(), (long)getppid(), (long)childpid);
15 return 0;
16 }

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.128 130

USP Program 3.2 — A Fan of Processes (modified)

1 #include <stdio.h> <stdlib.h> <unistd .h>
2
3 int main (int argc, char *argv []) { /* simplefan.c */
4 pid_t childpid = 0;
5 int i, n;
6 if (argc ≠ 2) /* check for no. of cmd-line args */
7 { fprintf (stderr , "Use: %s <n>\n", argv [0]); return 1; }
8
9 n = atoi(argv [1]);
10 for (i = 1; i < n; i++)
11 if ((childpid = fork()) ≤ 0)
12 break;
13 fprintf (stderr ,"i:%d pid:%ld ppid:%ld child:%ld\n",
14 i, (long)getpid(), (long)getppid(), (long)childpid);
15 return 0;
16 }

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.129 131

USP Exercise 3.10 — A Tree of Processes (modified)

#include <stdio.h> <stdlib.h> <unistd .h> /* simpletree.c */

int main (int argc, char *argv []) {
pid_t childpid = 0;
int i, n;
if (argc ≠ 2) /* check for valid command-line */
{ fprintf (stderr , "Usage: %s processes\n", argv [0]); return 1; }

n = atoi(argv [1]);
for (i = 1; i < n; i++)

if ((childpid = fork()) == −1) /* the only change*/
break;

fprintf (stderr , "i:%d process: %ld parent: %ld child: %ld\n",
i, (long)getpid(), (long)getppid(), (long)childpid);

return 0;
}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.138 140

wait

wait: the calling process waits until one of its children exits —
this is a special kind ofprocess synchronisation

• wait returns PID of exited child to caller
• can also return exit status of child
• including whether child was terminated by a signal, and by

which signal

waitpid is more general:

• can wait for specified child, or for children from specified
process group

• an option makes itnon-blocking

• can also report stopped children

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.146 148

Interruption by Signals

• Signalsare a special kind of IPC “messages”
• A process can installsignal handlers
• (Most) unhandled signals terminate the process
• Signals can arrive at any time
• Signals can interrupt certain system calls —EINTR

#include <errno.h> /* r_wait.c */
#include <sys/wait .h>

pid_t r_wait(int *stat_loc) {
int retval;

while (((retval = wait(stat_loc)) == −1) && (errno == EINTR)) ;
return retval;

}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.148 150

USP Program 3.4 — forking off “ls -l”

1 #include <stdio.h> <stdlib.h> <unistd .h> <sys/wait .h>
2 /* execls.c */
3 int main(void) {
4 pid_t childpid;
5 childpid = fork();
6 if (childpid == −1) { perror ("Failed to fork"); return 1; }
7 if (childpid == 0) { /* child code */
8 execl("/bin/ls", "ls", "-l", NULL);
9 perror ("Child failed to exec ls"); return 1;
10 }
11 if (childpid ≠ wait(NULL)) { /* parent code */
12 perror ("Parent failed to wait due to signal or error");
13 return 1;
14 }
15 return 0;
16 }

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.149 151

USP Program 3.5 — delegating a command

#include <errno.h> <stdio.h> <unistd .h> <sys/...>
#include "restart.h" /* execcmd.c */
int main(int argc, char *argv []) {

pid_t childpid;
if (argc < 2) { /* check for valid number of cmd-line args */

fprintf (stderr , "Usage: %s cmd arg1arg2 …\n", argv [0]);
return 1; }

childpid = fork();
if (childpid == −1) { perror ("Failed to fork"); return 1; }
if (childpid == 0) { /* child code */

execvp(argv [1], &argv [1]);
perror ("Child failed to execvp the command"); return 1; }

if (childpid ≠ r_wait(NULL)) /* parent code */
{ perror ("Parent failed to wait"); return 1; }
return 0;

}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.150 152

USP Program 3.7 — creating a background process

int makeargv(const char *, const char *, char ***);
int main(int argc, char *argv []) { /* runback.c */

pid_t childpid; char delim[] = " \t"; char **myargv ;
if (argc ≠ 2) { fprintf (stderr , "Usage: …"); return 1; }
childpid = fork();
if (childpid == −1) { perror ("Failed to fork"); return 1; }
if (childpid == 0) { /* child becomes a background process */
if (setsid() == −1) perror ("failed to become session leader");
else if (makeargv(argv [1], delim, &myargv) == −1)

fprintf (stderr , "Child failed to construct arg. array\n");
else

{ execvp(myargv [0], &myargv [0]); perror ("exec failed"); }
return 1; /* child should never return */

}
return 0; /* parent exits */

}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.164 166

_exit(), exit(), and exit handlers

• void _exit(int status): system call, terminates the calling
process regularly, with exit statusstatus (in unistd.h).

• void exit(int status): library function, calls user-defined
exit handlers, performs cleanup, then calls_exit(status)
(in stdlib.h).

• int atexit(void (*f)(void))
installs functionf as an exit handler.

If several handlers are installed, they are called inreverse
installation order.

• return k ; in main is equivalent to exit(k);

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.165 167

USP Program 2.10 — Example Exit Handling Function

static void show_times(void) /* showtimes.c (1) */
{ struct tms times_info; double ticks;

if ((ticks = (double) sysconf (_SC_CLK_TCK)) < 0)
perror ("Cannot determine clock ticks per second");

else if (times(×_info) < 0)
perror ("Cannot get times information");

else {
fprintf (stderr , "User time: %8.3f seconds\n",

times_info.tms_utime/ticks);
fprintf (stderr , "System time: %8.3f seconds\n",

times_info.tms_stime/ticks);
fprintf (stderr , "Children’s user time: %8.3f seconds\n",

times_info.tms_cutime/ticks);
fprintf (stderr , "Children’s system time: %8.3f seconds\n",

times_info.tms_cstime/ticks);
}}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 6.166 168

USP Program 2.10 (ctd.) — Exit Handler Example

void show_times(void); /* showtimes.c (2) */

void main(void)

{ if (atexit(show_times)) {

fprintf (stderr , "Cannot install show_times exit handler\n");

return 1;

}

/* rest of main program goes here */

return 0;

}

