SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 2 SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.8 10

CPU Scheduling

Chapter 11

Decidingwhich process to run

CPU Scheduling Policies (Decidingwhich thread to run)

Decidinghow long the chosen process can run

Important for systenthroughput

Important for systemesponsiveness

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 11.2 4 SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.10 12

CPU Scheduling Policies CPU Scheduling Opportunities
Read : CPU scheduling can occur after each of the following process
state transitions:
_ Silberschatz- 6 * (enter) - ready: new processis created
' e running — ready: e.g.,timer interrupt
— Tanenbaum: 2 5 running — waiting: e.g., I/O request or wait interrupt

* running - (exit): processisterminated
e waiting - ready: e.g., /O or process completion

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 11.17 19

Kindsof CPU Scheduling

« Simple: Scheduling is only done after termination

— Process runs until its program is completed

» Cooperative or nonpreemptive: Scheduling is only done
after termination and after entering the waiting state

* Preemptive: Interrupts can be sent to processes for
implementing scheduling decisions

— Arunning process can be preempted by a process that
arrives at the ready queue

— Implemented by periodic clock interrupts

SFWR ENG 3B8B4 — Software Design 3— Concurrent System Design 11.23 25

Scheduling Per formance M easur es

CPU utilization: portion of time CPU is busy

Throughput: number of processes completed per time
unit

« Turnaroundtime: average time a process takes to
complete

Waiting time: average total time a process spends waiting
in the ready queue

* Responsetime: average time a process takes to respond

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.32 34

Round Robin (RR)
Standard time-sharing algorithm

» Theready queue is an ordered circle

» The next process in the ready queue is allocated to the CPL
for a fixed time period

— preempted if CPU burstis T
» Advantages: Scheduling idair

» Disadvantages:
— Waiting time may be long
— Performance is very sensitive to the sizelof

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.38 40

First Come, First Served (FCFS)
Simplenon-preemptive job scheduling policy

» The ready queue isimplemented as a queue and its orderin
is used to schedule the processes in the queue

» Available forreal-timethread scheduling
» Advantage: Easy to implement

» Disadvantages:
— Waiting time is not minimal
— No attempt to balance I/0 and CPU usages

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.43 45

Shortest Job First (SJF)
“Prophetic” waiting-time minimization

» Process witlshortest next CPU burst comes first —
preemptive or non-preemptive
» Advantages:

— Given the lengths of the next CPU bursts, easy to
implement

— Waiting time isprovably minimal
» Disadvantages:

— Difficult to predict the length of a CPU burst
— CPU-intensive processes may have to wait

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 11.49 51

Priority

* Processes are assigned priorities; the process with the
highest priority is dispatched first

Priority assignment criteria:

— internal (computational requirements, e.g. SJF), or
— external (application requirements)

Advantages. Easy to implement and flexible

» Disadvantages.
— Assigning priorities may be difficult
— Low-priority processes may starve

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.55 57

Multiple Queues

There is one queue for each process category (such as the
category of system processes)

— Each queue has is own scheduling algorithm

The queues are scheduled as units:

— Each queue may be assigned a priority
— Each queue is given a portion of CPU time

Processes can be allowed to move between queues

Advantage: Flexibility

Disadvantage: Hard to implement

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.60 62

Multiprocessor Scheduling

* Morecomplex than uniprocessor scheduling

— Processes must be scheduled effectively
— Processors must be kept busy

o Symmetric multiprocessing: Homogeneous processors
schedule themselves

— Data sharing safety is a major issue: Processes running
simultaneously on different processors may access and
modify common data structures

* Asymmetric multiprocessing: One processor handles all
system activities including processor scheduling and I/O
processing

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 11.69

Real-Time Scheduling

» Reducedispatch latency: preemptible systemcalls
— preemption pointsin long-running system calls

—preemptible kernel protecting all OS data structures with
synchronization mechanisms

* Priority inversion resolved via priority inheritance

» Hard Real-Time Scheduling: needs to completeritical
tasks withinguar anteed time

—resource reservation
— predictability of duration of actions needed

—usually: no virtual memory, no secondary storage
— special-purpose software runningaedicated hardware

 Soft Real-Time Scheduling: High priority e.g. for
multimedia applications or interactive graphics

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 11.78 80

Algorithm Evaluation M ethods

* Analysisof mathematical models
— Deterministic modelling using fixed workloads
— Queuing theory (e.g.: Little’s formula:= A W with av.
gueue lengtim, arrival rate\, and av. waiting timé&V)
e Simulation

— Hard to get realistic workloads

* Implementation testing

— Extremely expensive for experiments
— Results may be platform dependent

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.82 84

CPU Scheduling Policy Examples

Section 6.7 of [Silberschatz-Galvin-Gagne-2002]:

e Solaris?
— Hard real-time

« dispatch latency with preemption enabled: 2ms
» Windows 2000

— Priority boost for “foreground” process
e Linux

— Credit-based priority system

— Preemptible kernel still experimental

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.92

CPU Scheduling Policy Example: Solaris?2

Four scheduling classes: Real time, system, time sharing,
interactive

* Priority based. Priorities within classes are converted into
global priorities used for scheduling

» Real-time class has highest priority
— guaranteed response within a bounded period of time
— few real-time processes

» System classfor kernel processes
—Examples. scheduler, paging daemon, ...
— No time slicing
— O system processes run until blocked or preempted by
higher-priority processes

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 11.97 99

Solaris2 Time Sharing

Same scheduling policies ftime sharing andinter active:
* Inverse relation between priorities and time slices:
The higher the priority, the shorter the time slice

* Interactive processes, in particular windowing applications,
typically have higher priority than CPU-bound processes

[0 Good interactive response time, good CPU throughput

