
SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 2

Chapter 12

Summary

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.1 3

Concurrency

A concurrent systemconsists of a set (with at least two
elements) ofthreads of control or processesthat

• execute(essentially)independently

• may accesscommon resources

• maycommunicatewith each other

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.2 4

Operating System Components

• Process management

• Main memory management

• File management

• I/O management

• Secondary storage management

• Networking

• Security

• Command Interpreter

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.3 5

UNIX Flavours

UNIX

BSD

OpenBSD
NetBSD
FreeBSD

MacOS X

Linux
SunOS 4

= Solaris 1.4

System V

Solaris 2 OSF1

True64 Unix

Ultrix
HPUX
IRIX
AIX

POSIX

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.4 6

Bash Summary

• Complex language

• Context-sensitive lexing

• Complete imperative control structures

• Mostly dynamic binding (static binding withlocal)

• Iterated expansion mechanisms — functional flavour

• Concise syntax for command-line interaction

• Shell scriptsneed documentation!

• Shell scriptsneed robustness!

• Shell scriptsneed security awareness!

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.5 7

man bash

• Options: shell mode, andset options

• Invocation: shell modes, initialisation,sh emulation

• Shell Grammar: simple commands, pipelines, lists,
compound commands, function definitions

• Quoting: special characters in different contexts

• Parameters:

– positional parameters (arguments)
– special parameters$[*@#?-$0_]
– shell variables$BASH*,$HOSTNAME,$PWD,$HOME,
$PS1

– user-defined variables
– array variables

• Expansion: “seven kinds”!

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.6 8

man bash (ctd.)

• Redirection: command args< infile > outfile2>>errfile

• Aliases: “The rules […] are somewhat confusing”.

“For almost every purpose, aliases are superseded by shell
functions.”

• Functions: local variables need to be declaredlocal
• Arithmetic evaluation, conditional expressions

• Simple command expansion, command execution
environment

• Signals, job control

• Prompting, readline, history, history expansion

• Shell builtin commands

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.7 9

Expansion

• Brace expansion:a{d,c,b}e → ade ace abe

• Tilde expansion: Home directories~user and~

• Parameter and variable expansion:$varname
with default:$varname:-default
various string manipulations possible

• Command substitution: $(command) or ‘command‘
• Arithmetic expansion: $((expression))
• Process substitution:(obtaining FIFOs for processes)

• Word splitting: results of parameter expansion, command
substitution, and arithmetic expansion are split into words
(outside"...")

• Pathname expansion (globbing):dir*/file?.[coh]
• Quote Removal

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.8 10

Disk Organization

• Oneboot control block per disk — information for booting
an OS from that disk.

• Severalpartitions:

– partition control block : partition size, block size, block
management data structures (free block count, free bolck
pointer, free FCB count, free FCB pointer)

– directory structure

– File Control Blocks (FCBs) — in UNIX: inode:

– Ownership, premission information

– Location of data blocks

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.9 11

inodesin Detail

– mode (permissions)

– number of hard links
– owner, group

– timestamps: modificationmtime, accessatime, change
ctime

– size (in bytes)

– number of blocks allocated
– Pointers to allocated blocks:

– 12 direct block pointers to the first data blocks of the file

– onesingle indirect pointer, points to a block containing
pointers to the next (blocksize / pointersize) data blocks

– onedouble indirect pointer

– onetriple indirect pointer

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.10 12

File Tables in UNIX

In-memory Inode Table
• For each open filea single copyof its file control blocks
• Acts ascachefor file control blocks

System File Table
• one entry per activeopen
• contains reference to in-memory inode
• current position, access rights, access mode

File Descriptor Table
• one per process — copied byfork
• contains reference to system file table entry
• In user space, references to file descriptors areint indexes

into this table.
• file locks — not copied byfork

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.11 13

Building Software Packages From Source

• source-code only
 — look formain module,config.h; read; compile…

• README-based
 — read README, INSTALL; follow instructions

• Makefile-based
– edit configuration part ofMakefile
– make all
– make install (asroot)

• configure-based (GNUauto-tools)
– ./configure --help — noticeenable* andwith* options
– ./configure --prefix=/usr/local/packages/XYZ
– make — sometimes separately:make doc html ps
– make install (asroot)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.12 14

Process Management Overview

• A processis a program in execution

• The CPU issharedamong the processesready to run

– Only one process can run at a time

– The CPU is rapidly switched between processes
— “context switch”

• Processes communicate with the OS usingsystem calls

• A processcan be interrupted at any timeby a device
interrupt or a system call

• A process is represented by a data structure called aprocess
control block (PCB) or aprocess descriptor

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.13 15

Context Switching

A context switchsaves the state of the current running
process and then loads the state of the next process to
be executed.

It needs to save enough information about the current
running process so that it can be resumed lateras if
nothing had happened. This determines important
components of the PCB.

A context switch is initiated by an interrupt:

– software interrupt (system call)
– device interrupt
– timer interrupt (quantum expired)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.14 16

Context Switch Steps

(Assuming a user process is interrupted)

– CPU senses interrupt
– CPU starts the interrupt handlerin privileged mode
– (Interrupt handler may disable all interrupts)
– Interrupt handler stores state of interrupted process
– Interrupt handler executes (kernel) code for the

interrupt
– Interrupt handler ends by calling the CPU scheduler
– CPU scheduler loads the state of the process it selects
– (Interrupt handler would re-enable interrupts)
– CPU switches back touser modeand executes

selected process

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.15 17

Process Scheduling

• All processes are on thejob queue / process table
– Somereadyprocesses may be swapped to disk.
– Processesin memorythat are ready to execute are also on

theready queue
– Processes waiting for an I/O device are also on itsdevice

queue

• Thejob schedulerselects processes from the job queue to
load into and out of memory

• When the CPU is free, theCPU schedulerselects one process
from the ready queue to be executed by the CPU
– A process can run until a timer interrupt or some other

interrupt occurs
– The CPU scheduler is called after the processing of each

interrupt

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.16 18

Unix-Style Process Creation

Process creation in Unix involves four system calls:

• fork : Creates an exact copy of the calling process

– Returns process id of child to parent

– Returns0 to child

• execve: Overwrites the calling process’s program

• exit: Causes the calling process to terminate

– Returns process id to waiting processes

• wait: Causes the calling process to wait until one of its
children exits

– Returns process id of exited child to process

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.17 19

Interruption by Signals

• Signalsare a special kind of IPC “messages”
• A process can installsignal handlers
• (Most) unhandled signals terminate the process
• Signals can arrive at any time
• Signals can interrupt certain system calls —EINTR

#include <errno.h> /* r_wait.c */
#include <sys/wait .h>

pid_t r_wait(int *stat_loc) {
int retval;

while (((retval = wait(stat_loc)) == −1) && (errno == EINTR)) ;
return retval;

}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.18 20

Signal Lifecycle, Long Version

1. A signal isgeneratedand directed to a process
2. If the processignoresthis signal, the signal is discarded

— KILL, STOP cannot be ignored

3. If the processblocks this signal, it is keptpendinguntil the
process unblocks it
— KILL, STOP cannot be blocked

4. Otherwise, the signal isdelivered to the process
5. Once delivered, the signal must behandled

– Thedefault action is toterminatethe process;
• the process isstoppedby STOP (^Z), TTIN, TTOU,

TSTP (^S — type ^Q to continue)
• CONTcontinuesthe process; CHLD is ignored

– The default action is not taken if a signal handler has been
installed forcatching the signal
— KILL, STOP cannot be caught

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.19 21

Pipes

• Pipes are kernel data structures for inter-process
communication

• int pipe(int filedes[2]);

• Linux: pipe creates a pair of file descriptors, pointing to a
pipe inode,and places them in the array pointed to by filedes.
filedes[0] is for reading,filedes[1] is for writing.

• “The POSIX standard does not specify what happens if a
process tries to write tofiledes[0] or read fromfiledes[1].”

• Solaris:Thepipe() function creates an I/O mechanism
called a pipe and returns two file descriptors,fildes[0] and
fildes[1]. The files associated withfildes[0] andfildes[1] are
streams and are both opened for reading and writing.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.20 22

Named Pipes (FIFOs)

• Named pipes (FIFOs) are pipes turned into file system
objects.

• A named pipe is aspecial filewith access regulated via file
system permissions:

prw------- 1 kahl users 0 Jan 30 00:08 /tmp/fifo1

• Data is passed though the FIFO by the kernel without
writing it to the file system.

• Normally, opening the FIFO blocks until the other end is
opened also.

• When a process tries to write to a FIFO that is not opened for
read on the other side, the process is sent aSIGPIPE signal.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.21 23

Avoiding Suspension on Individualread and write Calls

Problem:

• Normalread andwrite block until I/O possible

• Program may need to do other things while I/O impossible

• Program may need perform I/O where itfirst becomes
possible

Different solutions:

• Open withO_NONBLOCK and “poll manually”

• Useselect

• Usepoll

• Open withO_ASYNC and perform I/O in signal handlers

• Use multiple threads (carefully …)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.22 24

Labelled Transition Systems (LTSs)

Definition: A labelled transition system(S, s0, L, δ)consists
of
– a setSof states
– aninitial state s0 : S

– a setL of action labels
– atransition relation δ : IP (S × L × S).

Example:

LightSwitch1 = ({dark, light}, dark, {on, off},
{(dark, on, light), (light, off, dark)})

dark light
on

on
off

off

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.23 25

Concurrent Composition

• A system composed of several processes has a state that is
composed from the states of the individual processes.

Converse= 0 1 2
think

think

talk

talk

Itch = a b
scr

scratch

Converse || Itch=

0a 1a 2a

0b 1b 2b
scr

scratch

scr

scratch

scr

scratch

think

think

talk

talk

think

think

talk

talk

While ConverseandItch have only one trace each, their
composition has three, representingarbitrary interleaving.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.24 26

Liveness and Safety Properties

A safety property asserts:

“somethingbad will neverhappen”

A liveness propertyasserts:

“somethinggoodwill eventuallyhappen”

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.25 27

Branching Transitions

A state of a process from which several transitions exist
usually models one of the following:

– In this state, the process is prepared toreact to different
environmental stimuli

– In this state, the processactsby making a
(non-deterministic) choice

• non-determinism could be intended
• non-determinism could be the result of abstraction

LTSs do not differentiate betweenaction andreaction!

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.26 28

Non-Deterministic Choice, Traces, and Composition

Coin2 andCoin3have the same trace set!

But,Coin2 || BetandCoin3 || Bethavedifferent trace sets!

⇒ Two LTSsP1andP2 areequivalent iff for every LTSQ, the
compositionsP1 || Q andP2 || Q have the same trace set.

This is ablack-boxview: “No context enables distinction.”

Bet = H T
heads

heads

tails
tails

Coin2 = 0 1
toss

toss

heads headstails

tails

Coin3 = 1 0 2
toss

toss
toss

toss
heads

heads

tails

tails

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.27 29

Fairness

Q0

Q1

stair

Q3

up

Q4

open stair

Q2

up down

stair

Q5

close

Q7

enter

down

stair

Q6

up

Q8

close down

Q9

up

exit

down

Fairness assumption:

If a choice is arrived at
infinitely often, then all
of its branches are taken
infinitely often.

Assuming fairness,
additional lifeness
properties hold, e.g.:
“After an enter, there
will eventually be an
exit.”

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.28 30

Threads

• Threads are “light-weight processes”

• Threads are “processes inside a process”

• Threadsshare process data structures

• Threads need tosynchronise

• Many synchronisation primitives are geared towards
threads

• In C: thread libraries

• In Java: threads arepart of the language

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.29 31

Threads vs. Processes

spawning forking

sibling child

joining waiting

shared memory copied memory

shared resources copied resource access

various synchr. methods signals, pipes

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.30 32

Multithreading Models

• Many-to-one: Several user threads to one kernel thread
– Threads of a process managed as a unit

– Used for multithreading in absence of kernel threads

• One-to-one: One user thread to one kernel thread
– Threads of a process managed independently

– Can be costly because users can cause many kernel
threads to be created

• Many-to-many: Several user threads to several kernel
threads
– More flexibility than many-to-one

– Less costly than one-to-one

– Used for multithreading on a multiprocessor

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.31 33

Thread Programming Styles

Different ways to organise multithreaded programs:

Reactive:

• Thread runs in an infinite loop

• Continuously checks for certain events to occur

• Responds to the events when they occur

Task oriented:

• Parent checks all relevant events
• Parent thread creates a child thread to do a task
• Parent is notified when task is completed

• Child terminates when task is completed

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.32 34

Process Synchronization — Background

• Concurrent access toshared datamay result in data
inconsistency.

• Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes.

• Race condition: The situation where several processes
access and manipulate shared data concurrently. The
final value of the shared data depends upon which process
finishes last.

• To prevent race conditions, concurrent processes must be
synchronized.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.33 35

Mutual Exclusion

An intended atomic actioncan be breached (fundamental
safety failure) if processes (or threads) share data structures

Twoapproachesfor preventing breached atomic actions,based
onmutual exclusion:

• At most one process can be in a critical section at a given
time

• At most one process can be modifying a shared data structure
at a given time

These are special cases ofprocess synchronization

The two main devices for implementation:

• Semaphores

• Monitors

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.36 38

Data Exclusion

• Data exclusionis the act of preventing access to data

– Opposite ofdata sharing

• Examples of data access that needs to be prevented:

– Hidden side effects
– Violations of data invariants
– Breached atomic actions
– Unauthorized accesses

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.45 47

Data Exclusion Approaches

• Immutable data structures

— youcannot changethe data

• Side-effect-free sub-programs

— youwill not changethe data

• Data confinement

— youcannot get atthe data

• Mutual exclusion

— youcannot interfere over the data

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.53 55

Immutable Data Structures

• A data structure isimmutable if its state cannot be changed

• Benefits:
– Local assumptions satisfied by an immutable data

structure are invariants of the data structure
– Immutable data structures can be safely shared

• State changes realized by creating new immutable
structures

• Two kinds of immutable objects:
– Stateless objects having no fields whatsoever

– Objects having only “final” fields

• Fully (and partially) immutable data structures should be
used as much as possible
– Values in an abstract data type should be immutable

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.61 63

Data Confinement

• Confinementcan be used to ensure that only one thread can
access a given data structure at a time

– Similar to security measures used to ensure information
privacy

– Analysis of data flow is crucial

• Mechanisms for enforcing data confinement:

– Information hiding : Interface is public; implementation
is private

– Lexical scoping: References to data structures are only
visible in restricted portions of code

– Access control: permissions for object access required

– Calling sequence: Procedures are called in an order that
excludes certain accesses to data

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.62 64

Semaphores

• The notion of a semaphore was invented by E.W. Dijkstra
(The Structure of the “THE”-Multiprogramming System,
1968)

• Provide two services:

– Mutual exclusion
– Interprocess or interthread signaling

• Two basic kinds:

– A binary semaphoreserves as a resource access key

– A counting semaphoreserves as a resource availability
measure

• Semaphores reduce the general problem of breached atomic
actions to a simpler problem

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.63 65

POSIX Condition Variables

• Are declared independent of any mutex
• Each condition variablemust be used together withalways

the samemutex

— programmer responsibility!

pthread_mutex_lock(&m);

while (x ≠ y)

pthread_cond_wait(&v , &m);
/* modify

x or y
if necessary */

pthread_mutex_unlock(&m);

pthread_mutex_lock(&m);
x++;
pthread_cond_signal(&v);
pthread_mutex_unlock(&m);

pthread_mutex_lock(&m);
y−−;
pthread_mutex_unlock(&m);
pthread_cond_signal(&v);

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.64 66

Condition Variables versus Semaphores

Semaphore Condition Variable

wait decrements if positive
waits only if ≤ 0

waits always

signal increments if no
waiting
wakes up one waiting

no-op if no waiting
wakes up one waiting

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.75 77

Another Synchronisation Mechanism: Barriers

A barrier is asynchronisation point:
• no process (or thread) passes the barrier before every other

process has arrived at the barrier, too

• Alternative: only some fixed number of processes is
required to pass the barrier

• Related formalism:Petri nets:

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.76 78

Java Synchronization

• Objects are a kind of monitor
– Each object has a mutual exclusion lock
– A thread must obtain the lock before it can execute a

synchronizedmethod or block of code
– Unsynchronized methods can be executed at any time

• Each object hasone unnamed condition variable, a wait
set, and wait and signal methods
– Wait methods: three versions ofwait
– Signal methods:notify andnotifyAll
– wait, notify, andnotifyAll can only be called from within

synchronized methods or blocks
– Signal-and-continue approach is used, but it is not

specified which thread in the waiting set is resumed

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.77 79

notify() and wait()

• obj.wait() causes current thread to wait until another thread
invokes anotify method forobj
– can only be called inside a blocksynchronized onobj
– releases lock onobj
– can only continue after lock onobj has been re-acquired
– waiting can be interrupted, causingInterruptedException
– overloaded variantswait(...) allow to specifytime-out
– implemented using wait set

• obj.notifyAll() causes all threads in the wait set ofobj to be
runnable again
– calling thread still has lock onobj and continues
– awakened threads compete for lock onobj

• obj.notify() wakes up only one thread
– should only be used if this is known to be safe!

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.82 84

Method-Based Confinement Techniques

A method creates an object and then uses one of the following
techniques to confine it:

• Local confinement: The object’s reference is not allowed to
leave the scope of the method

• Tail call hand-off : The object’s reference is handed off in a
tail call to another method

• Call by value:The object’svalueis given in a call to another
method, i.e.,
– a copy of the object is passed, or

– information needed to reconstruct the object is passed.

• Trust : The object’s reference is given in a call to another
method which is trusted not to modify the object or forward
its reference.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.86 88

Thread-Based Confinement Techniques

• Thread confinement: All fields accessible within a thread
are confined to the thread:

– The thread behaves like a process with its own address
space.

– Supported byjava.lang.ThreadLocal.

• Thread hand-off: The object references of a threadT
are handed off to another threadT ′ in a tail call inT’s run
method.

• Current thread confinement: All thread object methods
access the fields of the current thread object.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.91 93

Object-Based Confinement Techniques

• Adapters: An object with unsynchronized methods is
wrapped with an object with synchronized methods

• Subclassing: Unsynchronized methods of a class are
synchronized in a subclass

• Transfer protocol: A resource object is passed between a
group of objects according to a protocol

– Example: Token ring

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.92 94

Summary

• Shell Programming
• File Management
• UNIX Processes: fork , wait, exec
• POSIX signals: synchronous and asynchronous, handling
• IPC via (named) pipes
• Concurrency modelling using LTSs
• Implementing concurrency inside processes:Threads
• Process and thread synchronisation

– Critical sections— mutual exclusion
– Semaphorsandmonitors — waiting for a simple lock
– Condition variables — waiting for satisfaction of a

complex condition
• Scheduling

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.93 95

Goals

• Know what to expectfrom a computer

• Know what not to expectfrom a computer

• Know what can go wrong, andwhy

• Know what the public expectsfrom your software

• Know how to achieve what you need

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.94 96

Interaction with a Computer

Different interaction paradigms:

• Point-and-click

– High intuitivity (sometimes)

– Low expressivityandabstraction capabilities

• Command line — linguistic

– High expressivity, abstractioncapabilities

– High intuitivity — once you know the language

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.108 110

Become A Power-User

• Use aReal Editor:
– Work through the Emacs tutorial
– Learn the basics ofvi; check outvim
– Check whether you like Emacs or XEmacs better

• Improve yourcommand-line skills!
– Find out how to define shell functions and aliases
– Do it!

• Document preparation:
– not only WYSIWIG, i.e.,“what you see is all you get”
– Check out LaTeX, Lout, and DocBook

• Read aboutLiterate Programming
– Try out FunnelWeb or NoWeb

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.116 118

Welcome to the World of Free Software

• Install some free softwarefrom source
• Find out about thetools involved in the process

• Write complete, user-friendlymakefilesfor some project

• Read about GNU and open source licences

• Find out about the differences between GNU/Linux,
GNU/Hurd, FreeBSD, NetBSD, OpenBSD, Darwin,
Solaris

• Check out sometechnicalmailing lists or USENET news
groups

• See how problems can be attacked —attack your own!

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 12.118 120

More Skills

• Read the Documentation!

• Read the Questions!

