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Chapter 10
Threads
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Threads

Threads are “light-weight processe’
Threads are “processes inside a process”
Threadsshare process data structures
Threads need tosynchronise

Many synchronisation primitives are geared towards
threads

In C:thread libraries

In Java: threads are part of the language
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OS Processes: Control and Resources

A process as managed by the operating system groups
together:

* Resources:open files, global variables, child processes,
signal handlers, accounting information, ...
 Control of Execution — “Thread of Control”:

program counter, registers, stack
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Multithreaded Processes

One process may haweaultiple threads of control
— Eachthread of a process hass own control:

thread id, program counter, register set, stack, etc.
— The threadshare the resource®f the process:

address space, file descriptors, ...

Threads sometimes calléightweight processes
Benefits over cooperating processes:

— Resource sharing
— Economy
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Kinds of Threads Thread Programming Styles

User threads Different ways to organise multithreaded programs:

— Invisible to the kernel; managed by a thread library in user Reactive:
space
— Threads of same process scheduled as a unit

» Thread runs in an infinite loop

» Continuously checks for certain events to occur
— Lower cost * Responds to the events when they occur

Kernel threads )
Task oriented:

— Created, scheduled, and managed by kernel
» Parent checks all relevant events

e Parent thread creates a child thread to do a task
» Parent is notified when task is completed

— Threads of the same process can be scheduled
independently (possibly on different processors)

— Higher cost . : .
d * Child terminates when task is completed
Multithreading Models Multithreaded Servers
« Many-to-one: Several user threads to one kernel thread On-demand spawning: New thread for every request,
— Threads of a process managed as a unit terminates after request serviced.
— Used for multithreading in absence of kernel threads — overhead othread creation for every request

* One-to-one: One user thread to one kernel thread

_ Thread-pool: Spawning a “pool” of threads at startup; assign
— Threads of a process managed independently

incoming requests tille threads from pool
— Can be costly because users can cause many kernel

threads to be created
* Many-to-many: Several user threads to several kernel
threads
— More flexibility than many-to-one

— lower overhead per request
— dynamic adjustment of pool size possible

— Less costly than one-to-one
— Used for multithreading on a multiprocessor
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Apache 2 (Final 2002, 10%)

Version 2 of the WWW server Apache can work with different
multiprocessing/multithreading arrangements.

Under UNIX, the default is a hybrid multi-process
multi-threaded server. Each process has a fixed number
of threads (usually 20). The server adjusts to handle load
by dynamically increasing or decreasing the number of
processes.

(a) Explain which advantages this arrangement has over pur
multiprocessing (without multithreading).

(b) Explain which advantages this arrangement has over pur:
multithreading (without multiprocessing).
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Thread Programming Interfaces

OS Level:
libraries

programming via system calls or wrapper

Library Level: may or may not be portable

Programming Language Level: Implementation in run-time
system or mapped to OS threads or thread library
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Spawning a New Thread

Specifymain procedure for new thread
If necessary, specify arguments
Newsibling thread is spawned
Thread-1d is returned

Thread Termination
Suppose, the “target thread” needs to be cancelled.

Asynchronous cancellation: Active thread immediately
terminates target thread

— could block resources

Deferred cancellation: Target thread checks at cancellation
points whether it should terminate

— could waste CPU
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Forking and Signals in Multithreaded Processes

fork () duplicates only the calling thread:

» Other threads can “clean up” withhread_atfork().
» “forkall()’ could duplicate all threads — not in POSIX

exec() overlaysall threads.

Choices for (UNIX)signals: Deliver signal to
 specific target thread

 every thread in process

 certain threads in the process

» designated signal handling thread
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Threads vs. Processes Thread Programming Environments

spawning forking Pthreads: POSIX 1003.1c
sibling child Solar'ls 2: .User-level threads,unbound or bound to
lightweight processegLWPSs)
joining waiting Windows 2000: kernel-level threadsfiber library for
_ many-to-many mapping
shared memory copied memory _
Linux: cl one system call opens spectrum between processe:
shared resources copied resource acces: and threads
. . . Java: language-level threads
various synchr. methods signals, pipes
Sections 5.4 — 5.8 in [Silberschatz] Read!
Thread Scheduling Issues POSIX Threads

Specificationof a thread packageterface
Implementations need not provide all features

» User-level threads: user-level scheduling

— Preemptive or non-preemptive

User-level and kernel-level (partial) implementations
possible

Some features (usually) require kernel-level support

— flexible priority systems possible
— no parallelism on multiprocessors

» Kernel-level threads: OS scheduling, parallelism possible

« Gang scheduling:on multiprocessors, multiple threads int pthread_create(pthread_t restrict thread,
belonging to one process are scheduled aséime timeon const pthread_attr_t «restrict attr,
different processors enhancing fast communication. void « (sstart_routine)( void ),

void restrict arg);

USP: “Do not let the prototype opthread_create intimidate
you—threads are easy to create and Uise.
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POSIX Thread Creation

#include <pthread .h>
#include <stdio.h>

[*USP Example 12.4 */

void = processfd (void = arg);

int error, fd;
pthread _t tid;

if ((fd = open("my.dat”, O_RDONLY)) == -1)
perror ("Failed to open my.dat");
else if (error = pthread_create(&tid, NULL, processfd, &fd))
fprintf (stderr, "Failed to create thread: %s\n",
strerror (error));
else
printf ("Thread created\n");
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POSIX Thread Attributes

» Thread attributes are organised in a (possibly shahneexd

attribute object (see man pthread_attr_init):

— detachedor joinable

— scheduling policy: real-time (FIFO or round-robin)
or “other”

— priority for real-time threads

— “scheduling contention scope”: process (user-level) or
system (kernel-level)

— POSIX standard terminology is intentional)5
independent!

* Preemptive thread schedulingt specified— use
sched_yield() (from sched.h) to guarantee fairness!
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POSIX Threads: Detaching and Joining

» Athread can exit by callingthread_exit or by returning
from its start function.

 When adetachedthread exits:

— itsresources are released,
— its return value is never inspected.

» Non-detached threads can be “joined” (likeit for
processes):

— assume threat callsjoin(t,)
— threaot1 blocks untilt2 terminates
— return value ot2 is available totl.

int pthread_join(pthread_t thread, void =« value_ptr);
Joinable threads must take care to return pointers valid
beyond their own existence!
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POSIX Threads: Detaching Examples

One thread can detach another thread:

if (error = pthread_create(&tid, NULL, processfd, &fd))
fprintf (stderr, "Failed to create thread: %s\n",
strerror (error));
else if (error = pthread_detach(tid) )
fprintf (stderr, "Failed to detach thread: %s\n",
strerror (error));

A thread can detach itself:

void * detachfun( void = arg ) {
inti =x((int*)(arg));
if (! pthread_detach( pthread_self() ) ) return NULL;
fprintf (stderr, "My argument is %d\n", i);
return NULL;
}
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POSIX Threads: Joining Examples

Retrieving the return value of thre&d :

int error;
int = exitcodep;
if (error = pthread_join(tid, &exitcodep))
fprintf (stderr, "Failed to join thread: %s\n",
strerror (error));
else
fprintf (stderr, "The exit code was %d\n", xexitcodep);

What happens in the following?
pthread_join( pthread_self() );

— may returnEDEADLK, if implementation detects
deadlocks.
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POSIX Thread Cancellation Settings

Cancellation state(pthread_setcancelstate):
e PTHREAD_CANCEL_ENABLE: default

* PTHREAD_CANCEL_DISABLE: ignores cancellation
requests

Cancellation type (changed throughthread_setcanceltype):

e PTHREAD_ CANCEL_ASYNCHRONOUS: cancellation
requests are immediately honoured

* PTHREAD_CANCEL_DEFERRED (default): cancellation
requests are kept pending until the neahcellation point
pthread_join, pthread_cond_wait, pthread_cond_timedwait,
pthread_testcancel, sem_wait, sigwait

General rule: A function that changes cancellation state or
type should restore the original settings before returning!
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POSIX Thread Cancellation

int pthread_cancel(pthread_t thread);
sends aancellation request

Honoring a cancellation request is effectively like calling
pthread_exit(PTHREAD_ CANCELED).

void pthread_exit(void *retval);

terminates thread, performs cleanup and finalisation, and
makegetval to joining thread.

» A stack ofcleanup handlerscan be maintained with
pthread_cleanup_push andpthread_cleanup_pop

» Finalisation functions for thread-specific data can be
registered vigthread_key_create
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Thread-Specific Data

» Two views of global variables:
— Resource: should have one instance per process
— Part of control: should have one instance per thread
» Thisis not supported by regular global variables
» Special mechanisnthread-specific data

* In POSIX: Each thread has a private memory block, the
TSD area
» Essentially: array of void pointers, indexed ksys

int pthread_key create(pthread_key t +k, void (xdestr)(void));
int pthread_key_delete(pthread_key _t key);

int pthread_setspecific(pthread_key _t key, const void * ptr);
void * pthread_getspecific(pthread_key _t key);
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Thread Safety

A function isthread-safeif multiple threads can execute
invocations that are active at the same time (i.e., have an
activation record on the different thread stacks at the same
time).

Library functionsthat arenot thread-safecan produce
interference between threads! [J  spurious errors!

* getpwent, gethostbyname, dirname, readdir, rand, ...

» Access of shared datggetenv, ...
— errno is usually a macro.

Thread-safe variants of unsafe functions: suffix*for
“re-entrant”.
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Thread Safety —errno

#include <errno.h> [* errnotest.c */

#include <stdio.h>

int main() {
printf ("%d\n", errno);
return O,

}

Result ofgcc -E errnotest.c | tail -4:

int main() {
printf ("%d\n", (+__errno_location ()));
return O;

}
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Thread Interference

#include <pthread.h> [* interfere.c */
#include <stdio.h>

#include <stdlib.h> /*for strtol */

#include <string.h> /* for strerror */

static volatile long int counter = 0;

static long int max;

void * count(void * arg) { /* main function for thread */
longinti, reg, » mycounter = arg;
for(i = 0;i <max;i++){
reg = xmycounter;
reg =reg + 1,
*mycounter = reg;
}
return NULL;

}
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int main (int argc, char = argv[]) {
int error;
pthread _t tid;
max = strtol(argv[1], NULL, 10);
if (error = pthread_create(&tid, NULL, count, &counter))
fprintf (stderr, "Failed to spawn: %s\n", strerror (error));
else {
count( &counter );
if (error = pthread_join(tid, NULL))
fprintf (stderr, "Failed to join: %s\n", strerror (error));
else
fprintf (stderr, "The final count was %ld\n", counter);

}

return O;

}
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Process Synchronization — Background

« Concurrent access thared datamay result in data
inconsistency.

» Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes.

* Race condition: The situation where several processes
access and manipulate shared data concurrently. The
final value of the shared data depends upon which process
finishes last.

» To prevent race conditions, concurrent processes must be
synchronized

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 10.184 187

Example Race Condition

Implementation of #+counter;”: (@) reg = counter;
(b) reg =reg + 1;
(©) counter =reg;

Assume:

» The sharedounter variable starts out &s

« Two processeR andP, execute this implementation of
“++counter;” concurrently (with different registers)

 What is the final value of counter?
Answer:
— (R, || P) has 20 different traces

— The final values focounter in all these interleavings:
[3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3]
— “If anything can go wrong, it will— Murphy’s Law
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Mutual Exclusion

An intended atomic actioncan be breachedundamental
safety failure) if processes (or threads) share data structures

Two approachefor preventing breached atomic actions, based
on mutual exclusion

» At most one process can be in a critical section at a given
time

» At most one process can be modifying a shared data structur
at a given time

These are special caseswbcess synchronization
The two main devices for implementation:

» Semaphores
* Monitors
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Process (Thread) Synchronization

» Process synchronizations when one process waits for an
event to occur in another process

» Two special cases of process synchronization are needed fc
mutual exclusion:

— When one process waits for another to leave a critical
section

— When one process waits for another to give up control of
a shared data structure



SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 10.196 199

The Critical-Section Problem

* nprocesses all competing to use some shared data.

» Each process has a code segment, callgidal section, in
which the shared data is accessed.

* Problem: Ensure that when one process is executing in its
critical section, no other process is allowed to execute in its
critical section.
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Specification of Solution to Critical-Section Problem

A solution to the critical-section problem must satisfy three
properties:

1. Mutual Exclusion
2. Progress

3. Bounded Waiting
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Mutual Exclusion

If processP is executing in its critical section, then no other
processes can be executing in their critical sections.
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Progress

If
— No process is executing in its critical section,

— and there exist some processes that wish to enter their
critical section,

then the selection of the process that will enter the critical
section next cannot be postponed indefinitely.
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Bounded Waiting

A bound must exist othe number of timesthat other
processes are allowed to enter their critical sections

— after a process has made a request to enter its critical
section
— and before that request is granted.

Process speeds:
— Assume that each process executesairazero speed

— No assumptionconcerningelative speedof then
processes.
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Specification of Solution to Critical-Section Problem

1. Mutual Exclusion: If processP is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress: If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the processes that
will enter the critical section next cannot be postponed
indefinitely.

3. Bounded Waiting: A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted.
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Initial Attempts to Solve Problem

* Only 2 processes) andF,
* General structure of proceBother procesEJ’):
while (true) {

entry section

critical section

exit section

‘remainder sectioh

}

* Processes may share some common variables to synchroni:
their actions.
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Algorithm 1
Shared data:
int turn;
— initially: turn = 0
— semanticst urn == i [ P can enter its critical section
Processk:
while (true) { Satisfies
while (turn I=1) {} |
critical section butnot progress:
. Deadlock
turn =7 on non-alternating
‘remainder section access
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Algorithm 2
Shared data:
bool ean fl ag[ 2];

— initially: flag[0] = flag[1l] = fal se
—flag[i] = true O Pready toenter its critical section

Processh:
while (true) { Satisfies
flag[i] := true; |

while (flaglj]) {}
critical section

butnot progress:
Deadlockon
simultaneous requests.

flag[i] = false;

‘remainder section
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Algorithm 3 [Peterson 1981]

Shared data: combined from algorithms 1 and 2
int turn;
bool ean fl ag[ 2];

Processh:

while (true) {
flag[i] := true;
turn = j;

while (flag[j] && turn ==j) {}

critical section

Meets all three
requirementsSolves
‘ remainder sectioh the critical-section
} problem for two
processes

flag[i] = fal se;
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Synchronization Hardware: Test-and-Set

Machine instruction to test and modify the content of a
word atomically:

boolean TestAndSet(boolean x target) {
boolean result = starget;
starget = true;
return result;

}

“Pseudo-C”
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Mutual Exclusion with Test-and-Set
Shared data:

bool ean | ock = fal se;

ProcessPi:

while (true) {
whil e (Test AndSet (& ock))

{}

critical section

| ock = fal se;

‘remainder section
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Synchronization Hardware — Swap

Machine instruction to atomically swaptwo variables:

void Swap( boolean #a, boolean xb) {
boolean temp = =a;
*a = *b;
b = temp;

}

“Pseudo-C”
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Mutual Exclusion with Swap
Shared data(initialized tofalse ):
bool ean | ock;

ProcessFi’:

while (true) {
key = true;
while (key == true) Swap(& ock, &key);

critical section

| ock = fal se;

‘remainder section
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Number of Interleavings for Two 100,000-Step Processes
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Bakery Algorithm

Critical section fom processes:

Before entering its critical section, process receives a
number. Holder of the smallest number enters the critical
section.

If processe$ andFJ? receive the same numberjik j, then

P is served first; elséj’ is served first.

The numbering scheme always generates numbers in
increasing order of enumeration;i.g2,3,3,3,3,4,5...

Originally designed for distributed implementation
[Lamport 1974]

Simpler than the first known algorithm witn — 1)as
waiting bound [Eisenberg, McGuire 1972]
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Bakery Algorithm

» Lexicographical order onticket numbe process id

(a,b) < (c,d)ifa<corifa=candb<d

 arrayMax (a,n) returns a numbek such thak > a[i]
foralli (4O, ..., n-1}

» Shared data:

boolean choosing[n]; [*initialise to false */
long long int number[n]; /*initialiseto0 */
[* 64 bit may be okay for abou00 years*/
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Bakery Algorithm

while (true) {
choosing[i] = true;
nunber[i] = arrayMax(nunber, n) + 1;
choosing[i] = fal se;

for (j =0; j <n; j++) {
while (choosing[j]) {}
while (nunber[j] '= 0 &&
(nunber[j],j) < (nunber[i],i)) {}

}

critical section
nunber[i] = O;
‘remainder section

}

Solves the critical-section problem fom processes

228
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n-Process Mutual Exclusion with Test-and-Set

The previous algorithms witliest AndSet andSwap

— can be used fam processes,
— but do not guarantee bounded waiting.

For guaranteeing bounded waiting, rest AndSet lock can
be used to additionally protect passing of “turns”:

Shared data:

bool ean waiting[n]; /* all initialised */
bool ean | ock; /* to fal se */

Note: only Booleans!
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n-Process Mutual Exclusion with Test-and-Set

while (true) {
waiting[i] = true;
boolean locked =true;
while (waiting[i] && locked ) locked = TestAndSet(&lock);
waiting[i] = false;

critical section

j=(+1)%n;
while ((j #1) && ‘waiting][j]) j = (+1) % n;
if ( ==1i)lock =false; else waiting[j] = false;

‘remainder section

}
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Elementary Solutions of the Critical-Section Problem

Necessary conditions satisfied: Mutual Exclusion
2. Progress

3. Bounded Waiting

Solutions for 2 processes:
» Software: Peterson’s algorithm
» Hardware: Test-and-set instruction, swap instruction

Solutions for n processes:
» Software: Bakery algorithm —unbounded counters
» Hardware: needs only arrays of Booleans

All use busy waiting!
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Semaphores

» The notion of a semaphore was invented by E.W. Dijkstra
(The Structure of the “THE"-Multiprogramming System
1968)

* Provide two services:

— Mutual exclusion

— Interprocess or interthread signaling
* Two basic kinds:

— A binary semaphoreserves as a resource access key

— A counting semaphoreserves as a resource availability
measure
« Semaphores reduce the general problem of breached atom
actions to a simpler problem
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Semaphores

» Synchronization tool that does not require busy waiting.
» Semaphors — shared integer variable
* interfacewait andsignal — specification

test(S): if(S > 0) {S——; return true;} /* auxiliary fct. */
else  returnfalse;

wait(S): while( ttest(S) ) {}

signal(S): S++;

* test(S) andsignal (S) must beatomic
» Can be used as implementatidnisy waiting'.
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Use of Binary Semaphore

Solving the critical section problem forprocesses:

» A 1-bitinteger variable called abinary semaphoreor
mutex, is shared among the processes

— Sisinitialized to 1
» Each critical section has the following form:

wait(S);
critical section
signal(S);
* Invariants:
— S0, 1} .
— S = 1iff the resource is free.
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Semaphore Implementation with Waiting Set Semaphore as a General Synchronization Tool

Semaphore has now two components: * Problem: ExecuteBin Pjonly afterAexecuted irP.

— Aninteger variabl& « Solution: Use semaphoril ag initialized to0
— A waiting setW for the resources « Code:

Implementation of the two operations:

— wait(S): Decrement. If S< 0, add calling process to the
waiting set and suspend it.

il il
— signal(S): IncrementS. If S < 0, choose a process from A E
the waiting set and have it resume.
 wait(S) andsignal(S) must beatomic (E

Invariant:
— If S< 0, then|S|= W]

signal (fl ag) wai t (fl ag)

B
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Counting Semaphore Counting Semaphores via Binary Semaphores
» A set of processes/threads shariNg= 0 instancesof Data structuresfor counting semaphore
aresource : . i .
» A counting semaphoreis shared among the b!narysemaphore mutex; /*'.n'.t'.a“.zed o1l */
LT binarySemaphore nonempty; /*initialized to 0 */
processes/threadSjs initialized toN. _ _ - - .
o _ _ int counter: [*initialized to initial value ofS */
» Each critical section has the following form:
it(S): i : signal(S):
wait(S): wait(S): Walt(mut(?x), g | (S)
critical section counter--, wait(mutex);
signal(S); if (counter < 0) { counter++;
_ . ’ signal(mutex); if (counter <=0)
e |nvariants: . _ .
L s<N wait(nonempty); signal(nonempty);
— If S> 0, there aréSresources free. 13 else
signal(mutex); signal(mutex);
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Semaphore Implementation Issues Remarks on Semaphores

» Semaphores are usually implemented in uniprocessor » The semaphore is a very simple and versatile concurrency
systems with noninterruptable system callstést and control device
signal
» Misapplied semaphores can lead to:
« Binary semaphores can be used to implement counting — Safety failure: breakdown of mutual exclusion
semaphores — Liveness failure deadlock

« Semaphoreguarding long critical sectiongensure mutual * Semaphore programming errors may be very difficult

exclusion viatheir own, very short critical sections to debug
* In multiprocessors, busy waiting for a short critical
section is usually more efficient than context switching
— spinlocks
Deadlock and Starvation Semaphores for POSIX Thread Synchronization
Deadlock: LetS andQbe two semaphores initialized to 1 « POSIX counting semaphores:
P P #include <semaphore .h>

! : sem_t mysem,;

E E sem_init(&mysem, 0, n) /* 0: process-local */

wait(S); wait(Q); sem_wait(&mysem);
sem_post(&mysem);

wait(Q); wait(S); .
éQ) é ) » PThread mutexes: binary semaphores
_ _ #include <pthread.h>
signal(S); signal(Q); int pthread_mutex_init(pthread_mutex_t *mutex,
signal (Q); signal(S); const pthread_mutexattr_t smutexattr);
int pthread_mutex_lock (pthread_mutex_t *mutex);
Starvation: Indefinite blocking: A process may never be int pthread_mutex_trylock (pthread_mutex_t *mutex);

int pthread_mutex_unlock (pthread_mutex_t smutex);

removed from the semaphore queue in which it is suspended. :
int pthread_mutex_destroy (pthread_mutex_t smutex);
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Protecting a Counter with a Mutex

#include <pthread .h> [* counter.c */
static int count = 0;
static pthread_mutex_t countlock =

PTHREAD_MUTEX_INITIALIZER;

int increment(void) {
int error;
if (error = pthread_mutex_lock (&countlock))
return error;
count++;
return pthread_mutex_unlock(&countlock);

}
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Protecting Unsafe Library Functions

#include <pthread .h> [* randsafe.c */

#include <stdlib.h>

int randsafe(double *ranp) {
static pthread_mutex_t
lock = PTHREAD_MUTEX_INITIALIZER;
int error;

if (error = pthread_mutex_lock(&lock))
return error;

sranp = (rand() + 0.5)/(RAND_MAX + 1.0);

return pthread_mutex_unlock(&lock);

}

[* increment the counter */

285
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Making Datastructures Thread-Safe

Make each original access functistatic, i.e.,
module-local

Add amutex to each instance of the datastructures
Produce avrapper for each original functio that callsf
only afteracquiring all necessary mutexes
Considergranularity of locking!

Example: Multiprocessor OS:

— Lock the whole OS: only one CPU in kernel at any time:

inefficient
— Lock individual OS tables: smaller critical sections
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At-Most-Once Execution

« Some initialisationsnust not happen more than once
» Can be hard to do in other ways — special mechanism
provided:

#include <pthread.h>
#include <stdio.h>

[* (printinitonce.c) */

int var; /* exported variable, to be initialised only once */
static pthread_once_t var_initonce = PTHREAD_ONCE_INIT;

static void initialization(void)
{var = 1; printf("The variable was initialized to %d\n", var); }

int printinitonce(void) {  /* exported initialisation function */
return pthread_once(&var_initonce, initialization);

}
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At-Most-Once Execution — Different Approach

#include <pthread.h>
#include <stdio.h>

[* printinitmutex.c */

int printinitmutex (int «var, int value) {
static int done =0;
static pthread_mutex_t lock =
PTHREAD_MUTEX_INITIALIZER;

int error;

if (error = pthread_mutex_lock(&lock)) return error;

if (Idone) {
*var = value;
printf ("The variable was initialized to %d\n", value);
done = 1;

}

return pthread_mutex_unlock(&lock);

}
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At-Most-Once Execution — Remarks

 In both examples: It iguaranteedthat assignment tear
and message printingsilple exampleare executedt
most once

« USP motivation: POSIX mutexes must be initialissady
once

* Most mutexes can be initialised at declaration:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

» This does not work for mutexes malloced datastructures
» pthread_mutex_t = locks = NULL; /*shared variable */

locks = malloc(k * sizeof(pthread_mutex_t));

* These mutexes have to be initialised using
pthread_mutex_init — exactly once!
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Advanced Synchronisation Mechanisms

If synchronisation primitives can be provided as language
primitives, higher abstractions are possible:

» Critical Regions as language construct

* Monitors: built-in module or object locks

» Condition variables: more flexible suspending

— normally part of monitor mechanism
— in POSIX, used with mutexes instead
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Language-Level Synchronization: Critical Regions

For processes witaxplicitly shared variables:
v:shared int

These shared variables can only be accessed in protected
blocks:

region v when condition do body
While body is being executed, no other process can access
— Regions referring te exclude each other in time.

—When a process tries to execute the region statement,
condition is evaluated; if true, statememidy is executed.
Otherwise, the process is delayed uatihdition becomes
true and no other process is in the region associatedwvith

Critical regions can be implemented using semaphores.
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Critical Regions Example: Bounded Buffer

Shared data:  struct buffer {int pool[n];
int count, in, out; }

Producer process insertsxtp into the shared buffer:

region buffer when(count <n) {

pool[in] = nextp;

in=(n+1)%n;

count++; }
Consumer removes an item from the shared buffer and puts it
in nextc:

region buffer when (count > 0) {
nextc = pool[out];
out = (out + 1) % n;
count—-; }
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Language-Level Synchronization: Monitors

« A monitor is amoduleor objectwith a mutual exclusion
lock

— Athread must obtain the lock on the monitor before it can
execute one of the interface functions
— The lock is released when the function is exited
— Consequently, only one thread can be executing interface
functions at a time
» Monitors are usually provided as a programming language
construct
« A monitor can contaigondition variableswhich are special
variables used for coordinating access to the monitor

— “Condition variablesto not contain any memory
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Why “Condition Variables”

Usage:

« Athreadt, tests whether someondition c (i.e., a predicate)
holds
* If false,t, waits

« If another thread, changes any of the variables involved in
¢, thismight makec true if tested again

* Thereforet, signals ta, that testing the condition again
makes sense

— A “condition variable” containeo memoryfor values
— A “condition variable”does not imply any condition

— It is only asynchronization mechanismusually
implemented by avaiting set
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Condition Variables: Wait and Signal

 Condition variables are used by calling two special
operations on themnait andsignal

« If a thread callsvait on a condition variablg, then the
thread
— is suspended until another thread csii®al onx, and
— gives up the lock on the monitor

« If a thread callsignal on a condition variabl&, then one
thread waiting orx is resumed

» Which thread is resumed aftsignal is called depends on
the implementation

— Signal-and-wait approach: signalling thread waits
— Signal-and-continue approach: signalling thread
continues
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Rules for Using Condition Variables (USP p.471)
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Condition Variables versus Semaphores

» Acquire the mutex before testing the predicate

Semaphore Condition Variable
wai t decrements if positive| waits always * Retest the predicate aftpthread_cond_wait

waits only if < 0  Acquire the mutex before changing any variables appearing
si gnal | incrementsif no no-op if no waiting in the predicate

waiting wakes up one waiting

wakes up one waiting « Signal after changing any variables appearing in the

predicate

» Hold the mutex only for a short period of time

» Release the mutex either explicitiytifread_mutex_unlock)
or implicitly (pthread_cond_wait).

* Think “monitor”!
e Think “ regionv whencond do body”!
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POSIX Condition Variables
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POSIX Condition Variables

 Are declared independent of any mutex
» Each condition variablenust be used together withlways
the samemutex

 Are declared independent of any mutex
« Each condition variablenust be used together withlways
the samemutex

— programmer responsibility! — programmer responsibility!

pthread_mutex_lock(&m); pthread_mutex_lock(&m); pthread_mutex_lock(&m); pthread_mutex_lock(&m);

while (x 2y ) X++, . while (x 2y ) X+t .
pthread_cond_wait(&v, &m); | Pthread_cond_signal(&v); pthread_cond_wait(&v, &m);| | Pthread_cond_signal(&v);
[* modify_ B pthread_mutex_unlock(&m); [ modify_ - pthread_mutex_unlock (&m);
X ory pthread_mutex_lock(&m); X ory pthread_mutex_lock(&m);

if necessary */ y— if necessary */ y—=

pthread_mutex_unlock (&m);

pthread_mutex_unlock (&m);

pthread_cond_signal(&v);

pthread_mutex_unlock(&m);

pthread_mutex_unlock (&m);
pthread_cond_signal(&v);
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Another Synchronisation Mechanism: Barriers

A barrier is asynchronisation point:

no process (or thread) passes the barrier before every othe

process has arrived at the barrier, too

Alternative: only some fixed number of processes is

required to pass the barrier
Related formalismPetri nets.

i,
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Petri Nets: The Token Game

kN
o
oty
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A Thread Barrier Using POSIX Condition Variables

#include <errno.h> [*tbarrier.c */
#include <pthread .h>
static pthread_cond_t bcond = PTHREAD_COND _INITIALIZER;
static pthread_mutex_t bmutex = PTHREAD_MUTEX_INITIALIZER
static int count = 0;
static int limit = 0;
int initbarrier(int n) { /*initialize the barrier to be size n */
int error;
if (error = pthread_mutex_lock (&bmutex))
return error; /* couldn’t lock, give up */
if (limit # 0) [* barrier can only be initialized once */
{ pthread_mutex_unlock(&bmutex); return EINVAL; }
limit = n;
return pthread_mutex_unlock (&bmutex);
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[* wait at the barrier until all threads arrive */
int waitbarrier (void) {
int error, berror = 0;
if (error = pthread_mutex_lock (&bmutex))
return error; [* couldn’t lock, give up */
if (limit < 0) [* make sure barrier initialized */
{ pthread_mutex_unlock(&bmutex); return EINVAL,; }
count++;
while ((count < limit) && 'berror)
berror = pthread_cond_wait(&bcond, &bmutex);
if (‘berror)
[*wake up everyone */
berror = pthread_cond_broadcast(&bcond);
error = pthread_mutex_unlock (&bmutex);
if (berror) return berror; else return error;

}

389



SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 10.395 399

Java Threads

Java threads may be created by:
— Extending th&hread class:

— overriding theaun method, and
— invoking thestart method of an object of that class

start creates new thread runningn.
— Implementing th&unnable interface:
— defining theun method,

— creating a neWhread object with an object of that
Runnable class as constructor argument, and

— invoking thestart method of tharhread object.

Java threads armanaged by the JVM
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Java Synchronization

* Objects are a kind of monitor
— Each object has a mutual exclusion lock
— Athread must obtain the lock before it can execute a
synchronizedmethod or block of code

— Unsynchronized methods can be executed at any time

» Each object hasne unnamed condition variable a wait
set, and wait and signal methods

— Wait methods: three versions whit
— Signal methodsiotify andnotifyAll

— wait, notify, andnotifyAll can only be called from within
synchronized methods or blocks

— Signal-and-continue approach is used, but it is not
specified which thread in the waiting set is resumed

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 10.405 409

synchronized Methods and Blocks

For methods, synchronization @nis:

class C {
synchronized int m(...) {...}

}

Synchronization on arbitrary objects:

class C {
public int m(..) {

synchronized(lock) {

}...
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“Global” Locks in Java

For making sure that every thread locks on the same object, on

can use:

 locks onClass objects
* final static lock objects

Example:

class C {
private final static Object LOCK = new Object ();
private static long objCount = 0;
private int _field;
public C(int n) {
synchronized(LOCK) { objCount++; }
_field =n;

}
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notify () and wait ()

* obj wait() causes current thread to wait until another thread
invokes anotify method forobj
—can only be called inside a blosknchronized on obj
—releases lock oobj
— can only continue after lock asbj has been re-acquired
—waiting can be interrupted, causimgerruptedException
—overloaded variantsait(...) allow to specifytime-out
—implemented using wait set

* obj.notifyAll() causes all threads in the wait setatf to be
runnable again
— calling thread still has lock oobj and continues
—awakened threads compete for lockabin

* obj.notify() wakes up only one thread
—should only be used if this is known to be safe!
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Bounded Buffer with Monitors 1

Adopted from Silberschatz et al.

public class BoundedBuffer {
/Il Fields
private Object[] _buffer;
private int _count;
private int _in, _out;
private static final int BUFFER_SIZE = 10;

public BoundedBuffer () { /I Constructor
_buffer = new Object[BUFFER_SIZE];
_count =0;
_in=0;
_out =0;

}
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Bounded Buffer with Monitors 2

public synchronized void enter (Object item) {
while (_count == BUFFER_SIZE) {

try {
thiswait();

}

catch (InterruptedException e) { }

}

_count =_count +1;
_buffer[_in] = item;
_in=(in+1)% BUFFER_SIZE;

this.notifyAll();
}
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Bounded Buffer with Monitors 3

public synchronized Object remove() {
Object item;
while (_count ==0){
try { thiswait(); }
catch (InterruptedException e) { }

}

_count =_count - 1;
item = _buffer[_out];
_out = (_out +1) % BUFFER_SIZE;

this.notifyAll ();
return item;

1}
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Well-disciplined Java Objects

A Java object isvell-disciplined if the following conditions
are satisfied:
» Specification There is an intendeitivariant for the object

» Correctness
— Allfields are initialized so that the object satisfies its
invariant
— All non-private methods preserve the object’s invariant

 Liveness All non-private methods terminate (if they are
called when the object satisfies its invariant)

o Safety.
— Allfields are nonpublic

— All non-private methods are synchronized



