Design and Selection of Programming Languages

5th September 2002

Review: Discrete Mathematics and Oberon

Problem 1 (Set Cardinality)

Calculate the cardinalities of the following sets:

a)	$\{1\}$	e)	$\{1, 2, 1\}$	i)	{}	m)	$\{0, \varnothing\}$
b)	$\{3\}$	f)	$\{1, \{2\}, 1\}$	j)	{{}}	n)	$\{\varnothing, \{0\}\}$
c)	$\{c\}$	g)	$\{1,2,\{1\}\}$	k)	$\{\{\}, \varnothing\}$	o)	$\{\{\{\},\{0\}\}\}$
d)	$\{c,d\}$	h)	$\{1,2,\{1,2\}\}$	l)	$\{\varnothing,\{\varnothing\}\}$	p)	$\{\{\{\},\{0\}\},\{\{2-2\},\varnothing\}\}$

Which of these sets contain some *non-empty* set both as subset and as element?

Problem 2 (Set Comprehension)

List the elements of each of the following sets:

- a) $\{x : \mathbb{N}_1 \mid x^2 < 20 \bullet x^3\}$
- c) $\{x, y : \mathbb{N}_1 \mid 5 \le x + y \le 6 \bullet x * y\}$
- d) $\{s : \mathbb{P}\{1, 2, 3\} \mid \#s \ge 2\}$
- b) $\{x, y: \mathbb{N}_1 \mid x^2 + y^2 < 20\}$
- e) $\{s : \mathbb{PP}\{1, 2\} \mid \#s > \# \cup s\}$

Problem 3 (Relations)

Let the sets $X = \{1, 2, 3\}$, $Y = \{4, 5\}$ und $Z = \{6, 7, 8, 9\}$ and the following relations be given:

$R: X \leftrightarrow Y$	with	R	=	$\{(1,4),(2,4),(2,5),(3,5)\}$
$S: X \leftrightarrow Z$	with	S	=	$\{(1,6),(1,7),(3,7),(3,9)\}$
$T:Z \leftrightarrow Y$	with	T	=	$\{(7,4), (9,4), (9,5)\}$
$U: Y \leftrightarrow X$	with	U	=	$\{(4,3),(5,1)\}$

In addition, we consider the subsets $A = \{1, 2\}$, $B = \{4\}$, and $C = \{6, 7\}$. List the elements of each of the following sets:

a)	$A \times Y$	e)	T^{\smile}	i)	$(R \setminus (domS \times Y)) \cup U^{\!$	m)	$X \rightarrowtail Y$
b)	$\operatorname{id} X$	f)	S;T	j)	$U \times A$	n)	$(\mathbb{P} R) \cap (X \to Y)$
c)	${\rm ran}S$	g)	$R;T^{\succ}\cap S$	k)	$A \leftrightarrow B$	o)	$(\mathbb{P} T) \cap (Z \twoheadrightarrow Y)$
d)	$dom(\mathrm{id}Z)$	h)	$U \cap (Y \times A)$	l)	$A \rightarrowtail C$	p)	$\#(\mathbb{P}(X \leftrightarrow Z))$

Problem 4 (Relations)

For each of the following statements, check whether it is true, and if it is false, give a counterexample:

- a) A transitive and symmetric relation is reflexive, too.
- b) The composition of two orders cannot be an equivalence.
- c) Intersecting an order with an equivalence yields an order, again.
- d) The composition of an injective mapping with a surjective mapping is injective, again.
- e) The composition of a transitive relation with its converse is again transitive.
- f) The composition of an asymmetric relation with its converse is again asymmetric.
- g) If an injective function $F : A \rightarrow B$ is contained in a surjective mapping $G : A \rightarrow B$, then G is bijective.

Problem 5 (Formal Languages)

The concatenation operation \frown for sequences can be generalized to a *concatenation operation for formal languages*.

Starting with two formal languages L and M over the alphabet Σ , the concatenation of L with M, written $L \cdot M$, is defined as that set of words over Σ that contains a word w if and only if there are a word $u \in L$ and a word $v \in M$ such that $w = u \cap v$.

- a) Calculate:
 - 1. $\{\langle 1 \rangle, \langle 1, 1 \rangle\} \cdot \{\langle 2 \rangle, \langle 2, 2 \rangle\}$ 2. $\{\langle 1 \rangle, \langle 1, 1 \rangle\} \cdot \{\langle 2 \rangle, \langle 1, 2 \rangle\}$ 3. $\{\langle 1 \rangle, \langle 1, 1 \rangle\} \cdot (\{\langle 2 \rangle, \langle 1, 2 \rangle\} \cup \{\langle 2 \rangle, \langle 2, 2 \rangle\})$ 4. $\{\langle 1 \rangle, \langle 1, 1 \rangle\} \cdot \{\langle \rangle\}$ 5. $\{\langle \rangle\} \cdot \{\langle 2 \rangle, \langle 1, 2 \rangle\}$ 6. $\{\} \cdot \{\langle 2 \rangle, \langle 1, 2 \rangle\}$
- b) Is the concatenation operation for formal languages associative?
- c) Can you state a law for $L \cdot (M \cup N)$?

Problem 6 (Oberon-2 Execution)

For the following Oberon-2 program, simulate execution by drawing the dynamic call tree and recording the values of parameters and variables for every block entry and exit.

Which is the final result?

```
MODULE Scope1;
                                              PROCEDURE A(y,x: INTEGER; VAR result: INTEGER);
                                                BEGIN
IMPORT Out;
                                                  IF x = 0
VAR n : INTEGER;
PROCEDURE B(VAR x : INTEGER; z : INTEGER);
                                                  THEN result:=1;
                                                  ELSE A(y, x-1, result);
  VAR hv : INTEGER;
  BEGIN
                                                       B(result, y)
                                                                           END;
    IF z = 0
                                                END A;
    THEN x := 0
                                             BEGIN
    ELSE hv := x;
                                                n := 0;
         B(x, z-1);
                                                A(2,1,n);
         x := x+hv END;
                                                Out.Int(n,0); Out.Ln
                                             END Scope1.
  END B;
```

Which functions are implemented by the procedures A and B? Produce precise specifications!