HASKELL Tutorial

José Bernardo Barros José Joao Almeida

Departamento de Informatica
Universidade do Minho
Braga, Portugal

September, 1998

Introduction

HASKELL is a general purpose, non-strict, purely functional programming language.
There are several compilers and interpreters of this language freely available for almost
any computer. The language is defined in the Haskell 1.4 Report! and the Haskell 1.4
Library Report?. If you want to learn to program in HASKELL, a tutorial: A Gentle
Introduction to Haskell [1], is also available?. The present document should be seen as
a complement to this text: it gives a hands-on tour of a small interpreter of HASKELL
called Huas*. Throughout this text you will find small exercises that will help you
getting acquainted with the language. These appear is a different font, and with a
vertical bar on the left.

Hugs

The first thing that you have to do is to make sure that you have the HUGs iinterpreter,
and to find out how to start it. Try the command hugs.

This should take you to a screen like

VA A A AR A A A VA /

Hugs 1.4
VAR Sy A A A A B B S YA S
/I / The Nottingham and Yale
VAR A A A S A A A SN A S / / Haskell User’s System

/) /) e _ /e _ /e __ / June 1998

Copyright (c) The University of Nottingham and Yale University, 1994-1998.

1URL: http://www.haskell.org/report/index.html
2URL: http://www.haskell.org/library/index.html
3URL: http://www.haskell.org/tutorial/index.html
1URL: http://haskell.org/hugs/

Bug reports: hugs-bugs@haskell.org. Web: http://www.haskell.org/hugs.
Reading file "/usr/local/share/hugs/lib/Prelude.hs":
Hugs session for:
/usr/local/share/hugs/1lib/Prelude.hs

Type :7 for help
Prelude>

The last line points out that HUGS is ready to execute commands. There are several
commands that you may want to execute:

:quit will end the session

:? will list the commands available

Apart from these commands, HUGS can compute the value of expressions. Thus, if you
type in 3+4, it will answer back 7.

Types

Haskell is a typed language. This means that each expression (or term) has a type.
You can ask the type of an expression using the command :type; we’ll take a look at
this later. But you can also instruct HUGS to print the type of each computed result,
by entering the command :set +t. Try this command and then compute some basic
arithmetics.

The basic types in HASKELL are:

e Int and Integer are used to represent integers. Elements of Integer are un-
bounded integers.

e Float and Double are used to represent floating point numbers. Elements of
Double have higher precision.

e Bool is the type of booleans: True and False.
e Char is the type of characters.

Notice that all the names of types start with a capital letter.

Apart from these basic types, there are several ways of making new types:
e if a is a type, [a] is the type of the sequences of elements of a

— [1 is the empty sequence

— h:t is the sequence whose head and tail are h and t respectively

The sequence with the first three natural numbers is thus represented by

0:1:2:[1

Alternatively, we can simply write [0,1,2] to represent that sequence.

The particular case [Char] has another name — String and there is another way
of representing these sequences: by delimiting them by quotes. Thus, the sequence
)H) :)aJ : JS) : JkJ : Jei : 71) : 71) : []

can also be written as
_ [JHJ ’q’ . ’s? ’k’ e’ 1’)1;]
— "Haskell"

e if a and b are types, (a,b) is the type of pairs whose first component is of type a
and second component is of type b. Of course, this construction may be done for
more than two types a and b.

e if a and b are types, a -=> b is the type of functions from a to b

1. Find expressions whose type is

e (Bool, [Char])
e ([Booll,Char)
e [(Bool,Char)]

Test your answers by using HUGS to evaluate the types of those expressions.
2. Using the command :type, find the type of the following expressions

e head

® sum

o fst

e elem

o flip

e flip elem

By supplying the expected arguments to the above functions, try to guess what they
are.

There exist a lot of functions that are readily available when you start Hugs. Their
definitions are stored in a file called Prelude.hs. That is the reason for the line

Reading file "/usr/local/share/hugs/lib/Prelude.hs":
We can also have our own definitions. These should be written in a file and then loaded

using the command :1load. It is usual to name these files with a postfix .hs (for haskell
script).

Using your favourite text editor, create a file named example.hs with the following
definitions

square X = X ¥ X

factorial x = product [1..x]

Load this file into HuGs, by typing :load example (HuGs will assume that the
file ends with .hs). You can now use the definitions of the functions square and
factorial. Test these definitions by evaluating the following expressions:

e square 4

e square (factorial 3)

e factorial (square 3)

You might have noticed by now that Huas “guesses” the types of the expressions that
you ask it to evaluate. But you can also provide this type with the expression.

After instructing HUGS to print the types of the expressions (by using the command
:set +t), evaluate the following:

e 3+ 4
e (3::Integer) + 4

e factorial 50

e factorial (50::Integer)

Similarly, you can provide type information in your scripts:

Edit the file example.hs in order to obtain:

square :: Float -> Float
square x = x * X

factorial :: Integer -> Integer
factorial x = product [1..x]

Reload the file (using the command :reload) and re-evaluate the expressions above.

There exist a lot of functions to manipulate lists. You can find out the complete list by
consulting the on-line guide that comes with Huas®.

5file:/ /usr /local /share /hugs/docs/library /index.html

1. Define functions to:

(a) compute the length of a list

(b) compute the concatenation of two lists
(c) reverse of a list

(d) merge two sorted lists

(e) sort a list (for instance, using quicksort)

2. Define a function squares that computes the list of squares from a list.

One very important feature of most functional programming languages is the possibil-
ity of defining functions that receive other functions as arguments. For instance, the
function filter can be defined as

filter :: (a -> Bool) -> [a] -> [a]
filter p [1 = []
filter p (h:t) = let t’> = filter p t
in if (p h) then h:t’
else t’

1. The function map has type:
map :: (a ->b) -> [a] -> [b]

map f 1 is the list that results from applying the function f to each element
of 1. Define it.

2. Use the function map to define squares.

3. The function foldr has type
foldr :: (a->b ->Db) ->b ->[a] > b

and foldr f e [a,b,c] = f (a, f (b, £ (c,e))) Define foldr.

4. Use foldr to define the functions length, and sum.

Inductive Types

HASKELL also provides a way of defining inductive types. These start with the keyword
data.

Enumerated Types

The simplest inductive types that one can define are enumerated types. For instance,
to define a type for the days of the weak, one can use such a construction:

data WeekDays = Sunday | Monday | Tuesday | Wednesday |
Thursday | Friday | Saturday

This declaration defines a new type — WeekDays with seven elements. These elements
are called data constructors or simply constructors.

Note again that the name of the type starts with a capital letter. Moreover, the names
of the constructors must also start with a capital letter.

This example takes us to a peculiarity of HASKELL — the meaning of the layout of a
program. In the majority of programming languages, definitions have delimiters that
point out where that definition starts and ends. In HASKELL this effect is obtained with
a specific layout. Formally, a definition ends before the first piece of text which lies at
the same level or to the left of the start of the definition. Thus, the following text

abc
de
f

[y
8 =

should be seen structured as

ab(c(defg h
ijklmn

Let us now write a function that takes an element of WeekDay and returns whether it
is a working day. We will define this function by providing an equation for each of the
possibilities of elements of that type:

workingDay :: WeekDay -> Bool
workingDay Sunday = False
workingDay Monday = True
workingDay Tuesday = True

workingDay Wednesday = True
workingDay Thursday = True
workingDay Friday = True
workingDay Saturday = False

Note that as the patterns used are non-overlapping, the order in which they appear in
the program is irrelevant.

HASKELL also allows the use of overlapping equations. In that case one should be careful
with the order in which these equations appear. When two equations can be applied to
the same expression, the one chosen is the one which appears first in the program.

Thus, the previous definition could also be written as

workingDay :: WeekDay -> Bool
workingDay Sunday = False
workingDay Saturday = False
workingDay x = True

‘ Define a function that, given a working day, returns the following day.

Recursive Types

Recursive types can be defined using induction. For instance, the natural numbers can
be defined by:

data Nat = Z | S Nat

Again, this declaration defines a new type — Nat. Associated with this new type, there
exist two (data) constructors:

e Z is an element of Nat
e S is a function that given an element of type Nat, yields a (new) element of type

Nat

Thus, Z, S Z,or S S S S Z are all elements of type Nat.

Let us define a function that takes an element of type Nat and returns whether that
element is zero.

This function is defined by pattern-matching:

isZero :: Nat -> Bool
isZero (S x) = False
isZero Z = True

1. Define a function toInt that converts a natural number into an integer.
2. Define a (recursive) function oddN that tests whether a natural number is odd.

3. Redefine the function oddN using toInt and odd.

Parametric Types

Inductive types can be used to define parametric types.

For a given type a, the type Maybe a is defined as

data Maybe a = Nothing | Just a

Note that Maybe is not a type — it is a type constructor, for it takes a type and yields
a type.
The type Maybe a can be used to represent the result of a partial function.

‘ Using pattern matching, define a function that adds two elements of type Maybe Int.

An example of a recursive and parametric type is that of binary trees whose nodes are
of some type a:

data BinTree a = Null | T a (BinTree a) (BinTree a)

1. Define the function inorder :: BinTree a -> [a] that returns the list of

elements of a tree.

2. Using pattern matching, define a recursive function that sums the nodes of a
binary tree of integers.

3. Redefine the previous function so that it can be used to add the elements of a
binary tree of Maybe Ints.

4. Similarly to what happens with the function foldr, define a higher order func-
tion foldBtree that can be used in the definition of the two functions above.

In order to simulate a change giving machine (in PTEs) we will use the type Coins
and the list values defined as.

type Coins = [Int]
values [200,100, 50, 20, 10, 5, 1]

Each element of type Coins will represent the number of each of the coins available.
Thus [1,0,2,0,0,1,3] means 1 coin of 200 PTEs, 2 coins of 50, 1 coin of 5, and
3 coins of 1.

1. Define the functions that add and subtract two elements of type Coins.

2. Define the function amount :: Coins -> Int that computes the amount of
money corresponding to a set of coins.

3. Define a function payment :: Coins -> Integer -> Maybe Coins that
simulates the payment of a certain amount using a particular set of coins. The
result is the set of coins used (the fact that it is Maybe Coins explicits the fact
that the payment may not be possible).

The fact that HASKELL is a lazy language, allows us to define infinite structures.
For instance, [0..] represents the list of all natural numbers, whereas [x | x <-
[0..1, odd x] represents the list of all odd numbers. Define a function that com-
putes all prime numbers.

Classes

One way to understand classes in HASKELL is to view them as types of types. Another
possible approach is to talk about classes as a means of expressing (ad-hoc) polymor-
phism.

Use Huas to compute the following expressions (make sure that HUGS prints out the
type of the computed expressions):

e 3+ 4

e 3.0+ 4.0

e (3::Integer) + 4

What is then the type of the function +7 After all, it can be used to

e add two Ints yielding an Int,
e add two Doubles yielding a Double,

e add two Integers yielding an Integer,

But you cannot compute *a’+’b’.

One way to solve this problem is to group types into classes, in the same way that
expressions were grouped into types.

When asking Huas for the type of + we get the following answer:

Prelude> :t (+)
(#) :: Num a => a -> a -> a
Prelude>

This answer should be read as + is a function that takes two elements of a type a and
returns an element of the same type a, for every type a which is an instance of the class
Num.

The declaration of a class in HASKELL is done using the keyword class, and by enu-
merating all the functions that should be available for the instances of that class.

For instance, one of the simplest (and more used) classes in HASKELL is the class Eq,
defined as

class Eq a where
(==) :: a > a -> Bool
(/=) :: a -> a -> Bool

This definition should be read as

For a type a to be an instance of class Eq there must exist functions

== :: a -> a -> Bool
/= :: a ->a -> Bool

In order to state that a particular type is an instance of the class Eq, one needs to
explicit the way in which elements of that type are compared. For instance, to declare
that the type Maybe Int is an instance of the class Eq, one might type the following:

instance Eq (Maybe Int) where
Nothing == Nothing = True
(Just x) == (Just y) = (x ==y)

False

x /=y =not (x ==y)
Note that, in the third line of this definition, there are two occurrences of ==

e the first refers to the function that we are defining — comparison of elements of
type Maybe Int

e the second refers to the comparison of elements of type Int (which is an instance
of this same class!).

This definition would work not only for the type Maybe Int but for any type Maybe a,
provided that the type a is itself an instance of Eq. We can say this with the following
definition:

instance (Eq a) => Eq (Maybe a) where
Nothing == Nothing = True
(Just x) == (Just y) = (x ==y)
False

x /=y =not (x ==y)

10

Consider the following definition

class Set s where

empty i1 s a

isEmpty :: s a -> Bool
singleton :: a -> s a

union 1t sa->sa->sa
member i a->s a -> Bool
choice i sa->(a, s a)

1. Lists can be used as sets.
data SetsasLists a = SL [a]
Complete the following definition

instance Set SetasLists where

2. Lists without duplicates can also be seen as sets. How would you change the
previous definitions to define this instance?

3. Complete the following definition:

instance (Eq a) => Eq (SetasLists a) where

Monads

The class Monad is defined in HASKELL as

class Monad m where

return :: a -> m a
(>>=) :::ma->((Mb->mb) ->mbd
>>) ::ma->mb->mb

x> y=3x>>=(N\a-—>y
Note that this is a constructor class (as opposed to a type class like Eq) — its instances
are type constructors.
The operation >>= is usually called bind.

One way to understand the use of monads in functional programming is to see an
expression of type M a (for some monadic type constructor M) represents a computation
of type a. Under this point of view, the operations available can be interpreted as

e return x represents a computation whose result is x

e given a computation ¢ (of type a) and a function f that takes an element of type
a and performs a computation of type b, the expression

11

c >>=f

is the computation that starts by performing computation c, and then performs
the computation £ x where x is the result of the computation c.

e the operation >> is similar to the previous one, except that the intermediate value
(x) is ignored.

Let’s start with the simplest way to represent a computation:

data Id a = a -- This is not valid Haskell code
instance Monad Id where

return x = X

x >»>=f =fx

This corresponds to the classical view of computations in functional programming —
executing a computation corresponds to the evaluation of a normal form.

In the next case, a computation may yield a value of a certain type a, or give no result
at all. An appropriate type for this is the type Maybe a defined above. The definition
of Maybe as a monadic constructor is as follows:

instance Monad Maybe where
-- return :: a -> Maybe a
return a = Just a
-— (>>=) (Maybe a) -> (a -> (Maybe b)) -> Maybe b
Nothing >>= _ = Nothing
(Just x) >>=f = f x

The natural generalization to this example is to think of non-deterministic computations
— that can yield a finite number of results. Lists are a good candidate for this type. The
list constructor can be seen as monadic with the following definitions:

instance Monad [] where -- This is not valid Haskell
-— return :: a -> [a]
return x = [x]
(>>=) :: [a] -> (a -> [b]) -> [b]
1 >>=f = concat (map f 1)

There is in HASKELL a syntactic alternative to the use of the operators >>= and >>.
This alternative is inspired in the definition of lists by compreenshion.

Instead of writing something of the form:
cl >»=(\ x >
c2 >>
c3 >»= (\ z -> £)))

one can write

12

do { x <-cl;
c2 ;
z <- ¢3 ;

}

One final example is that of computations with an internal state. This can be achieved
by using state transition systems

data StTransf state value = T (state -> (value, state))
The constructor StTransf state can be defined as an instance of the class Monad:

instance Monad (StTransf state)
where return a = T (\x > (a,x))
(T £) >>=g)
=T (\s -> let (a,s’)
T fun
in fun s’)

fs
g a

Let us now use this monad in a very simple way — the state will only keep track of the
number of additions made.

-- Basic operations

add ab =T (\s => ((a+b), s+1))

sub a b add a (-b)

mult 0 b = return 0O

mult (n+1) b = do { x <- mult n b ;
add x b

—-- interrogations
state = T (\s -> (s, 8))
resetstate = T (\s —> ((),0))

The use of these basic operations is very simple and resembles an imperative program:

progl = do { x <- add 3 4 ;
y <- mult 3 x ;

z <- add x y
z <-add z 1 ;
return z

¥
The type of this program can be checked using HuGs:

Main> :t progil
progl :: StTransf Int Int

13

To execute this program, we have to provide an initial state:
execute (T program) = program 0
Let’s test the behaviour of progi

Main> execute progl
(29,6)

Meaning that the returned value is 29 and that the final state is 6.

Change the above example so that the state will keep also track of the smallest
computed number.

An important application of monads in HASKELL is the input/output. In this viewpoint,
an interactive program is just a computation that may perform some I/O. The type I0
a pre-defined in HASKELL, reflects this idea — an element of this type is a program that
performs some I/O and returns a value of type a. The type constructor I0 may be
defined as an instance of Monad:

e return x is the computation that performs no I/O at all and returns the value x

e pl >>= f is the program that starts by performing the p1’s I/O and then performs

the I/O correspondent to f x, where x is the value returned by p1. In a certain way,

this operation corresponds to the sequential composition of interactive programs.
The following are pre-defined functions in HASKELL:

e putChar :: Char -> I0 ()

e getChar :: I0 Char

Define the following (pre-defined) functions:

1. putStrLn :: String -> I0 ()
2. getLine :: IO String
References

[1] Paul Hudak and Joseph H. Fasel. A Gentle Introduction to Haskell. Technical report,
Department of Computer Science, Yale University, 1992.

14

