Two Dozen Short Lessonsin Haskell

aparticipatory textbook on functional programming
by

Rex Page
School of Computer Science
University of Oklahoma

Copyright © 1995, 1996, 1997 by Ré&age

Permission to cgpand use this document for educational or research purposes of a
non-commercial nature is hereby grantedyjated that this cogright notice is
retained on all copies. All other rights resshby authaor

Rex Page

School of Computer Science
University of Oklahoma

200 Felgr Street — EL114
Norman OK 73019

USA

page@ou.edu

Table of Contents

OSSO How To Use This Book

e ssee e Hello World, Etc. 1
L0. e ttetieee ettt Definitions 2
Lottt How to Run Haskell Programs 3
I S Computations on Sequences — List Comprehensions 4
2Lttt Function Composition and Currying 5
25, i Patterns of Computation — Composition, Folding, and Mapping 6
< OO Types 7
BT ettt Function Types, Classes, and Polymorphism 8
B2, Types of Curried Forms and Higher Order Functions 9
BB..ooerieeeirreisissesssnes st Private Definitions — the where-clause 10
Bttt et Tuples 11
Y The Class of Numbers 12
S Iteration and the Common Patterns of Repetition 13
Truncating Sequences and Lazy Evaluation 14
.. Encapsulation — modules 15

T eeeeeeeoeeeeeeeeeeeese e essseee e eessseee e Definitions with Alternatives 16
... Modules as Libraries 1.7
Interactive Keyboard Input and Screen Output 18

.. Interactive Programs with File Input/Outout 19
L0 SO Fractional Numbers 20
102 ettt Patterns as Formal Parameters 21
Recursion 22

TR Ifs, Lets and Unlimited Interactive Input 23
122ttt Algebraic Types 24
1 Appendix — Some Useful Modules

Table of Contents

How To Use This Book

The book is spiral bound, to lie flat, so you can put it on a desk or table and write notes ir
You're supposed to evk out answers to questions and write them directly in the bosla fiar-
ticipatory text — a sort of cross between atteook and a wrkbook. It doesr’have as may
questions as a typicaloskbook, lut it does ask you to interrupt your reading, think about a
tion, and write an answer directly in the book before proceeding.

You write these answers as you study pages with numbersQlor 27Q. The back of the pa¢
will have the same numhemt with an A instead of a Q.ov will find the answers on these A
numbered pagesnfto work through a full Q-page before looking at the answers.

You will find several kinds of material on Q-pages:

¢ commentary explaining concepts and terms
Ordinary text, like what you are reading woNo special markings.
« definitions of terms, which associate names widhues or formulas
HaskeLL Derinmion s msg = "Hello World"
« commandstelling the Haskll system to maka computation
HASKELL COMMAND » TEVErse msg
« responsedrom the Haskll system to commands, reporting results of computations
HaskeLL Resonse e "dIroW olleH"
« questionsasking you to write in a definition, command, or response thakdvappropri-
ately complete the surrounding coxite

¢ HASKELL DEFINITION ? [Here you would write the definitiansg= "Hello World"]

HASKELL COMMAND * FEVErSe msg
HaskeLL Response« "dIroW olleH"
HaskeLL Commanp s msg ++ " Wide Web"

¢ HASKELL RESPONSE ? [Here you would write theesponséHello World Wide Web"]

Commentary explains principles of program design and construction, the form and meani
elements of HasMl, the programming language of thenkbook, and other concepts and funi
mentals. ¥u will learn these ideas through reading, lookingkatples, thinking, and prac-
tice—mostly practice. The idea of th@skbook is that you practice byorking out answers to
the questions that appear in thetten Q-pages, and checking thenaiagt answers, pvided on
A-pages. ¥u will also deelop complete programs on yowrm, often by applying portions of
programs defined in thextein different ways to describe mecomputations.

Definitions assign meanings to terms. Vhare written in the syntax of the programming lan-
guage Has#dl. Terms, once defined, can be used in the definitions of otheelHeskns or in
commands to the Hasl system. Definitions in theavkbook are flagged with a special mark
the b@inning of the lineHaskeLL Derivimion « Sometimes definitions will be left blank on Q-page
and flagged with a mark kkordinary definitions,ut surrounded by question-marks

(¢ HaskewL DeFnimion ?) and with a little gtra space. These agieestions about definitions They are
the ones you are supposed tarkvout on your wn. Write your answers on the Q-page, and w
you have finished the page, look at the A-page and compare your answers to the ones yo
there.

How To Use This Book 1

Commands are formulas made up of combinations of terms. The é¢lleskstem must he some

way of interpreting these terms, of course.yrtl be terms that you hva defined or terms that

are intrinsic in the language—predefined terms, in otloedsv The Haskl system responds to
commands by making the computation specified in the formula (that is, the command) and report-
ing the results. Lig definitions, commands in thevkbook are flagged with a special mark at the
beginning of the lineHaskeLL Comvano « Some commands ha been left blank and flagged with the
mark ; HaskeLL Comuanp ? These arguestions about commands. You are supposed to figure out

what command wuld delver the response that folls it, using the terms thatvebeen defined.

Write your answers on the Q-page, and when yoe finished the page, compare your answers

to those supplied on the A-page.

Responses are the results that the Hatlksystem deliers when it carries out commands.
Responses, too, are flagged in tfewkkook with a special mark at thegirening of the line:

HaskeLL Response « Some responses are left blank on Q-pages, and flagged with the special mark
¢ HAskeLL Response ? These arguestions about responses. You should try to wrk out the response
that the Has#ll system wuld deliver to the command that precedes the response-question, con-
sidering the terms that Y been defined. Write your answers on the Q-page, and whenvyeou ha
finished the page, compare your answers to those supplied on the A-page.

definitions Programmers prade definitions.
Programs are collections of definitions.

commands People using programs enter commands.

responses The Haskll system deliers responses by performing
computations specified in commands, using definitior
provided by programmers.

Here is an xample of a question that might appear on a Q-page:
HASKELL CoMMAND ® 2 + 2

¢ HASKELL RESPONSE ? [Make a guess about the response and write it here]

This question asks you toork out the Hashll systems$ response to the comma2weR. You dont
know Haslell at this point, so you will hee to guess at an answghis is typical. Most of the
time you von't know the answer for certainubyou will knov enough to maka good guess.

In this case, Haglll responds witld, the sum oR and2, as you wuld probably guess. Mgn
numeric operations are predefined in Haiskntrinsic to the language. The addition operatign (
and a notation for numberg, (for exkample) are intrinsic: Hasgk knows haw to interpret *+” and
“2", so they do not hae to be defined in Hask programs.

Make some kind of guess at an answer for each questiemyehen you feel & you dort know
enough to mak a correct answeometimes you will hee the right idea,ven though you may

not get all the detailsxactly right. By comparing your answers to the correct ones and taking note
of the diferences, you will gradually learn bits and details about élbakd about programming
principles that will enable you to construct programs entirely on ywaor o

How To Use This Book 2

Hereis another question, thistime calling for a definition rather than a response:

¢ HASKELL DEFINITION ?

HASKELL COMMAND * X + 2
HASKELL RESPONSE* 5

don’t peek — use three-minute rule

Make some kind of stab at an answer to each ques-
tion and write it down Force yourself. If you don’'t
do this, you may fall into the easy trap of taking a
quick peek at part of the answer to give yourself a
jump start. Thiswill speed up your reading, but slow
down your learning.

Give yourself three minutes to think of an answer. If
you think for three minutes and still don’'t have a
good one, write in your best guess, then review your
thinking when you turn the page to see the answer.

[Guess a definition and write it he}

In this case, the necessary definitionisx = 3. You
probably had some difficulty guessing this one
because you didn’t know the form of Haskell defi-
nitions. But, you may have realized, after some
thought, that the term x needed to be defined; oth-
erwise, it would be hard to make sense of the com-
mand x + 2. And, you could tell from the
response, 5, that x needed to be 3 to make the for-
mulawork out. You might have guessed some-
thing likeor Setx =3 or Letx be 3orx:=3or
some other form of expressing the idea that x

Warning!

Try to ignore what you have learned about conventional, procedural, programming
languages, such as Pascal, C, or Fortran. Most of the concepts you learned about
conventional programming will impede your learning the principles of program-
ming in alanguage like Haskell. Haskell follows an entirely different model of com-
putation. Trying to understand Haskell programs in procedural termsis, at this
point, awaste of time and effort—confusing, frustrating, and definitely counter-pro-
ductive. The time for that is when you take ajunior- or senior-level coursein pro-
gramming languages.

For now, start fresh! Think about new things. You will be dealing with equations
and formulas, not those step-by-step recipes that you may have learned about
before. You will reason as you would if your were solving problemsin algebra. That
other stuff is more like telling someone how to do long division.

should be associated with the number 3. If so,
count yourself correct, make note of the particular way thisideais expressed in Haskell, and move
on. If not, try to incorporate the idea into the set of things you know about Haskell, and move on..

Theimportant thing is to keep moving on. Eventually you will get better at this.

Sometimes many things will click into place at once, and sometimes your learning will bein little
bits at atime. Your greatest frustrations will come when you try to construct programs on your
own because programming language systems, Haskell included, are unbelievably intolerant of
minor errors. One comma out of place and the whole program is kaput.

Thismay be the first timein your life you've had to deal with such an extreme level of inflexibil-
ity. Unfortunately, you'll just have to get used to it. Computer systems are more tolerant now than
they were twenty years ago, and they’ll be more tolerant twenty years from now than they are
today, but it may be a very long time before they are as tolerant as even the most nit-picky teacher
you ever crossed paths with.

Itisagood ideato write commentsin the Haskell Reporf

workbook about how your answer com-
pared to the correct one—what was right
about it and what waswrong. This prac-
tice gives you a chance to reflect on your
process of reasoning and to improve
your understanding of the concepts the
workbook talks about.

How To Use This Book

Occasionally, you will need to refer to the Report on the Rr-
gramming Languge Haslell, \erstion 1.3 by John Peterson
and thirteen other authors, available through the Internet. Look
for the official definition in the Yale Haskell Project’sweb site
(http://www.cs.yale.edu). The Reportis alanguage definition,
so it’s terse and precise — not fun to read, but useful, and you
need to learn how to read thiskind of stuff. You will not need it
in the beginning, but more and more as you progress.

How To Use This Book

Hello Worla, Etc. 1

Haskell includes several types of intrinsic data. This chapter makes use of two of them: character
strings (sequences of letters, digits, and other characters) and Booleans (True/False data).

HaskeLL Commanp e “"Hello World"

¢ HASKELL RESPONSE ?

In aHaskell formula, a sequence of characters enclosed in quotation-marks denotes a dataitem
consisting of the characters between the quotation-marks, in sequence. Such adataitemiscalled
astring.

For example, "Hello World" denotes the string containing the eleven characters capital-H, lower-
case-e, and so on through lower-case-d. That'sfive letters, aspace, and then five more letters. The
quotation-marks don’t count—they are part of the notation, but not part of the string itself.

A Haskell command is aformula, written in the syntax of the Haskell language. When a Haskell
command is astring (a particularly simple formula), the Haskell system responds with a message
denoting the characters in that string, just as the string would be denoted in a Haskell formula.

Haskell’s response to the command "Imagine whirled peas." would be a message consisting of a
sequence of characters, beginning with a quotation mark, then capital-1, then lower-case-m,
lower-case-a, and so on through lower-case-s, period, and finally aclosing quotation mark. That's
seven letters, a space, seven more |etters, another space, four more letters, and then a period, all
enclosed in quotation marks—the twenty-one characters of the string, plus two quotation marks
enclosing it.

HaskeLL Commanp "Imagine whirled peas."

HaskeLL Response - "Imagine whirled peas.”

So, now you know how to represent one kind of data, sequences of characters, in a notation that
the Haskell system understands, and you know that a dataitem of thiskind is called astring. You
might be wondering what you can do with thiskind of data. What kinds of computations can
Haskell programs describe that use strings?

Haskell’s intrinsic definitions include some operations that generate new character strings from
old ones. One of these defines a transformation that reverses the order of the charactersin a string.

HaskeLL Commanp s reverse "small paws"
¢ HASKELL RESPONSE ?

In this example, the Haskell command is a the string delivered by the transformation reverse,
operating on the string "small paws". So, the command reduces to a string, just as before, but this
time the command formula describes the string in terms of a dataitem ("small paws") and a
transformation applied to that item (reverse), which produces another string (“swap llams"). Itis

1 Hello World, Etc. 5Q

character strings — a type of data

Sequences of characters are denoted, in Haskell, by enclosing the sequencein a
pair of quotation-marks. Such a sequence can include | etters, digits, characters
like spaces, punctuation marks, ampersands — basically any character you can
type at the keyboard, and even afew more that you'll learn how to denotein

Haskell later.
"Ringo” five-character string, al of which are letters
"@$H& 4" seven-character string, none of which are letters

the string delivered by this transformation, in other words the result produced by making the com-
putation specified in the formula, that becomes the Haskell response, and the Haskell system dis-
plays that response string in the same form the string would take if it were acommand — that is,
with the surrounding quotation marks.

HaskeLL ComvanD e "swap llams"
HaskeLL Response e "swap llams"
Similarly, the command
HaskeLL Coumanp e reverse “aerobatiC"
would lead to the response
HaskeLL Response s "Citabrea"
Work out the following commands and responses.
HASKELL CoumanD » reverse "too hot to hoot"
¢ HASKELL RESPONSE ?
¢ HASKELL COMMAND ?
HaskeLL Response s "nibor & namtab”
¢ HASKELL COMMAND ?
Haskee Responsee "ABLE WAS | ERE | SAW ELBA"
L use reverse to form these commands
Another intrinsic definition in Haskell permits comparison of strings for equality.
HaskeLL Commanp e "ABLE" == reverse "ELBA"
¢ HASKELL RESPONSE ?
The command in this example uses a formula that involves two operations, string reversal
(reverse) and equality comparison (==). Previous commands have used only one operation (or
none), so that makes this one a bit more complex. Combinations of multiple operations in formu-
lasis one way Haskell can express complex computations.
The equality comparison operator reports that two strings are equal when they contain exactly the
same characters in exactly the same order. If they are the same, in this sense, the equality compar-
1 Hello World, Etc. 6Q

6a

10
11
12
13
14

15
16

ison operator deliversthe value True asitsresult; otherwise, that is when the strings are different,
it delivers the value False. True/False values are not strings, so they are denoted differently —
without quotation marks. The value denoted by "True" isastring, but the value denoted by True is
not astring. It is another kind of data, known as Boolean data. The quotation marks distinguish
one type from the other in Haskell formulas.

operations vs. functions

In the deepest sense, this textbook uses the terms operation and function
synonymously. Both terms refer to entities that build new data from old
data, performing some transformation along the way (for example, the addi-
tion operation takes two numbers and computes their sum). However, the
textbook does distinguish between operators and functions in three superfi-
cia ways:

1 function names are made up of letters, or letters and digitsin afew
cases, while operator symbols contain charactersthat are neither letters
nor digits

2 thedataitemsthat functions transform are called arguments, while the
data items that operators transform are called operands

3 operators, when they have two operands (which ismost of thetime), are
placed between the operands (as in a+b), while functions always pre-
cede their arguments (asin sin x).

Here are some examples:

HaskeLL Commanp e “"plain” == "plane”

HaskeLL Response» False

HaskeLL Commanp e "WAS" == reverse "SAW"
HAsKeLL Responsee — True

HaskeLL Commanp e “"charlie horse" == "Charlie horse"

HaskeLL Response e False

HaskeLL Commanp e “watch for spaces " == "watch for spaces”
HaskeLL Response s False

HaskeLL Commanp e "count spaces” == "count spaces"

HaskeLL Response e False

Asyou can see from the examples, equality comparison is case sensitive: upper-case letters are
different from lower-case |etters and equality comparison delivers the value False when it com-
pares an upper-case letter to alower-case letter. So, the following comparison delivers the result
False, even though the only difference between the strings is that one of the lower-case lettersin
thefirst oneis capitalized in the second one.

HASKeLL Commanp» "mosaic” == "Mosaic"
HaskeLL Response e False

In addition, blanks are charactersin their own right: equality comparison doesn’t skip them when
it compares strings. So, the following comparison delivers the result False, even though the only

1 Hello World, Etc. 7Q

difference between the stringsis that one has a blank in the fifth character position, and the other
omits the blank.

HaskeLL Coumanp e "surf ace" == "surface™
HaskeLL Response e False
Even ablank at the end of one of the strings, or at the beginning, makes the comparison result
False.
HaskeLL Coumanp e "end space " == "end space"
HaskeLL Response e False
The number of blanks matters, too. If one string has two blanks where another hasfour, the strings
are not equal.
HaskeLL Coumanp e "'Ste reo™ == "ste reo"
HASKELL RESPONSE False
Remember! Two strings are the same only if both strings contain exactly the same charactersin
exactly the same relative positions within the strings. All this may seem like a bunch of minor
technicalities, but it isthe sort of detail you need to pay careful attention to if you want to succeed
in the enterprise of software construction.
Boolean — another type of data
True and False are the symbols Haskell uses to denote logic values, another
kind of data (besides strings) that Haskell can deal with. The operation that
compares two strings and reports whether or not they are the same (==) delivers
avalue of thistype, which is known as Boolean data. A Boolean dataitem will
always be either the value True or the value False.
Work out responses to the following commands.
HaskeLL Comvanp e “planet" == "PLANET"
¢ HASKELL RESPONSE ?
HaskeLL Couvann e "ERE" == "ERE"
¢ HASKELL RESPONSE ?
HaskeLL Comvanp e "Chicago" == reverse "ogacihc"
¢ HASKELL RESPONSE ?
HaskeLL Coumanp e "Chicago" == reverse "ogacihC"
¢ HASKELL RESPONSE ?
1 Hello World, Etc. 8Q

37
38

39
40

41
42

33
34
27
28
29
30
31
32

precedence — order of operations in multi-operatiarrifulas

To understand formulas combining more than one operation, one must know
which portions of the formula are associated with which operations. Haskell
computes formulas by first applying each function to the arguments following
it. The valuesthat result from these computations then become operands for the
operators in the formula. Parentheses can be used to override (or confirm) this
intrinsic order of computation.

Defi nitions 2

HASKELL DEFINITION ®

HASKELL COMMAND ©

leads to the response

HASKELL RESPONSE *

just as the command

HASKELL COMMAND ©
HASKELL RESPONSE *

HaskeLL Commanp e reverse "ELBA" == "ABLE" 43
means the same thing as

HaskeLL Coumanp e (reverse "ELBA") == "ABLE" 44
but does not have the same meaning as

HaskeLL Coumanp e reverse ("ABLE" == "ELBA") 45
In Haskell formulas, functions are always grouped with their arguments before
operations are grouped with their operands. Operators also have special prece-
dence rules, which will be discussed as the operators are introduced..

Review Questions

1 How doesthe Haskell system respond to the following command?
HaskeLL Commanp » reverse "Rambutan”
a "Natubmar"
b "tanbuRam"
¢ "Nambutar"
d natubmaR

2 How about this one?
HaskeLL Commanp e “frame" == reverse "emarf"
a True
a False
b Yes
c assignsemarf, reversed, to frame

3 Andthisone?
HaskeLL Commanp s "toh oot" == (reverse "too hot")
a True
b False
c Yes
d no response — improper command

4 And, finaly, this one?

HaskeLL Commanp s reverse ("too hot" == "to hoot")
a True
b False
c Yes
d no response — improper command

1 Hello World, Etc.

€Q

shortPalindrome = "ERE"

associates the name shortPalindrome with the string "ERE". This definition makes the name
shortPalindrome eguivalent to the string "ERE" in any formula

S0, in the presence of this definition, the command

shortPalindrome

"ERE"

"ERE"
"ERE"

would lead to that response.

Haskell definitions are written as equations. These equations associate a name on the left-hand-
side of the equals-sign with a formula on the right-hand-side. For example, the equation

It's as simple as that! To get used to the idea, practice with it by working through the following

guestions.

HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ©

HASKELL COMMAND ©
¢ HASKELL RESPONSE ?
HASKELL COMMAND ©
¢ HASKELL RESPONSE ?
HASKELL COMMAND ©
¢ HASKELL RESPONSE ?
HASKELL COMMAND ©
¢ HASKELL RESPONSE ?
HASKELL COMMAND ©
¢ HASKELL RESPONSE ?
HASKELL COMMAND ©
¢ HASKELL RESPONSE ?

2 Définitions

shortPalindrome = "ERE"

longPalindrome = "ABLE WAS | ERE | SAW ELBA"
notPalindrome = "ABLE WAS | ERE | SAW CHICAGO"
squashedPalindrome = "toohottohoot"
spacedPalindrome = "too hot to hoot"

longPalindrome

reverse notPalindrome

longPalindrome == reverse longPalindrome

notPalindrome == reverse notPalindrome

longPalindrome == shortPalindrome

reverse squashedPalindrome == squashedPalindrome

10Q

3.cl

3.c2

HaskeLL Commanp e "ABLE WAS | ERE | SAW ELBA" == spacedPalindrome
¢ HASKELL RESPONSE ?
¢ HASKELL DEFINITION ?
HaskeLL Commanp + defineThisName
HaskeLL Response e "Get this response.”
WEell, actually it can get alittle more complicated.

Definitions may simply attach names to formulas, asin the previous examples. Or, definitions
may be parameterized.

A paramerterized definition associates a function name and one or more parameter names with a
formula combining the parameters in some way. Other formulas can make use of a parameterized
definition by supplying values for its parameters. Those values specidize the formula. That is,
they convert it from a generalized formulain which the parameters might represent any value, to a
specific formula, in which the parameters are replaced by the supplied values.

For example, the following parameterized definition establishes a function that computes the
value True if its parameter is associated with a palindrome, and False if its parameter is not a pal-
indrome.

palindrome
aword or phrase that reads the same backwards as forwards

Normally, punctuation, spaces, and capitalization and the like are ignored in
deciding whether or not a phrase is a palindrome. For example, “Madam, I’'m
Adam” would be regarded as a palindrome. Eventually, you will learn about a
Haskell program that recognizes palindromes in this sense — but not in this
chapter. In this chapter, only strings that are exactly the same backwards asfor-
wards, without ignoring punctuation, capitalization and the like, will be recog-
nized as palindromes: “toot” is, “Madam” isn't, at least in this chapter.

HaskeLL Derinimion e isPalindrome phrase = (phrase == reverse phrase)

This defines a function, named isPalindrome, with one parameter, named phrase. The equation
that establishes this definition says that an invocation of the function, which will take the form
isPalindrome phrase, where phrase stands for a string, means the same thing as the result
obtained by comparing the string phrase stands for to its reverse (phrase == reverse phrase).
Thisresult is, of course, either True or False (that is, the result is a Boolean value).

HaskeLL Commann » isPalindrome "ERE"

HASKELL RESPONSE* ~ True

HaskerL Commanp e isPalindrome "CHICAGO"
HaskeLL Response False

HaskeLL Commanp » isPalindrome longPalindrome
HASKELL REsPoNsE True

The command isPalindrome longPalindrome, makes use of the definition of longPalindrome
that appeared earlier in the chapter. For this to work, both definitions would need to be in the

2 Definitions 11Q

Haskell script that is active when the command isissued. In this case, the name longPalindrome
denotes the string "ABLE WAS | ERE | SAW ELBA", that was established in the definition:

HaskewL Derivimion » — longPalindrome = "ABLE WAS | ERE | SAW ELBA"
Continuing to assume that all definitionsin this chapter are in effect, answer the following ques-
tions.
HaskeLL Comvanp » isPalindrome shortPalindrome
¢ HASKELL RESPONSE ?
HaskeLL Coumanp» isSPalindrome notPalindrome
¢ HASKELL RESPONSE ?
HaskeLL Comvanp » isPalindrome squashedPalindrome
¢ HASKELL RESPONSE ?
HaskeLL Coumanp « isPalindrome (reverse shortPalindrome)
¢ HASKELL RESPONSE ?
The command isPalindrome(reverse Palindrome) illustrates, again, the notion of using more
than one function in the same formula. The previous example of such acombination used only the
intrinsic operations of comparison (==) and reversal (reverse). The present example uses a func-
tion established in a definition (isPalindrome) in combination with an intrinsic one (reverse).
The formula uses parentheses to group parts of the formula together into subformulas. The paren-
theses are needed in this case because Haskell's rules for evaluating formulas require it to associ-
ate a function with the argument immediately following it.
By thisrule,
isPalindrome reverse shortPalindrome
would mean
(isPalindrome reverse) shortPalindrome
rather than
isPalindrome (reverse shortPalindrome).
The parentheses are necessary to get the intended meaning.
Haskell programs = collections adefinitions
Haskell programs are collections of definitions. When you construct software
in Haskell, you will be defining the meaning of a collection of terms. Most of
these terms will be functions, and you will define these functions as parameter-
ized formulas that say what value the function should deliver.
People using a Haskell program write Haskell commands specifying the com-
putation they want the computer to perform. These commands are formulas
written in terms of the functions defined in a program.
Definitions, therefore, form the basis for al software construction in Haskell.
2 Definitions 12Q

30

31
32
33
34
35
36
37
38

Review Questions 3
How to Run Haskell Programs
1 How doesthe Haskell system respond to the following command?
HaskeLL Derinimion e word = reverse "drow" . .) o .
HaskeLL Commanp e Word To fire up the Haskell system from a Unix or Windows system whereiit isinstalled, simply enter
a True the command hugs' or click on the Hugs icon.
b False 0pSys Coumanp e hugs
¢ "word
d “drow" Once fired up, the Haskell system acts like a general-purpose calculator: you enter commands
2 How about this command? from the keyboard and the system responds with results on the screen.
HASKELL DEFINITION !sTrue str = str == ;rI’Ue" . Most of the commands you enter will be fOI’mu|aS, writ- g:“pt
HaskeLL Commanp e isTrue(reverse "Madam, I'm Adam." i i i i) L . .
e () tenin Haskell notation, that request certain computations. | < iiection of definitions written in
b Falee The entities that these formulas refer to (functions and Haskell isknown asascript. Scriptsare
¢ "madAml madam" operators, for example) may t.)ej intrinsicin Haskellz in packaged in files with names ending
d Type error in application which casethey need no definitions (they are predefined), | with the extension .hs (for Haslell
And thi in the definitions ions 1 and 2 have b o) or they may be entities that you or other programmers script) or with .Ihs (for literate Haskell
3 ';_/Ats’(';z)gi;m’?.' ng }s?l'rué)m\;\ll(z)r:'sdm questions 1 and 2 have been magde)? have defined. script). In aliterate Haskell script, only
a e Such definitions are provided in files, and files containing | 1S Peginning with the greater-than
. L - character (>) contain definitions. All
b False acollection of definitions are called scripts. To make a other lines are commentary,
¢ ‘drow” o collection of definitions contained in a script available for :
d Type error in application use in commands, enter aload command. For example, the load command

HaskeLL Coumanp e :load myScript.hs — male definitions irmyScript.hs available
would make the definitions in the file myScript.hs available for use in formulas.

The previous chapter defined names such as longPalindrome and isPalindrome. If thefile
myScript.hs contained these definitions, you could, at this point, use them in commands:

HaskeLL Commanp e longPalindrome ladé
¢ HASKELL RESPONSE ? 1b.d7

HaskeLL Comvanp » isPalindrome "ERE" 1c.d24

HASKELL RESPONSE + ~ True 1lc.d25

If you want to look at or change the definitions in the file myScript.hs, enter the edit command:
HaskeLL Coumanp e :edit — edit the mostecently loaded script

The edit command will open for editing the file that you most recently loaded. At this point you
could change any of the definitionsin the script contained in that file. When you terminate the edit
session, the Haskell system will be ready to accept new commands and will use definitions cur-
rently in thefile, which you may have revised.

1. The Haskell system you will be using is called Hugs. It was originally developed by Mark Jones of the
University of Nottingham. More recent versions have been implemented by Alastair Reid of the Yale
Haskell Project. Hugs stands for the Haskell User's Gofer System. (Gofer is alanguage similar to
Haskell.) Information about Hugs, including installable software for Unix, Windows, and Macintosh sys-
tems, is available on the World Wide Web (http://haskell.systemsz.cs.yale.edu/hugs/). Strictly speaking,
the things we've been calling Haskell commands are commands to the Hugs system.

2 Definitions 13Q 3 How to Run Haskell Programs 14Q

For example, if you had redefined the name longPalindrome during the edit session to giveit a
new value,

HaskeLL Derinmion e longPalindrome = "A man, a plan, a canal. Panama!"
then upon exit from the edit session, the name longPalindrome would have a different value:
HaskeLL Commanp longPalindrome
¢ HASKELL RESPONSE ?

If you find that you need to use additional definitions that are defined in another script, you can
use the also-load command. For example, the also-load command

HaskeLL Commanp ¢ :also yourScript.hs — add definitions igourScript.hs

would add the definitionsin the file yourScript.hs to those
that were already |oaded from the file myScript.hs.

At this point the edit command will open the file your- X :

. . . . X assume that appropriate scripts have been
Script.hs for editing. If you want to edit a different file loaded so that formula-commands have
(mysScript.hs, for example), you will need to specify that | access to the definitions they need.
file as part of the edit command:

implicit :load commands
Commands like :load and :also will be
implicit throughout the text. The text will

HaskeLL Commanp . edit myScript.hs— opens filenyscript.hs for editing

The definitionsin yourScript.hs can define new entities, but they must not attempt to redefine enti-
ties already defined in the file myScript.hs. If you want to use new definitions for certain entities,
you will need to get rid of the old onesfirst. You can do this by issuing aload command without

specifying a script:
HaskeLL Commanp e :load — clears all definitions (ecept intrinsics

After issuing aload command without specifying a script, only intrinsic definitions remain avail-
able. You will have to enter a new load command if you need to use the definitions from a script.

If you want to review thelist of all Haskell commands, enter the help command:
HASKELL COMMAND » ©7?

Thiswill display alist of commands (many of which are not covered in this textbook) and short
explanations of what they do.

To exit from the Haskell system, enter the quit command:
HASKELL CommaND * :qQUIt
This puts your session back under the control of the operating system.

Haskell commands are not part of the Haskell programming language. Haskell scripts contain def-
initions written in the Haskell programming language, and Haskell commands cause the Haskell
system to interpret definitions in scripts to make computations. This is known as the inter active
mode of working with Haskell programs, and this is how the Hugs Haskell system works.

Some Haskell systems do not support direct interaction of thiskind. They require, instead, that the
Haskell script specify the interactions that are to take place. Thisis known as the batch mode of
operation. Haskell systems that operate in batch mode usually require the person using a Haskell
program to first compileit (that is, use a Haskell compiler to translate the script into instructions

3 How to Run Haskell Programs 15Q

directly executable by the computer), then load the instructions generated by the compiler, and
finally run the program (that is, ask the computer to carry out the loaded instructions).

The batch-mode, compile/load/run sequence istypical of most programming language systems.
The Glasgow Haskell Compiler (http://www.dcs.gla.ac.uk/fp/) and the Chalmers Haskell-B Com-
piler (http://www.cs.chalmers.se/~augustss/hbc.html) are alternatives to Hugs that use the batch
mode of operation. So, you can get some experience with that mode at a later time. For now, it's
easier to use the Hugs system’s interactive mode.

Review Questions
4 Thefollowing command
HaskeLL Coumanp e :load script.hs
a loads script.hs into memory
b makes definitionsin script.hs available for use in commands
¢ runsthe commands in script.hs and reports results
d loads new definitionsinto script.hs, replacing the old ones
5 Thefollowing command
HasKeLL Coumanp ¢ :also script2.hs
a loads script.hsinto memory
b addsdefinitionsin script2.hs to those that are available for use in commands
¢ runsthe commandsin script2.hs and reports results
d tellsthe Haskell system that the definitionsin script2.hs are correct
6 A Haskell system working in interactive mode
a interprets commands from the keyboard and responds accordingly
b actslike ageneral-purpose cal culator
c iseasier for novicesto use than a batch-mode system
d all of the above
7 Thefollowing command
HASKELL COMMAND » :?
a initiatesaquery process to help find out what is running on the computer
b asksthe Haskell system to display the results of its calculations
¢ displaysalist of commands and explanations
d al of the above
3 How to Run Haskell Programs 16Q

Computations on Sequences —List Comprehensions 4

Many computations require dealing with sequences of data items. For example, you have seen a
formulathat reverses the order of a sequence of characters. This formulabuilds a new string (that
is, anew sequence of characters) out of an old one. You have also seen formulas that compare
strings. Such aformula delivers a Boolean value (True or False), given apair of strings to com-
pare. And, you saw aformulathat delivered the Boolean value True if a string read the same for-
wards as backwards. All of these formulas dealt with sequences of characters as whole entities.

Sometimes computations need to deal with individual elements of a sequence rather than on the
sequence as awhole. One way to do thisin Haskell is through a notation known as

list comprehension. The notation describes sequences in a manner similar to the way sets are
often described in mathematics.

SET NOTATION (MATH) {x|x O chairs, x is red} —set of red chairs
HASKELL DEFINITION * madam = "Madam, I'm Adam"

HASKELL COMMAND * [c|c<-madam,c/=" "] -- non-blank characters from madam
HASKELL RESPONSE ® "Madam,I'mAdam"

This Haskell command uses list comprehension to describe a sequence of characters coming from
the string called madam. The name madam is defined to be the string "Madam, I'm Adam".

In thislist comprehension, ¢ stands for atypical character in the new sequence that the list com-
prehension is describing (just as x stands for atypica element of the set being described in math-
ematical form). Qualifications that the typical element ¢ must satisfy to be included in the new
sequence are specified after the vertical bar ([), which isusually read as “such that.”

The qudifier c <- madam, known as agenerator, indicates that ¢ runs through the sequence of
charactersin the string called madam, one by one, in the order in which they occur. Thisis anal-
ogous to the phrase x O chairsin the set description, but not quite the same because in sets, the
order of the elementsisirrelevant, while in sequences, ordering is an essential part of the concept.

Finaly, the qualifier c /="' ’ saysthat

comparison meaning in string or only non-blank characters are to be

operation character comparison included in the string being described.
—— equal to This part of the list comprehension is
/= not equal to known asaguard. It isanalogous to the
< less than (al phabetically*) qualifier “x isred” in the mathematical
<= less than or equal to set example; “x isred” indicates what
> greater than kind of chairs are admissible in the set.
>= greater than or equal to The not-equal-to operation (/=) in the

*sort of guard is like equality comparison (==),
but with areversed sense: x /=y is True

when x isnot equal to y and False when x isequal to y.
The blank character isdenoted in Haskell by a blank surrounded by apostrophes. Other characters

4 Computations on Sequences — List Comprehensions 17Q

can be denoted in thisway: ‘&’ stands for the ampersand character, 'x’ for the letter-x, and so on.

characters vs. strings

An individual character is denoted in aHaskell program by that character, itself,
enclosed in apostrophes ('a’ denotes | etter-a, '8’ denotes digit-8, and so on). These
dataitems are not strings. They are a different type of data, atype called Char in
formal Haskell lingo.

Strings are sequences of characters and are of atype called (formally) String. A
string can be made up of several characters ("abcde™), or only one character
("a"), or even no characters (). Individua characters, on the other hand, always
consist of exactly one character.

Sinceindividual characters are not sequences and strings are sequences, 'a’ is not
thesameas"a". In fact, the comparison 'a’=="a" doesn’'t even make sensein
Haskell. The Haskell system cannot compare data of different types

Inyour studies, you will learn agreat deal about distinctions between different
types of data. Making these distinctions is one of Haskell’s most important fea-
tures as a programming language. This makes it possible for Haskell to check for
consistant usage of information throughout a program, and this hel ps program-
mers avoid errors common in languages less mindful of datatypes (the C lan-
guage, for example). Such errors are very subtle, easy to make, and hard to find.

List comprehensions can describe many indentation — ofsides rule
computations on sequencesin astraightfor- | when a definition occupies more then one line, subse-

ward way. The command in the preceding quent lines must be indented. The next definition starts
example produced a string like the string with thelinethat returnsto the indentation level of thefirst
madam, but without its blanks. Thisidea line of the current definition. Programmers use indentation

; ; _ | tovisually bracket conceptual units of their software.
can be packaged in afunction by parameter- || e o thisvisual bracketing, known as the

izing it with respegt tothe 3_” ng to be pro- offsides rule, to mark the beginning and ending of defini-
cessed. Theresult isafunction that produces | tions. Learn to break lines at major operations and line up

astring without blanks, but otherwise the comparable elements vertically to display the components
same as the string supplied as the function’s | of your definitionsin away that brings their interrelation-
argument . ships to the attention of people reading them.

HaskeLL Derinmion e removeBlanks str=[c | c <-str,c/=""]
HaskeLL Derivimion e hot = "too hot to hoot"
HaskeLL Derivmion e napolean = "Able was | ere | saw Elba."”
HaskeLL Derinmion e chicago = "Able was | ere | saw Chicago."
HaskeLL Derinmion e maddog = "He goddam mad dog, eh?"

HaskeLL Coumanp e removeBlanks "Able was 1"
HaskeLL Response s "Ablewasl”

4 Computations on Sequences — List Comprehensions 18Q

\ = there is a space between these apostrophes

HASKELL COMMAND *
¢ HASKELL RESPONSE ?
HASKELL COMMAND ©
¢ HASKELL RESPONSE ?
HASKELL COMMAND ©
¢ HASKELL RESPONSE ?
HASKELL COMMAND ©
¢ HASKELL RESPONSE ?
HASKELL COMMAND ©
¢ HASKELL RESPONSE ?
HASKELL COMMAND ©
¢ HASKELL RESPONSE ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

HASKELL COMMAND *
HASKELL RESPONSE *
HASKELL COMMAND ©
HASKELL RESPONSE ©

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

HASKELL COMMAND ©
HASKELL RESPONSE ©

removeBlanks napolean

removeBlanks "spacedout"

removeBlanks maddog

removeBlanks hot

removeBlanks(reverse chicago)

removeBlanks hot == reverse(removeBlanks hot)

-- function to remove periods (you write it)
removePeriods str =

removePeriods chicago
"Able was | ere | saw Chicago"
removeBlanks(removePeriods chicago)
"AblewaslerelsawChicago"
-- function to remove blanks and periods (you write it)

removeBlanksAndPeriods str =

removeBlanksAndPeriods napolean
"AblewaslerelsawElba"

parameterization is abstraction

In the follawing definition of the namstretchSansBlanks,

HaskeLL Derivmion e stretchSansBlanks =[c|c<-"stretch",c/=" "]

the string whose blanks are being rermis specifiedxlicitly: "stretc h".
This string is a concrete entity

On the other hand, in the folling definition of the functiomemoveBlanks,

HaskeLL Derivmion e removeBlanks str = [c|c<-str,c/=" "]

the string whose blanks are being rermbis the parametstr. This parameter|
is an abstract entity that stands in place of a concrete entity to be specifig)
in a formula that uses the function. In thiaywthe abstract form of the formu
expresses a general idea that can be applied iy diffarent specific cases. I
could as well remee the blanks froMistre tc h"as from'squash"or
from ary other specific string.

The parameterized formulas that occur in function definitiongigean &am-
ple ofabstraction. A parameter is an abstract entity that stands fpcancrete
value of the appropriate type. Abstraction is one of the most important co
in computer science.od will encounter it in mandifferent contgts.

The following function delers a string lik its agument, bt ...

[o RN o RN o 2]

HASKELL DEFINITION ®

h str = [c|c<-reverse str,c<'n’]

written backvards if it starts with a letter in the first half of the alphabet
written backvards and without 8’

written backvards and without letters in the first half of the alphabet
written backvards and without letters in the last half of the alphabet

Do

Which of the follaving equations defines a function that dels a string lik its second gument, bt with no
letters preceding, alphabeticaltiie letter specified by its firstgament?

A HASKELL DEFINITION *
B HASKELL DEFINITION ®
CHASKELL DEFINITION ®
D HASKELL DEFINITION ®

s X str = [c|c<-str,c<x]

S X str = [c|c<-str,c>=X]

s abc str = [c|c <-str, c =="abc"]
s abc str = [c|c <-str, c/="abc"]

Review Questions

1 Thefollowing function delivers
HaskeLL Derinimion e f str = [c | ¢ <-str, c=="X"]
a al thec’sfrom its argument
b anempty string unlessits argument has x’sin it

5 In the follaving definition, the parametstr
HaskeLL Derivmione f str = [c | ¢ <-str, c =="X"]

¢ astring likeits argument, but with x'sin place of ¢'s a represents the letter x
d nothing — it contains atype mismatch, so it has no meaning in Haskell b represents the letter ¢
¢ stands for a sequence o§x’
2 Thefollowing command delivers d stands for a string containing a sequence of characters
HaskeLL Derinmiove @ str = [c| € <-str, ¢ =="X"]
HASKELL CommAND + @ "Xerox copy"
a "c"
b "xx"
c "xerox xopy"
d error — g expects its argument to be a sequence of strings, not a sequence of characters
4 Computations on Sequences — List Comprehensions 19Q 4 Computations on Sequences — List Comprehensions 20Q

Function Composition and Currying 5

The use of more than one function in aformulais known asfunction composition. Thefollowing
formula,

HaskeLL Derinmon e madam = "Madam, I'm Adam."
HaskeLL Commanp e removePeriods(removeBlanks madam)

which removes both periods and blanks from a string called madam, is a composition of the
functions removePeriods and removeBlanks. In this composition, the function removePeri-
ods is applied to the string delivered by the function removeBlanks operating on the argument
madam.

If there were athird function, say removeCommas, then the following composition

HaskeLL Derinimion s removeCommas str = [c | ¢ <- str, ¢ /= "']
HaskeLL Commano e removeCommas(removePeriods(removeBlanks madam))

would apply that function to the string delivered by removePeriods (which in turn operates on
the string delivered by removeBlanks operating on madam). This all works well. It appliesa
simple concept, that of removing a certain character from astring, three times. But, the parenthe-
ses are beginning to get thick. They could become bulky to the point of confusion if the ideawere
extended to put together a command to remove many kinds of punctuation marks.

Fortunately, Haskell provides an operator that alleviates this problem (and lots of other problems
that it istoo early to discuss at this point). The composition of two functions, f and g, say, can be
written asf . g, so that (f . g) X means the same thing as f(g(x)). And, (f . g . h) X means
f(g(h(x))). And so on.

Using this operator, the following formula
HaskeLL Commanp e (removeCommas . removePeriods . removeBlanks) madam

removes blanks, periods, and commas from madam just like the previous formula for that pur-
pose. Thisisalittle easier to look at because it has fewer parentheses, but it has a more important
advantage: it points the way toward a function that removes all punctuation marks.

Of course, one can generalize the preceding formulato a function that will remove blanks, peri-
ods, and commas from any string presented to it as an argument. Thisis done by parameterizing
with respect to the string being processed. Try to write this function yourself, using the function
composition operator (.) and following the form of the preceding command.

-- function to remove blanks, periods, and commas

-- you write this function

¢ HASKELL DEFINITION ?
¢ HaskeLL Derinimion 2 removeBPC str =
¢ HASKELL DEFINITION ?
HaskeLL Commanp e removeBPC madam
HaskeLL Response e "MadamIimAdam”

Actualy, inaformulalike (f. g . h) x, thef. g . h portion is a complete formulain its own right.
It denotes a function that, when applied to the argument x deliversthevalue(f . g . h) x. Itis

5 Function Composition and Currying 21Q

important keep these two things straight: f. g . h isnot thesamethingas (f. g . h) x. Oneisa
function, and the other is avalue delivered by that function.

Thefact that aformulalikef. g . hisafunction in its own right provides a simpler way to write
the function that removes blanks, periods, and commas from a string. This function is simply the
value delivered by the composition of the three functions that each remove one of the characters.
The definition doesn’t need to mention the parameter explicitly. The following definition of
removeBPC is eguivalent to the earlier one (and identical in form, except for the parameter).

HASKELL DEFINITION * -- function to remove blanks, periods, and commas
HaskeLL Derivimion e removeBPC = removeCommas . removePeriods . removeBlanks
HaskeLL Comvanp s removeBPC madam

HaskeLL Responsee "MadamimAdam”

The three functions that remove characters from strings all have similar definitions.

HaskeLL Derinmion e removeBlanks str=[c | c <-str,c/=""]
HaskeLL Derinmion e removePeriods str = [c | ¢ <- str, c /="
HaskeLL Derinmion s removeCommas str = [c | ¢ <- str,c/=",]

The only difference in the formulas defining these functions is the character on the right-hand-
side of the not-equals operation in the guards.

By parameterizing the formula with respect to that character, one can construct a function that
could, potentially (given appropriate arguments) remove any character (period, comma, semico-
lon, apostrophe, . . . whatever) from a string. The function would then have two arguments, the
first representing the character to be removed and the second representing the string to remove
characters from.

-- function to remove character chr from string str
-- you write this function

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION 2 remove chr str =

¢ HASKELL DEFINITION ?
HaskeLL Coumanp e remove ' ' madam -- remove ' ' works just like removeBlanks
HaskeLL Responsee "Madam,I'mAdam."
HaskeLL Coumanp e remove ',' madam -- remove ',' works just like removeCommas
HaskeLL Responsee - "Madam I'm Adam."
HaskeLL Coumanp e remove ',' (remove ' ' madam) -- remove blanks, then commas
HaskeLL Responsee - "Madaml'mAdam”
HaskeLL Coumanp e (remove ', . remove ' ') madam -- using curried references
HaskeLL Response e "Madaml'mAdam."
This new function, remove, is generalizes functions like removeBlanks and removeCommas.
That iswhat parameterization of aformulas does: it makes the formula apply to a more general
class of problems. When a function invocation provides arguments to a function, the arguments
1. To put the same ideain simpler terms, reverse and reverse "Chicago" are not the same thing: reverse
isafunction that operates on one string and delivers another. On the other hand reverse "Chicago" isnot
afunction. Itisastring, namely the string "ogacihC". Thisis another case where you must keep the types
straight: reverse and reverse "Chicago" are different types of things, which implies that they can’t be
the same thing.
5 Function Composition and Currying 22Q

7
5.c2
6.c2

10

12
13

15
16
17

select a particular specia case of the class of problems the function’s parameterized formula can
apply to. The arguments turn the generalized formula back into one of the special cases that the
parameterization generalized.

Asyou can seein the preceding examples, the formularemove ’, ' madam behavesin exactly the
same way as the formularemoveCommas madam. The function remove, has two arguments.
The first argument specifieswhat character to remove and the second is the string whose commas
(or whatever character is specified) are to be removed. On the other hand, the function remove-
Commas has only one argument: the string whose commeas are to be removed. The formula

remove ',

in which the second argument (the string to be processed) is omitted, but in which a specific value
for the first argument (the character to be removed from the string) is supplied, is an example of a
curried invocation® to a function.

Curried invocations are functions in their own right. If you look at the formula defining the func-
tion remove,

HaskeLL Derinmion e remove chr str = [c | ¢ <- str, ¢ /= chr]

and you specidize it by putting a comma-character where the first argument, chr, appearsin the
formula, then you get the formula used to define the function removeCommas:

removeCommas str is defined by the formula [c]lc<-str,c/="]
remove ', str is defined by the same formula [clc<-str,c/="]]

So, the function denoted by the curried invocation remove ’, delivers the same results as the func-
tion removeCommas. It has to, because the two functions are defined by the same formulas.

Since these curried invocations are functions, one can use them in composition. Previously afunc-
tion called removeBPC, the function defined earlier in aformula composing three functions
together,

HASKELL DEFINITION ® -- function to remove blanks, periods, and commas
HaskeLL Derinition e removeBPC = removeCommas . removePeriods . removeBlanks

can be defined equivalently by composing three different curried invocations to the function
remove:

HASKELL DEFINITION ® -- function to remove blanks, periods, and commas
HaskeLL DEFiniTion e removeBPC = remove ', . remove "' . remove "'

The two definitions are equivalent. But, the one using curried invocations to remove, instead of
the three specialized functions, is more compact. One formula defines remove, and the definition
of removeBPC uses this formulain three different ways. This saves writing three separate for-
mulas for the specialized functions, removeBlanks, removePeriods, and removeCommas.

1. After Haskell B. Curry, aprominent logician who, in thefirst half of this century developed many of the
theoretical foundations on which programming languages like Haskell are based. Yes, the language
Haskell was named after Professor Curry.

5 Function Composition and Currying 23Q

Review Questions

1 Given thefollowing definitions of f and g, the following Haskell command delivers

HaskeLL Derinmione f str = [c|c<-str,c=="X"]
HaskeLL DEFINITION @ Str = [C | ¢ <- reverse str,c<'n’]
HaskewL Coumano e f(g "A man, a plan, a canal. Panama!")
a syntax error, unexpected parenthesis
b theempty string
Cc syntax error, type conflict in operands
d o XO0OKRKKXKXKXKXKIKKXKXHKXKXKXXKX

2 Given the above definitions of f and g, and the following definition of teddy, the following command delivers
HaskeLL Derivmion e teddy = "A man, a plan, a canal. Panama!"
HaskeLL Coumano e (f. g) teddy
a syntax error, unexpected parenthesis
b theempty string
Cc syntax error, type conflict in operands
d o XXRXXXXXXXXKXIKXKKXKKXXKXKKXXKXK

3 Given the above definitions of f, g, and teddy, the following Haskell command delivers

HaskeLL Coumanne (f . g) teddy == f(g teddy)
a syntax error, unexpected parenthesis
b theempty string
c True
d o XXXXRXXXXXKXXKXKKXKKXXKXXKKXKK

4 What would be the answer to the preceding question if, in the definitions of f and g, the sense of all the compari-

sons had been reversed (not equals instead of equals, less-than instead of greater-than-or-equal, etc.)?
a syntax error, unexpected parenthesis

b theempty string

c True

d o XXRXXRXKXXKKXKKXKKXKKXXKIXKKXKK

5 If equals isafunction that requires two arguments, then equals 'x’ isafunction that requires
a noarguments
b oneargument
c two arguments
d three arguments

5 Function Composition and Currying 24Q

Patterns of Computation —Composition, F olding, and Mapping 6

Function composition provides away to build acomposite function that has the effect of applying
several individua functionsin sequence. An example you have aready seen involves removing
various characters from a string by applying, one after another, functions that each specializein
removing a particular character.

HaskeLL Commanp e (remove ', . remove "' . remove ') "Madam, I'm Adam."
HaskeLL Response e "Madaml'mAdam”

To carry out the preceding command, Haskell

. - - patterns of computation
constructs a composite function from three indi-

Composition of functions, which applies a succession

An argument to be processed by such an assembly line first passes through the first function in the
assembly line (which is the rightmost function in the composition), and the result that the right-
most function deliers is passed along to thexhinction in theassembly line, and so onwlo

the line until the final result pops out the other end. The assembly line comes Vingdaeeral
functions arranged in a sequence and inserting the composition operator between each adjacent
pair of functions in the sequences:

forming an assembly linedm functionsf, g, andh: f.g.h

There is an intrinsic functioipldrl, in
Haslell that inserts a gen operation betweer
adjacent elements in avgh sequence. (Actut foldrl (0) [Xq, X, ..., Xp] == X O Xp 0...0 X,
ally, foldrl is not the only intrinsic function i) where

Haslell that does operator insertiontht is a [0 is an operation such thaf] y delivers

]foldrl (intrinsic function)

vidual functions. The composite function suc-
cessively removes blanks (remove '), then
removes periods (remove '."), and finally
removes commeas (remove ',') from a string sup-
plied as an argument ("Madam, I'm Adam") to

of transformations to supplied data, is the most com-
mon pattern of computation. It occursin amost every
program. Folding, which reduces a sequence of values
to asingle value by combining adjacent pairs, and map-
ping, which applies the same transformation to each
value in a sequence also find frequent use in software.

good place to start.) Inserting an operation another alue of the same type asndy

between elements in thisay “folds” the ele-
ments of the sequence into a singiue of
the same type as the elements of the seque

Here is an xample of such a folding process:

pronouncedfold-R-one (not foldeone)

n =1 required
nce.

groups fom right:X7 0 (X O... O (X1 0 Xy).-

(mattes only if0 is not associg

the composi tefunction. You will learn about these patternsin this lesson. A
The composite function (remove *; . remove *. Iourth Common patern, itaa‘tion’g Whic';t_you will 'Z’l”
1y H . O use later, lesthe same transformation r
- Femove ') processes I.t S arggment by Qpplyl ng toitsown d:l’i)\‘/)ered values, building awqumeczeg suz-
the blank removal function to it. The string cessively more refined iterates. These patterns of com-
delivered by that function is passed along asthe | putation probably account for over 90% of all the
argument for the next function in the composite, |computation performed. It pays to be fluent with them.
the period removal function. Finally, the result
delivered by the period removal function is passed along to the comma removal function, and the
result delivered by the comma removal function becomes the result delivered by the composite
function.

The composition operation (.) has two operands, one on the left and one on the right. Both oper-
ands are functions. Call them f and g, for purposes of this discussion, and suppose that f and g
transform arguments of a particular type into results that have the same type. Cal it typet, to
make it easier to talk about. Then the function delivered by their composition, f . g, aso trans-
forms arguments of typet into results of typet.

You can work this out by looking at the meaning of the formula (f . g) x. This formula means the
same thing as the formulaf(g(x)). Since g requiresits argument to have typet, the formulaf(g(x))
will make sense only if x hastypet. The function g operates on x and delivers avalue of typet.
Thisvalueis passed along to the function f, which takes arguments of typet and delivers values of
typet. Theresult that f delivers, then, has type t, which shows that f(g(x)) hastypet. Since

(f. g) x means the same thing as f(g(x)), (f . g) x must also have typet. Therefore, the function

f . g transforms arguments of typet into results of typet.

To carry thisastep further, if thereisathird function, h, that transforms arguments of typet into
results of typet, it makes sense to compose al threefunctions (f . g . h), and so on for any number
of functions dealing with data of typet in this way. Function composition provides away to build
an assembly-line operation from a sequence of functions.

6 Patterns of Computation — Composition, Folding, and Mapping 25Q

If pre is a function that chooses, fromauet-
ters supplied as gmments, the one that precedes the other in the alplpewép’(‘g’ is’p’ and
pre’'v’ 'm’is’m’). Thenfoldrl pre string delivers the letter frorstring that is earliest in the

alphabet. Using ‘pre' y to stand fopre x y, the folloving is a step-by-step accounting of the

reduction of the formuléoldrl pre "waffle" to the result it deliers:

(1||(RPN

foldrl pre "waffle"="w’' ‘pre‘ 'a’ ‘pre’ 'f' ‘pre' 'f' ‘pre pre' ‘e
‘W' ‘pret 'a’ ‘pre’ 'f' ‘pre' 'f' ‘pre’ ‘e’
‘W' ‘pret 'a’ ‘pre’ 'f' ‘pre' e’

‘W ‘pre* 'a’ ‘pre’ ‘e’

‘W' ‘pret 'a’

functions as operators
fxy opemtor form (bakquotes)—‘

\\function form (_SAME MEANINGY x ‘f' y

Getting back to the assembly lineaenple, folding can be used with the composition operator to
build an assembly line from a sequence of functions:
foldrl () [f,g,h] means f.g.h

This example of folding uses twnew bits of notation. One of these is the matter of enclosing the
composition operator in parentheses in the reference to the fufudtiodh These parentheses are
necessary to makthe operation into a separate packagefolditl can use as angument. If the
parentheses were not present, the formalalevdenote an irocation of the composition operator
with foldrl as the left-hand gument andf, g, h] as the right-hand gument, and that euldn’t

male sense.

’

a

The other ne notation is a ay to specify sequences. Up toapall of the sequences in thewk-
book were strings, and the notation for those sequences consisted of a sequence of characters
enclosed in quotation marks.

A sequence in HagK can contain antype of elements, and the usuayito denote a sequence
of elements is to list them, separated by commas and enclosed in squagtsijfagkh] denotes
the sequence containing the eleméngs andh.

6 Patterns of Computation — Composition, Folding, and Mapping 26Q

operators as arguments
foldrl () [f, g, h]

function composition ‘\ function composition
as an operator

as an argument
foldri * [f, g, h]

—

formula makes no sense
—wrong type of operands

Operators cannot be used as arguments or operands, at least not directly, but
functions can be used as arguments or operands (as you've seen in formulas
using function composition).

Fortunately, operations and functions are equivalent entities, and Haskell pro-
vides away to convert one form to the other: an operator-symbol enclosed in
parentheses becomes a function. The function-version of the operation has the
same number of arguments as the operator has operands.
()fg means f.g
function form—¥ ™__ operator form

converting operatorsto functions

sequences (also known as lists)

NOTATION

[element,, element,, ... element,,]
MEANING

a sequence containing the listed elements
COMMENTS

* elementsall must have same type
e seguence may contain any number of elements, including none
» sequences are commonly called “lists’

EXAMPLES

['a’, b, 'c’]— longhand for "abc", a sequence of three characters
[remove ', , remove ., remove '’]— sequence of three functions
["alpha", "beta", "gamma", "delta" — sequence of four strings

The previous chapter defined a function called removeBPC as a composition of three functions:

HASKELL DEFINITION ® -- function to remove blanks, periods, and commas
HaskeLL DEFiniTion e removeBPC = remove ', . remove "' . remove "'

Try to define removeBPC with a new formulathat uses the function foldrl.

6 Patterns of Computation — Composition, Folding, and Mapping 27Q

¢ HASKELL DEFINITION ?

Using this folding operation and list comprehension together, one can design a solution to the
problem of removing al the punctuation marks from a string. It requires, however, adight twist

on the notation for list comprehension.

In the notation for sets in mathematics that inspired the list comprehension notation, transforma-
tions are sometimes applied to the typical element. In the following example, the typical element
issquared, and it is the squares of the typical elements that comprise the set.

SET NOTATION (MATH) ¢ { X2 | x O Integers }

List comprehensions permit functions to be applied
to the typical element in the list comprehension, just
asin the notation for sets. Using thisidea, you can
writealist comprehension that changes all the letters
inastring to lower case. The function applied to the
typical element in thislist comprehension will be an
intrinsic function called toLower that delivers the
lower case version of the character supplied asits
argument. The instrinsic function operates on indi-
vidual characters, but by using list comprehension,
you can apply it to al the charactersin a string.

— set of squags of intgers

mapping— making a n& sequence
from an old one by applyin

a function to edg of its

elements

[f x] x<-xs] pronounced “&es”
same function to eaAcelement

known as “mapping” the functionf
onto the sequences

toLower (function in Char library) Thgfunction toLower convertsits Qrgument,
which must be acharacter (not astring), to alower

toLower :: Char -> Char case letter if its argument is aletter.! If its argu-
argument type ment isn't aletter, toLower simply deliversavalue
double-colon eads “has type” result type| that is exactly the same asits argument. So, for
toLower 'A’ =="a’ example, toLower 'E’ is’e’, toLower('n’) is’n’,
toLower 'B' =="'b’ and toLower('+) is'+' .
etc. This function for converting from capital lettersto

toLower delivers a copy of its gjument | lower-case ones can be used in alist comprehen-

if its argument is not a capital letteision to convert all the capital lettersin a string to

import Char(toLower) lower-case, leaving al the other charactersin the
w—__ access tdoLower | string as they were:

HaskeLL Commanp« [toLower ¢ | ¢ <- "Madam, I'm Adam."] mappingtoLower onto the

HaskeLL Response e "madam, i'm adam."

sequencéMadam, I'm Adam."

By parameterizing the preceding formulawith respect to the string whose letters are being capital -
ized, define a function to convert all the capital lettersin a string to lower case, leaving al other
charactersin the string (that is, characters that aren’t capital letters) unchanged.

1. Thefunction toLower residesin alibrary. Library functions are like intrinsic functions except that you
must include an import directive in any script that uses them. The name of the library that toLower
residesin is Char. To use toLower, include the directive import Char(toLower) in the script that uses
it.You will learn more about import directives later, when you learn about modules.

6 Patterns of Computation — Composition, Folding, and Mapping 28Q

4
5

¢ HASKELL DEFINITION ? -- convert all capital letters in a string to lower case

¢ HaskeLL Dermimion 2 import Char(toLower) -- get access to toLower function
¢ HaskeLL Dervimion 2 allLowerCase str =
¢ HASKELL DEFINITION ?

HaskelL Commano e allLowerCase "Madam, I'm Adam."
HaskeLL Response e "madam, i'm adam."

A sequence consisting of the three functions, remove ’,', remove ', and remove '’ can also be
constructed using this notation.

HASKELL COMMAND * -- formula for [remove ',', remove "', remove ' ']
HaskeLL Commanps [removec|c<-",."]

mapping remove onto the sequence”,. " k Thereisablank here.

This provides anew way to build the composition of these three functions; that is, yet another way
to write the function removeBPC:

HaskeLL Derinmion s removeBPC = foldrl (.) [remove c | c <-",. "]
k Thereisablank here.

By adding characters to the string in the generator (c <-",. "), afunction to remove all punctua-
tion marks from a phrase can be written:

¢ HASKELL DEFINITION ? - removePunctuation = -- you write it

¢ HASKELL DEFINITION ?

HaskeLL Commanp e removePunctuation "Madam, I'm Adam."
HaskeLL Responsee "MadamimAdam”

You need to know a special trick to include a quotation mark in astring, as reguired in the defini-
tion of removePunctuation. The problem isthat if you try to put a quotation mark in the string,
that quotation mark will terminate the string.

The solution is to use escape mode within the string. When a backslash character (\) appearsin a
string, Haskell interprets the next character in the string literally, asitself, and not as a special part
of Haskell syntax. The backslash does not become part of the string, but simply acts as a mecha-
nism to temporarily turn off the usual rulesfor interpreting characters.

The same trick can be used to include the backslash character itself into astring: "\" isastring of
only one character, not two. The first backslash acts as a signal to go into escape mode, and the
second backslash is the character that goes into the string. Escape mode works in specifying indi-
vidual characters, too: '\ denotes the apostrophe character, for example, and '\\' denotes the
backslash character.

The functionsremovePunctuation and allLowerCase can be composed in aformulato reduce a
string to aform that will be useful in writing afunction to decide whether a phraseis palindromic
in the usua sense, which involves ignoring whether or not letters are capitals or lower case and

ignoring blanks, periods, and other punctuation. In this sense, the phrase “Madam, I'm Adam.” is

6 Patterns of Computation — Composition, Folding, and Mapping 29Q

embedding a quotation mark in a string

WRONG WAY
[removec|c<-",.;:"?!()"]

‘\The remaining part of the

intended string gets left out.

This quotation mark
terminates the string.

RIGHT WAY
[removec|c<-",.;\"21()"]

Backslash "escapes’

normal mode and is

not part of string.

In escape-mode, Haskell
inter prets quotation mark
after backslash as part of
string, not as terminator.

regarded as palindromic. The charactersin the phrase do not read the same backwards as for-
wards, but they do spell out the same phrase if punctuation and capitalization are ignored.

Use the functions removePunctuation and allLowerCase from this chapter and the function
isPalindrome from the previous chapter to write a function that delivers the value True if its
argument is a palindromic phrase (ignoring punctuation and capitalization) and whose valueis
False, otherwise.

¢ HaskeLL Dervimon 2 isPalindromic = -- you write this definition
¢ HASKELL DEFINITION ?

HaskeLL Comvanp » isPalindromic "Able was | ere | saw Elba."
HaSKELL RESPONSE e True

HaskeLL Coumanp » isPalindromic "Able was | ere | saw Chicago."
HASKELL RESPONSE False

The definition of the function isPalindromic uses func-
tion composition in a more general way than previous for-
mulas. In previous formulas, both functions involved in
the composition delivered values of the same type astheir
arguments. In this case, one of the functions (isPalin-
drome) delivers avalue of type Bool, but has an argument of type String. Yet, the composition
makes sense because the value delivered to isPalindrome in the composition comes from
removePunctuation, and removePunctuation delivers values of type String, which isthe
proper type for arguments to isPalindrome.

Boolean type: Bool

Haskell uses the name Bool for the type
consisting of the values True and False.

The crucial point is that the right-hand operand of the function composition operation must be a

function that delivers avalue that has an appropriate type to become an argument for the left-hand
operand. With this restriction, function composition can be applied with any pair of functions as

its operands.

6 Patterns of Computation — Composition, Folding, and Mapping 30Q

12

13
14
15
16

6 If nextisafunction that, given aletter, delivers the next letter of the alphabet, then the mapping processin the
formula[next ¢ | ¢ <- "hal"] delivers the string

other correct answers a lah
Either of the following definitions would also be correct. : ;nn:
HASKELL DEFINITION ® d "lha"

7 Thestring "is \"hot\" now"
a hasfour quotation marksin it
b hasexactly two spaces and two back-slashes
¢ has 12 characters, including exactly two spaces
d has 14 characters, including exactly two spaces

Definitions appear on A-page.

Review Questions

1 Suppose that post isafunction that, given two letters, chooses the one that follows the other in the al phabet
(post’X’ 'y'is'y’; post’u’ 'p’is’u’). Then the formulafoldrl post string delivers
a theletter from string that comes earliest in the alphabet
b theletter from string that comes latest in the alphabet
c thefirst letter from string
d thelast letter from string

2 Supposethat && is an operator that, given two Boolean values, delivers True if both are True and False other-
wise. Then the formulafoldrl (&&) [False, True, False, True, True] delivers the value

a True
b False
¢ Maybe

d Nothing — the formula doesn’t make sense

3 Intheformula foldrl f [a, b, c, d]
a a, b, c,and d must have the same type
b fmust deliver avalue of the same type as its arguments
¢ fmust beafunction that requires two arguments
d all of theabove

4 If fisafunction that requires two arguments, then foldrl f isafunction that requires
a noarguments
b oneargument
¢ twoarguments
d three arguments

5 The second argument of foldrl must be
a asequence
b afunction
¢ aseguence of functions
d afunction of sequences

6 Patterns of Computation — Composition, Folding, and Mapping 31Q 6 Patterns of Computation — Composition, Folding, and Mapping 32Q

Types 7

Haskell programs can deal with many different types of data. You aready know about three types
of data: string, Boolean, and character. And you have learned that the Haskell system keeps track
of types to make sure formulas use data consistently.

Up to now, the discussion of types has been informal, but even so, you may have found it tedious
at times. In this chapter the discussion gets more formal and probably more tedious. Thiswould
be necessary at some point, in any case, because types are kind of afetish in the Haskell world.
Fortunately, it is also desirable. Theidea of typesis one of the most important conceptsin com-
puter science. It isafundamental, organizing influence in software construction. It will pay you to
try to apply these ideas, even when you are writing software in alanguage not as mindful of types
as Haskell.

nonsense!
HASKELL CoMMAND + Feverse "X’

HaskeiL Response e ERROR: Type error in application
HASKELL RESPONSE ® ~ *** : reverse ‘X'
HASKELL RESPONSE » *** term '

X
HASKELL RESPONSE* *** type : Char
HaskeLL Response s *** does not match : [a]

The formulareverse 'x’ makes no sense because the function reverse requiresits argument to be
astring. But the erroneous formula supplies an individual character, not a string, as an argument
of reverse. The response is some startling gobbledygook that tries to explain why the Haskell
system can’'t make sense of the command. You will need to understand types to make sense of
error reports like this.

The Haskell response says “Type error in application.” You probably have a vague notion of
what atype error is, but what is an application? An application isaformula, or part of aformula,
that applies afunction to an argument. In this case the application isreverse 'x’, and it isdis-
played on the line following the “ Type error in application.” message. So far, so good.

Next, the report displaysthe term with the erroneoustype [ames of types
('x") and states its type (Char). Char is the formal name

of the data type that the textbook has been referring to Char individual charaster (X)
informally as “individual character” From now on, it's String sequence of Char ("abc”)
Char. synonym of [Char]

Bool Boolean (True, False)
Now comes the really mysterious part:

all type namesin Haskell begin with
*** does not match: [a] ype eg

capital letters

Up to now, you have seen only part of the story about the
type that the function reverse expects its argument to be — reverse has been applied only to
arguments of type String, which are sequences of characters. However, reverse can handle any
argument that is a sequence, regardless of the type of the elements of the sequence.

In the message “does not match: [a]”, the “[a]” part specifies the type that the term X' does not

7 Types 33Q

match. The type“[a]” represents not just a single type, but a collection of types. Namely, it repre-
sents all types of sequences. The“a” in the notation stands for any type and is known as atype
variable. The brackets in the notation indicate that the type is a sequence. Altogether, “[a]” indi-
cates a sequence type in which the elements have type a, where a could be any type.

sequence types| !f thetypea were Char, then the type [a] would mean
[Char]. The type String is a synonym for sequence of
characters, which is what [Char] means (Haskell often
uses the [Char] form to denote thistypein its error
reports). Therefore, one of the types that reverse can
accept as an argument is String. But it could also accept

[[a’, b7, [d e, '] arguments of type [Bool], or [String] (equivalently

same as["ab", "def"] [[Char]], indicating atype that is a sequence, each of
atype specifier of theform[a] (thatis, | Whose elementsis a sequence with elements of type
atype enclosed in brackets) indicates | Char), or any other type.

a sequence type — the elements of In summary, the error report says that the argument sup-
the sequence have type a plied to reverse hastype Char, that reverse expects an

argument of type [a], and that Char is not among the
typesindicated by [a]. In other words, Char is not a sequence. You aready knew that. Now you
know how to interpret the error report from the Haskell system.

[Char] [a’, 'b’, 'c
same as "abc”

[Bool] [True, False, True]

[[Char]] sametypeas [String]

type-inquiry command

HaskeLL Comuanp e reverse "abcdefg”
HaskeLL Response» - "gfedcba”
HaskeLL Commanp e type reverse "abcdefg"

Type command inquires formula about whose typethe
about the type of a formul type command isinquiring
tﬁrerglél ljib\ll\i:gsleot:pe follows dou?lﬁazcatl;ggeads type delivered by formula

HaskeLL Response» reverse "abcdefg” @ [Char] C[Char]isasY”O”VmOf St"”QD

You can ask the Haskell system to tell you what type aformula delivers by using the type-inquiry
command, which is simply the symbol :type (starts with acolon, like :load — all Haskell com-
mands that aren’t formulas start with a colon) followed by the name or formulawhose type you'd
like to know. Haskell will respond with the type of the name or the type of the value that the for-
mula denotes.

HaskeLL Coumanp e reverse [True, False, False]
¢ HASKELL RESPONSE ?

HaskeLL Coumanp e type [True, False, False]
¢ HASKELL RESPONSE ?

7 Types 34Q

N

0 N o o

HaskeLL Commanp e type ["aardvark”, "boar", "cheeta] 8 The Haskell entity [["Beyond”, "Rangoon”], ["Belle”, "du”, "Jour"]] hastype

a Strin
¢ HASKELL RESPONSE ? b % { [Clhagr]]]]]
HaskeLL Commanp e reverse ["aardvark”, "boar", "cheeta"] ¢ both of the above
d none of the above

¢ HASKELL RESPONSE ?
HaskeLL Commanp e :type reverse ["aardvark”, "boar", "cheeta"]
¢ HASKELL RESPONSE ?

Review Questions

1 Thetypeof [[True, False], [True, True, True], [False]] is
a mostly True
b ambiguous
c [Bool]
d [[Bool]]

2 Thetypeof ['alpha”, "beta", "gamma"] is
a [[Char]]
b [String]
¢ both of the above
d none of the above

3 Thetypeof [["alpha”, "beta", "gamma"], ['psi",
a [[String]]
b [[Char]]
¢ [String]
d [String, String]

omega"]] is

4 Theformula foldrl (.) [f, g, h, k] delivers
a astring
b afunction
c asequence
d nothing — it'san error because k can’t be afunction

5 Which of the following is a sequence whose elements are sequences
a ["from", "the", "right"]
b [["Beyond", "Rangoon"], ["Belle", "du”, "Jour"]]
c [[al[bp][c]]
d all of the above
6 Thetypeof theformula foldrl () [f, g, h, K] is
a String -> String
b thesameasthetypeof f
c the same asthe type of the composition operator
d [a]->[b]

7 If thetype of fis String -> String, then the type of [f x | x <- xs] is
a String -> String
b String
c [String]
d none of the above

7 Types 35Q 7 Types 36Q

Function Types, Classes, and Polymorphism 8

Functions have types, too. Their types are characterized by the types of their arguments and
results. In this sense, the type of afunction is an ordered sequence of types.

For example, the function reverse takes arguments of type [a] and delivers values of type [a],
where [a] denotes the sequence type, a generalized type that includes type String (sequences of
elements of type Char — another notation for the typeis [Char]), Boolean sequences (sequences
with elements of type Bool, the type denoted by [Bool]), sequences of strings (denoted [[Char]]
or, equivalently, [String]), and so on. A common way to say thisisthat reverse transforms values
of type [a] to other values of type [a]. Haskell denotes the type of such a function by the formula
[a] ->[a].

HASKELL CommaND * type reverse
HaskeLL REsPonse » — reverse :: [a] -> [a]

polymor phism

Polymorphism is the ability to assume different forms. Func-
tions like reverse are called polymor phic because they can
operate on many different types of arguments. This notion plays
an important role in modern software development. The use of
polymorphism reduces the size of software by reusing defini-
tions in multiple contexts. It also makes software more easily
adaptabl e as requirements evolve.

Functions defined in scripts also have types. For example, the function isPalindromic was defined
earlier in the workbook:

HaskeLL Derivirion e isPalindromic =

HaskeLL Derinmion e isPalindrome . removePunctuation . allLowerCase
HaskeLL Commanp » :type isPalindromic

HaskeLL Response » isPalindromic :: [Char] -> Bool

This function transforms strings to Boolean values, so itstype is [Char]->Bool. Thisis amore
restrictive type than the type of reverse. The reason for the restriction is that isPalindromic
applies the function allLowerCase to its argument, and allLowerCase requires its argument to
be a String.

HaskerL Derinmion e allLowerCase str = [toLower ¢ | ¢ <- str]
HaskeLL Commanp s type allLowerCase
HaskeLL Response e allLowerCase :: [Char] -> [Char]

An argument supplied to allLowerCase must be a String because it applies the intrinsic function
toLower to each element of its argument, and toLower transforms from type Char to type Char.

HaskeLL Commanp e :type toLower
¢ HASKELL RESPONSE ?

8 Function Types, Classes, and Polymorphism 37Q

To continue the computation defined in isPalindromic, the function removePunctuation, like
allLowerCase, transforms strings to strings, and finally the function isPalindrome transforms
strings delivered by removePunctuation to Boolean values. That would make [Char]->Bool the
type of isPalindrome, right?

Not quite! Things get more complicated at this point because isPalindrome, like reverse, can
handle more than one type of argument.

HaskeLL Derinmion e isPalindrome phrase = (phrase == reverse phrase)
HaskeLL Comvanp e type isPalindrome
HaskeLL Response « - isPalindrome :: Eq a => [a] -> Bool

Whaoops! There's the new complication. The [a] -> Bool part is OK. That means that the isPalin-
drome function transforms from sequences to Boolean values. But where did that other part come
from:Eqa=>?

Eq isthe name of aclass. A classis acollection of types that share a collection of functions
and/or operations. The class Eq, which isknown asthe equality class, isthe set of types on which
equality comparison is defined. In other words, if it is possible to use the operation of equality
comparison (==) to compare two items of a particular type, then that typeisin the class Eq.

The“Eq a =>" portion of the response to the inquiry about the type isPalindrome is arestriction
onthetypea. It saysthat the type a must beinthe class Eq in order for [a] -> Bool to be aproper
type for isPalindrome.

The type for the function reverse, which is [a] -> [a], has no restrictions; reverse can operate on
sequences of any kind. But an argument of isPalindrome must be a sequence whose elements can
be compared for equality. This makes sense because isPalindrome compares its argument to the
reverse of its argument, and two sequences are equal only if their elements are equal. So, to make
its computation, isPalindrome will have to compare elements of its argument sequence to other
values of the same type. So, the restriction to equality typesis necessary.

When isPalindrome was first written, the intention was to apply it only to strings, but the defini-
tion turned out to be more general than that. It can be applied to many kinds of sequences. Argu-
ments of type [Bool] (sequences of Boolean values) or [String] (sequences of String val ues)
would be OK for isPalindrome because Boolean values can be compared for equality and so can
strings. A sequence of type [Char->Char], however, would not work as an argument for isPalin-
drome because the equality comparison operation (==) is not able to compare values of type
Char->Char, that is functions transforming characters to characters.! So, isPalindrome is poly-
morphic, but not quite as polymorphic asreverse.

Operators are conceptually equivalent to functions and have types as well. The equality operator
(==) transforms pairs of comparable items into Boolean values. When a function has more than
one argument, the Haskell notation for its type has more than one arrow:

1. Thereisamathematical concept of equality between functions, but the equality comparison operator (==)
is not able to compare functions defined in Haskell. There is agood reason for this: it is not possible to
describe a computation that compares functions for equality. It can be done for certain small classes of
functions, but the computation simply cannot be specified in the general case. The notion of incomput-
abilty is an important concept in the theory of computation, one of the central fields of computer science.

8 Function Types, Classes, and Polymorphism 38Q

17.d23
18
19

-— parentheses make this the function-version of the operator ==
HaskeLL Commanp s type (==)
HaskeLL Responsee EQ a => a -> a -> Bool

The type of the equality operator is denoted in Haskell as a->a->Bool, where a must be in the
class Eq (types comparable by ==). Thisindicates that the equality operator, viewed asafunction,
takes two arguments, which must have the same type, and delivers a Boolean value.

Take another look at the function remove, defined previously:

HASKELL DEFINITION ® -- function to remove character chr from string str
HaskeLL Derinmion e remove chr str = [c | ¢ <- str, ¢ /= chr]

HASKELL CommanD * ‘type remove

HaskeLL RESPONSE» remove 1 Eq a => a -> [a] -> [a]

The function remove has two arguments, so its type has two arrows. Its first argument can be any
type in the class Eq, and its other argument must then be a sequence whose elements have the
same type asits first argument. It delivers a value of the same type as its second argument.

The function was originally designed to remove the character specified initsfirst argument from a
string supplied as its second argument and to deliver asits value acopy of the supplied string with
all instances of the specified character deleted. That is, the type of the function that the person
who defined it had in mind was Char->[Char]->[Char], aspecia case of a->[a]->[a].

The Haskell system deduces the types of functions defined in scripts. The typeit comesup within

this deductive process is the most general type that is consistent with the definition. The designer

of afunction can force the type of the function to be more specific by including atype declara-
type declaration

tion with the definition of the function in the script.
- . type of value delivered
function whose typeis by function
being declared
HaskeLL DerinTion s remove :: Char -> String -> String-- type declaration)
HaskeLL Derinmion s remove chr str = [c | ¢ <- str, ¢ /= chr] 3

types of arguments
first

second

A type declaration may confirm or restrict the type of a function.

The Haskell systemwill issue an error report if the type declaration is neither the
same as the type that Haskell deduces for the function or a special case of that
type.

It is good practice to include type declarations because it forces you to formulate
a framework of consistency among the types you are using in a program.

The type declaration must be consistent with the type that the Haskell system deduces for the
function, but may be a special case of the deduced type. Sometimes, because of ambiguitiesin the
types of the basic elements of a script, the Haskell system will not be able to deduce the type of a
function defined in the script. In such cases, and you will see some of these in the next chapter,
you must include atype declaration.

Itisagood practice to include type declarations with all definitions because it forces you to

8 Function Types, Classes, and Polymorphism 39Q

understand the types you are using in your program. This understanding will help you keep your
concepts straight and make it more likely that you are constructing a correct program. If the
Haskell system deduces atype that isincompatible with a declaration, it will report the inconsis-
tency and the type it deduced. Thisinformation will help you figure out what is wrong with your
formulas.

Review Questions

1 Polymorphic functions
a change the types of their arguments
b combine data of different types
C can operate on many types of arguments
d gradually change shape as the computation proceeds

2 Thefunction toUpper takes aletter of the al phabet (a value of type Char) and delivers the upper-case version of
the letter. What is the type of toUpper?
a polymorphic
b Char -> Char
¢ lower -> upper
d cannot be determined from the information given

3 Avaueof type[a] is
a asequence with elements of several different types
b asequence with some of its elements omitted
c asequence whose elements are al so sequences
d asequencewhose elementsare all of typea

4 A function of type[a] -> [[a]] could
a transform acharacter into astring
b deliver asubstring of agiven string
c deliver astring like its argument, but with the charactersin a different order
d transform astring into a sequence of substrings

5 Suppose that for any type a in the class Ord, pairs of values of type a can be compared using the operator <. A
function of type Ord a => [a] -> [a] could
a rearrange the elements of a sequence into increasing order
b deliver a subsequence of agiven sequence
¢ both of the above
d none of the above

6 Suppose Ord isthe class described in the preceding question. What is the type of the operator <.
a Orda=>a->a->Bool
b Orda=>a->Bool
¢ Orda=>a->Char
d Orda=>a->[Char]

7 Theequality class
a includesall Haskell types
b iswhat makes functions possible
¢ iswhat makes comparison possible
d excludesfunction types

8 Function Types, Classes, and Polymorphism 40Q

8 A functionwiththetype Eq a =>a -> Bool

a
b
c
d

requires an argument with the name a
delivers True on arguments of type a
is polymorphic

must be equal to a

9 Ifthetypeof f hasthreearrowsinit, thenthetypeof f x has

a
b
c
d

onearrow init
two arrowsin it
three arrowsin it
four arrowsin it

10 A polymorphic function

a
b
c
d

has more than one argument

has only one argument

may deliver values of different typesin different formulas
can morph many things at once

8 Function Types, Classes, and Polymorphism

241Q

Types of Curried Forms and Higher Order Functions 9

Curried forms of function invocations supply, as you know, less than the full complement of argu-
ments for a function. The formula used to define the function removePunctuation, for example,
used alist of curried invocations of remove.

HaskeLL Derinmion e removePunctuation = foldrl (.) [remove c | ¢ <-",. ;:\"?1()"] 32
HASKELL CommanD » :type remove 35.30c2
HaskeLL Response remove :: Eq a => a -> [a] -> [a] 36.29c2
HaskeLL Coumanp e :type remove '?' 33

¢ HASKELL RESPONSE ? 34

The curried invocation remove '?’ supplies one argument to the two-argument function remove.
The first argument of remove can be of any type (any typein the equality class, that is), asyou
can seein itstype specification. The argument supplied in thisinvocation has type Char, whichis
in the equality class. So far so good.

The type of remove indicates that its second argument must be a sequence type, and the elements
of the sequence must have the same type asiits first argument. Thisimplies that when the first
argument has type Char, the second argument must have type [Char]. The value that result deliv-
ers has the same type as its second argument, as the type of remove shows.

Therefore, the type of the curried invocation, remove '?’, must be [Char]->[Char]. That is, the
function remove '?’ has type [Char]->[Char].

finding the type of acurried invocation
f transforms arguments of

fra->b 4 typea to values of type b
x: a --—— Xhastypea g transforms two arguments (of types
Txob . implies aand b, resp.) to a value of type c
B fx h b
X fiastype h gra->b->c
xhastypea—p . 5
implies b
tb->
g X transforms one argument (of 9x ¢
type b) to a value of type c

Now that you know the type of a curried invocation like remove '?’, what do you think would be
the type of the sequence of such invocations that are part of the formulafor the function remove-
Punctuation?

HaskeLL Commanp e type [remove ¢ | ¢ <- " ,.;'\"21()"] 37
¢ HASKELL RESPONSE ? 38

Thisis a sequence whose elements are functions. Remember! The elements of a sequence can
have any type, aslong as al the elements of the sequence have the same type.

9 Types of Curried Forms and Higher Order Functions 42Q

Another part of the formulafor the function remove-
Punctuation isthe composition operator expressed in the
form of afunction: (.). Thetype of thisone getsalittle |Functions that have an argument
complicated because both of its arguments are functions |that is, itself, a function are called
and it delivers afunction asits value. The functions sup- | higher-order functions. Functions
plied as arguments can transform any typeto any other |that deliver avaluethat is, itself, a
type, but they must be compatible for composition: the |function arealso called higher-order
right-hand operand must be a function that delivers a functions. The composition operator
value of atype that the left-hand operand can use as an is a higher-order function that does
argument. both.

higher-order functions

When the operands are compatible in this way, then the

result of the composition will be a function that transforms the domain of the right-hand operand
into the range of the left-hand operand. These hints may help you work out the type of the compo-
sition operator.

HaskeLL CommanD e type (.)
¢ HASKELL RESPONSE ?

In the definition of removePunctuation, composition is being used to compose curried invoca-
tions of remove. These curried invocation have the type [Char] -> [Char]. When two such func-
tions are composed, the result is another function of the same type (because the domain and range
of the operands are the same). So, the composition taking place in aformula such as

remove’; . remove '’
has type
([Char]->[Char]) -> ([Char]->[Char]) -> ([Char]->[Char])

Thisisaspecia case of the polymorphic type of the composition operator. Actualy, the last pair
of parenthesesin this type specification are redundant because the arrow notation is right-associa-
tive (see box). Haskell would omit the redundant parentheses and denote this type as

([Char]->[Char]) -> ([Char]->[Char]) -> [Char]->[Char]

arrow (->) isright-associative

To make the arrow notation (->) for function types compatible with curried forms
of function invocations, the arrow associates to theright. Thatis,a -> b -> cis
interpreted asa -> (b -> c) automatically, even if the parentheses are missing. In
reporting types, the Haskell system omits redundant parentheses.

9 Types of Curried Forms and Higher Order Functions 43Q

The function foldrl is another higher-order foldrl
function. Itsfirst argument is a function of two
arguments, both of the same type, that delivers foldrl op [w, X, Y, Z]
values that also have that type. The second argu- means

ment of foldrl is a sequence in which adjacent
elements are pairs of potential arguments of the
function that is the first argument of foldrl. The |where ‘op‘ denotes the operator equivalent
function foldr1 treats the function (itsfirst argu- | to the two-argument function op. More pre-
ment) asif it were an operator and inserts that cisely, it meansw ‘op‘ (x ‘op* (y ‘op‘ z)).
operator between each pair of adjacent elements | The"r" in foldrl means that the operation is
of the sequence (its second argument), combin- | to be carried out by associating the operands
ing all of the elements of the sequence into one | in the sequence from the right.

value whose type must be the type of elements
the sequence.

w ‘op‘ X ‘op'y ‘op‘ z

HaskeLL Coumanp e :type foldrl
¢ HASKELL RESPONSE ?

The definition of removePunctuation supplies, as a second argument to foldr1, a sequence of
functionsthat transform [Char] to [Char]. That is, the data type of the elements of the sequenceis
[Char]->[Char]. This means that the first argument must be a function that takes two arguments
of type [Char]->[Char] and delivers a value of that same type. It also means that the value that
this application of foldrl will deliver will have type [Char]->[Char].

That is, in this particular case, foldrl isbeing used in a context in which itstypeis
([Char]->[Char]->[Char]) -> [[Char]] -> [Char]
Thisisjust one of the specific types that the polymorphic function foldrl can take on.

Review Questions

1 Suppose functions f and g have types Char -> String and String -> [String], respectively.
Then their composition g . f hastype
a Char -> String
b Char -> String -> [String]
¢ Char ->[String]
d [[String]]

2 Supposethetypeof afunctionfis f:: String -> String -> Bool. Thenthetypeof f"x" is
a Bool
b String
¢ String -> Bool
d Nothing— f"x" isnot aproper formula

3 Supposethetype of afunction fis f:: Char -> String -> [String] -> [[String]].
Then f'x’ and f'x'"y" have, respectively, types

[String] -> [[String]] and [[String]]

Char -> String -> [String] and Char -> String

String -> [String] -> [[String]] and [String] -> [[String]]

Nothing— f’x’ isnot aproper formula

Q0 oo

9 Types of Curried Forms and Higher Order Functions 44Q

41
42

9 Types of Curried Forms and Higher Order Functions

Because the arrow notation is right associative, thetype a -> b -> ¢ has the same meaning as
a (a->b)->c
b a->(b->c)
c (@a->b->¢)
d a->b(->c)

The composition operator hastype (.) :: (a -> b) -> (c -> a) -> (c -> b). Another way to express thistypeis
a ():a->b->(c->a)->(c->b)

b ():(@->b)->(c->a)->c->b

c ()za->b->c->a->(c->b)

d ()za->b->c->a->c->b

The composition operator hastype (.) :: (a ->b) -> (c -> a) -> (c -> b). Another way to express thistypeis
a ()i(->c)->(@->b)->(@->c)

b ():(@->c)>b->a)->(b->c)

c ()u(c->a)->b->c)->(b->a)

d all of the above

A function whose typeis (a -> b) -> ¢ must be
a lower order

b middle order

¢ higher order

d impossibleto define

If afunction f hastype f:: a -> a, then theformulas f'x’ and f True have, respectively, types
a Char and Bool

b [Char] and [Bool]

¢ Char ->Char and Bool -> Bool

d cannot be determined from given information

45Q

Private Defi nitions —the where-clause 10

Functions, once defined in a script, can be used in formulas that occur anywhere in the script.
Sometimes one wants to define afunction or variable that will only be used in formulas that occur
in asingle definition and not in other definitions in the script. This avoids cluttering the name
space with functions needed only in the context of a single definition.

The concept of private variables versus public bl
variables provides away to encapsul ate por-] Va”_ab &
tions of aprogram, hiding internal detailsfrom | Namesusedin Haskell programs are sometimes
other parts of the program. Encapsulation is called Va”atf' es, like names used in mathematical
one of the most important ideas in software equations. It's abit of amisnomer, since their val{
engineering. Without it, the development of ues, once defined, don’t vary. The sameistruein

L : : mathematical equations: thereis only one value
large software systemsisvirtually impossible. |- &0 equation x + 5 = 10

encapsulation The examples of -
the next few chapters have to do with different ways to represent

information, from numbers to encrypted text. | nfor mation repre-
internal detailsin one com- | Sentation isanother central theme of computer science. For this rea-
ponent will have no affect | SO the examples themsel ves are as important to your education as
on other components of the | the programming methods that you will be learning along the way.

isolating components of
software so that modifying

software Thefirst example discusses some methods for representing numbers.
These methods apply only to non-negative numbers without frac-
tional parts — integers from zero up, in other words — but the ideas carry over to the representa-
tion of other kinds of numbers and even to other kinds of information. In fact, a subsequent
example will use these number representation ideas to do encryption and decryption of text.

Numbers are denoted by numerals. Numerals and numbers are not the same things: oneis asym-
bol for the other. For example, 87 isanumeral often used to denote the number four score and

seven, but LXXXVII (Roman), 57 (hexadecimal), / \+t (Chinese), and 1010111 (binary) are other
numerals aso in common use to denote the same quantity that the decimal numeral 87 represents.

The Haskell language uses decimal numerals to denote numbers, but the Haskell system usesiit
own internal mechanisms, which it does not reveal to the outside world, to represent in its calcula-
tions the numbers that these numerals denote.

A decimal numeral uses base ten, positional notation to represent a number. The number that a
decimal numeral represents, isthe sum of acollection of multiples of powers of ten. Each position
in the numeral represents a different power of ten: the rightmost digit position is the units place
(ten to the power zero); the next position is the tens place (ten to the power one); next the hun-
dreds place (ten to the power two); and so on. The digits of the numeral in each position specify
which multiple of the power of ten represented by that position to include in the collection of
numbers to add up.

10 Private Definitions — the where-clause 46Q

decimal numerals
numeral

™d,dy-1...d;dg
number

thousands place 0
hundreds place dyx10" +d,1x10™1 +[IT dyx10% +dyx10!
[— tens place = (IXdyx10 + dy,)x10 + [T dy)x10 +d
—— units place
1492 = do + 10><(dl + [T 10X(dn_1+ 10><dn) D:[ﬂ

/ \\—_/_\\ =dy 0 (dy O CIT0 (dyy O dy) CII)
one-thousand four-hundred ninety-two where d0s=d + 10xs

If the digitsin adecimal numeral ared,, dy,.; . . . d; dp whered isthe digit in the 10' position,
then the number the numeral denotesis the following sum:

dpx10" +d, 1 x10™ +[TTH# dyx101 +dgx10°

A direct way to compute this sum would be to compute the powers of ten involved, multiply these
quantities by the appropriate coefficients (the d; values), then add up the results. This approach

requires alot of arithmetic: n-1 multiplications for the power 10", n-2 multiplications for 10™1,
and so on, then n+1 more multiplications to handle the coefficients, and finally n additions.

A more efficient way to compute the sum isto look at it in a new form by factoring out the tens.
The new formula, a special case of amethod known as Horner’s rule for evaluating polynomials,
doesn’t require any direct exponentiation — just multiplication and addition, and only n of each.
This leads to the Horner formula:

dg +10x(dq + (I3 10x(d,,.q + 10xd,) [TT) Horner Formula

There are n stages in the Horner formula, and each stage requires a multiplication by ten of the
value delivered by the previous stage, and then the addition of a coefficient value. This pair of
operations can be viewed as a package. The following equation defines a symbol (L) for that
package of two operations:

dd0s=d +10xs
With this new notation, the following formulais exactly equivalent to the Horner formula.

do O (dy O 0T (dyq O dy I} Horner Formula using O

In this form, the Horner formulaisjust the d; coefficients combined by inserting the (I operation
between each adjacent pair of them and grouping the sequence of operations with parentheses
from theright. Thisis exactly what the foldrl function of Haskell does: it inserts an operator
between each adjacent pair of elementsin a sequence and then groups from the right with paren-
theses (that’'s what the “r” stands for in foldrl — “from the right”). So, foldrl should be useful in
expressing the Horner formulain Haskell notation.

Using the [J-version of the Horner formula as a guide, try to use foldrl to define a Haskell func-
tion to compute the value expressed by the Horner formula. The argument of the function will be

10 Private Definitions — the where-clause 47Q

asequence of numbers [dg, dy, ..., dy.1, dy] of anew type, Integer, that can act as operandsin
addition (+) and multiplication (0) operations. Theformulain the function will use foldrl and will
also use afunction called multAdd, defined below, which is a Haskell version of the circle-cross
operator ([1), defined above.

Integral types —Integer andint

Haskell uses ordinary decimal numerals to denote integral numbers. They may be positive
or negative; negative ones are preceded by aminus sign. There are two kinds of integral
numbersin Haskell: Integer and Int. Integer numbers behave like mathematical integers
in arithmetic operations: addition (+), subtraction (-), multiplication (0), quotient-or-next-
smaller-integer (‘div‘), clock-remainder (n({m ‘div‘ n) + m ‘mod‘ n == m), and exponen-
tiation (*) deliver Integer values from Integer operands. Numbers of type Int behavein
the same way, except that they have alimited range (about 10 decimal digits).

0 nada 14110 altitude of Pilke’s Reak
23 Jordan’s number -280 altitude of Death #lley
23 ‘mod* 12 “film at” number -3 Sarazans number

55 ‘div' 5 “film at” a gain
59 ‘div' 5 and again

7 ‘mod’ (-5) Samzans number gain
5 ‘div* (-2) Sarazan yet gain

« Theoperands of ordinary division (/) are not Integral numbersin Haskell.
» Because the minus sign is used to denote both subtraction and the sign of Integer
numbers, negative integers sometimes need to be enclosed in parentheses:
mod 7 (-5) not mod 7 -5, which would mearfmod 7) - 5, which is nonsense
e Context determines whether a particular numeral in a Haskell script denotes an
Integer or an Int.

¢ HaskerL Derivimion 2 multAdd d s =d + 10*s

¢ HaskeLL Dermimon 2 horner10 ds = -- you define hornerl10

¢ HASKELL DEFINITION ?

HaskeLL Coumanp e hornerl0 [1, 2, 3, 4]
HASKELL REsPONSE e 4321

The multAdd function istailored specifically for usein the definition of hornerl0. It isnot likely
to be needed outside the context of that definition. For this reason, it would be better to make the
definition of multAdd private, to be used only by horner10.

Haskell provides anotation, known as the wher e-clause, for defining names that remain unknown
outside a particular context. Names defined in awhere-clause are for the private use of the defini-
tion containing the where-clause. They will be unknown elsewhere.

A where-clause appears as an indented subsection of a higher-level definition. Theindentationis
Haskell’s way of marking subsections — it is a bracketing method known as the offsidesrule. A
where-clause may contain any number of private definitions. The end of a where-clause occurs
when the level of indentation moves back to the | eft of the level established by the keyword
where that begins the where clause.

10 Private Definitions — the where-clause 48Q

1

2
3

where-clause—dr defining private terms

A where-clause makes it possible to define terms for private use entirely within the con-
fines of another definition.

¢ The keyword where, indented below the definition requiring private terms,
begins the where-clause, and the clause ends when the indentation level returns
to the previous point.

¢ Thewhere-clause can use any terms it defines at any point in the clause.

¢ A where-clause within a function definition can refer to the formal parameters
of the function.

HaskeLL Derinmion e sumOfLastTwoDigits x = d1 + dO
HASKELL DEFINITION * where

uses paameterx
HASKELL DEFINITION * d0 =x ‘mod‘ 10 4'/

HASKELL DEFINITION ® d1 = shift ‘mod‘ 10
uses private variablshift
defined hex

HASKELL DEFINITION * shift = x ‘div* 10

offsides rule — aracketing medianism

HaskeLL Derinmion s inches yds ft ins =

HASKELL DEFINITION * insFromFt (ft + ftfromYds yds) + ins

HaskeLL Derinmion e feet mis yds = fm + fy

HASKELL DEFINITION * where

HASKELL DEFINITION * fm = ftFromMiles mis
HASKELL DEFINITION fy = ftfromYds yds of current definition
HaskeLL DEFinTion e insFromFt ft = 121t

return to pevious indentation heel
e ends pavious definition
«___ starts ne definition

The following new definition of horner10 uses awhere-clause to encapsul ate the definition of the
multAdd function.

¢ HaskerL Derivmon 2 horner10 ds = -- you define it again
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ? multAdd d s=d + 10*s

One of the goals of this chapter was to put together a function to transform lists of digits repre-
senting decimal numerals into the numbers those numeral's denote. The function horner10 essen-
tially does that, except for akind of quirk: the numeral iswritten with its digits reversed (with the

10 Private Definitions — the where-clause 49Q

units place on the left (first in the sequence), then the tens place, and so on. The following func-
tion accepts alist of digitsin the usual order (units place last), and delivers the number those dig-

its represent when the sequence is interpreted as a decimal numeral.

¢ HaskeLL Dervimion 2 integerFromDecimalNumeral ds = --you define it

¢ HASKELL DEFINITION ?

HaskeLL Coumanp e integerFromDecimalNumeral [1,4,9,2]
HASKELL RESPONSE e 1492

The decimal numeral representing a particular integer is not unique. It is always possible to put
any number of leading zeros on the front of the decimal numeral without affecting the value the
numera represents. [1, 4, 9, 2], [0, 1, 4,9, 2], and [0, 0, 1, 4, 9, 2] al represent the integer 1492.

Similarly, you can always add or remove any number of leading zeros in a numeral without
changing the integer the numeral represents.

How about zero itself? The numerals[0], [0, O], and [0, O, 0] al represent zero. You can include as
many zero digits as you like in the numeral. Or you can remove any number: [0, 0, 0], [0, 0], [O],

[1. Whoops! Ran out of digits. How about that empty sequence?

For reasons having to do with how the function will be used in subsequent chapters, it isimportant

for the function integerFromDecimalNumeral to be able to deal with the case when the

sequence of digits representing the decimal numera is empty. Asthe above analysis shows, it is
reasonable to interpret an empty sequence of digits as one of the aternative decimal numerals for

zero.
Aswritten, integerFromDecimalNumeral will fail if its argument is the empty sequence:

HaskeLL Coumanp » integerFromDecimalNumeral []
HaskeLL Resronse» - Program error: {foldrl (v706 {dict}) [J}

Integral values can be compared for equality and for order:

* equato X==y
e notegual to x/l=y
e lessthan X<y
e greater than X>y
e lessthan or equal to X<=y
» greater than or equal to X>=y

Relationship of the class Integral to other classes

* intheequality class (EQ)

e inaclasscaled Ord, the class for which the operations less-than, greater-than,
|ess-than-or-equal -to, and greater-than-or-equal-to (plus two operations derived
from these: max and min), are applicable

» inahierarchy of numeric classes that relate different kinds of numbers, classes
that you will learn about later

comparison operations on Integral types

10 Private Definitions— the where-clause

50Q

5

6
7

The error message is pretty much undecipherable, but it does indicate a problem with foldrl. The
problem isthat foldrl expects its the sequence to be non-empty (that’s what the “1” stands for in
foldrl — “at least one element”). It doesn’'t know what to do if the sequence has no elements.

However, Haskell provides another intrinsic function foldr, that acts like foldr1, but can also han-
dle the empty sequence. The first argument of foldr is a function of two arguments. Like foldr1,
foldr views this function as an operator that it places between adjacent pairs of elements of a
sequence, which is supplied as its last argument.

But, foldr hasthree arguments foldr
(unlike foldr1, which as only
two arguments). The second
argument of foldrisavalueto
serve as the right-hand oper-
and in the rightmost applica-
tion of the operation. In case
the sequence (third argument)
isempty, it isthis value (sec-
ond argument) that foldr
deliversasits result.

foldr op z [Xq, Xp, ..., Xp] =

X1 ‘0p* (X2 'op’ (... ‘op* (X, ‘0p* 2) ...))
foldr op z [w, X, y] =w ‘op‘ (x ‘op* (y ‘op‘ 2))
foldropz[]=2z

HaskeLL Ipenmirye foldrl op xs = foldr op (last xs) (init xs)
where
last xs isthe last element in the sequence xs
init xs is the sequence xs without its last element

In fact, foldr deliversthe
same value that foldrl would have delivered when supplied with the same operator asits first
argument and, for its other argument, a combination of the second and third arguments of foldr
(namely, a sequence just like the third argument of foldr, but with the second argument of foldr
inserted at the end). This makes it possible for foldr to deliver a value even when the sequenceis
empty.

To work out what an invocation of foldr means, augment the sequence supplied asitsthird argu-
ment by inserting its second argument at the end the sequence, then put the operator supplied as
itsfirst argument between each adjacent pair of elements in the augmented sequence. For exam-
ple, foldr could be used to define afunction to find the sum of a sequence of numbers:

HaskeLL Derinimion e total xs= foldr (+) O xs
HaskeLL Commanp e total [12, 3, 5, 1, 4]
HASKELL RESPONSE* 25

HaskeLL Commanp » total [100, -50, 20]

¢ HASKELL RESPONSE ?

total [12, 3, 5, 1, 4] =
12+ (3 +(5G+(1+(4+0)

The function horner10 can be defined using foldr instead of foldrl by supplying zero as the sec-
ond argument. This makes integerFromDecimalNumeral work properly when the numeral is
empty. The computation is subtly different: the rightmost multAdd operation in the foldr con-
struction will be d+10[0, where d is the last high-order digit of the numeral (that is, the coeffi-
cient of the highest power of ten in the sum that the numeral represents). Since 10L0 is zero, this
extramultAdd step doesn’t change the result.

No change needs to be made in the definition of integerFromDecimalNumeral. Its definition
depends on horner10. Once horner10 is corrected, integerFromDecimalNumeral computes
the desired results.

10 Private Definitions — the where-clause 51Q

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
HASKELL COMMAND ©
HASKELL RESPONSE *
HASKELL COMMAND ©
HASKELL RESPONSE *

HASKELL COMMAND ©
HASKELL RESPONSE ©

horner10 ds = -- you define (0 on empty argument)

hornerl0 [1, 2, 3, 4]

4321

hornerl0 []

0

integerFromDecimalNumeral []
0

Review Questions

Integral numbers are denoted in Haskell by

a decima numerals enclosed in quotation marks

b decima numerals— no quotation marks involved
¢ decima numeralswith or without quotation marks
d valuesof type String

The Haskell system, when interpreting scripts, represents numbers as

a decima numerals

b binary numerals

¢ hexadecima numeras
d however it likes— none of your business anyway

Encapsulation

a prevents name clashes
b prevents one software component from messing with the internal details of another
¢ isone of the most important concepts in software engineering

d al of theabove

A where-clause in Haskell defines variables that

a will beaccessible from al where-clauses

b takethe name of the where-clause as a prefix

¢ cannot be accessed outside the definition containing the clause

d have strange names

In Haskell, the beginning and end of a definition is determined by
a begin and end statements
b matched sets of curly braces{ }

€ indentation

d however it likes— none of your business anyway

Theintrinsic function foldr

a ismore generaly applicable than foldrl

b takes more arguments than foldrl

¢ can accommodate an empty sequence asits last argument

d al of the above

What val ue does the following command deliver?

HASKELL DEFINITION ®
HASKELL DEFINITION ®

ct xs=foldr addOne 0 xs
where

10 Private Definitions — the where-clause 52Q

HASKELL DEFINITION ® addOne x sum =1 + sum
HAsKeLL Commanp e Ct [1, 2, 3, 4]

10, by computing 1+(2+(3+(4+0)))

4, by computing 1+(1+(1+(1+0)))

5, by computing 1+(1+(1+(1+1)))

nothing — ct is not properly defined

o0 oW

10 Private Definitions — the where-clause

53Q

Tuples 11

Consider the reverse of the problem of computing
the number that a sequence of digits represents.
Suppose, instead, you would like to compute the
sequence of digitsin the decima numeral that
denotes a given number. In one case, you start with
a sequence of digits and compute a number, and in
the other case you start with anumber and compute
asequence of digits.

The units digit of the decimal numeral for anon-
negative number is simply the remainder when the
number is divided by ten. The clock-remainder
function, mentioned in the previous chapter, can be
used to extract this digit:

making functionsinto operators

function syntax op argl arg2
operator syntax argl jop, arg2

Gackquote—l ooks like backward?
slanting apostrophe on keyboard
e these are equivalent notations
when op has two arguments
* op may have adefined fixity (left-,
right-, or non-associative) and pre-
cedence that affects grouping

HaskeLL DerivTion » — UNitsDigit x = x “mod™ 10
HaskeLL Coumanp e unitsDigit 1215
¢ HASKELL RESPONSE ?
Thetrick to getting the tens digit of anumber isto first drop the units digit, then extract the units
digit of what's | eft:
HaskeLL Derinmion e tensDigit x = d1
HASKELL DEFINITION ® where
HASKELL DEFINITION * xSansLastDigit = x “div’ 10
HASKELL DEFINITION * dl = xSanslLastDigit ‘mod" 10
HaskeLL Coumanp tensDigit 1789
¢ HASKELL RESPONSE ?
It often happens that the ‘div* and ‘mod" operators need to be used together, asin the calculation
of the tens digit of anumeral. For this reason, Haskell includes an operator called ‘divMod* that
delivers both the ‘div* part and the ‘mod* part in the division of two Integers. The ‘divMod* oper-
ator returns this pair of numbersin aHaskell structure known as atuple.
patterns must match exactly A t_uple in Haskell is an aggregate of two or more
i 77| individual components. The components may be
If atgp_l(_eof variables appears on theleftsidein | f any type, and different items of atuple may
adefinition, the value on the right must be a have different types. Tuples are denoted in Haskell
tuple with the same number of components. A : :
dté,?i ni\tlivtl)n isan equatiltj)n. If one sidef) of the scripts by a.“St of the. components, separated by
equation has ane form (say atwo-tuple) andthe commas, with the entire list enclosed in parenthe-
other side has adifferent form (say athree- Ses.
tuple), it can't really be an equation, can it? Equations that define variables as tuples can use a
single name for the whole tuple, or they can use
tuple patternsto give a name to each component. When a tuple pattern is defined, the first vari-
11 Tuples 54Q

w N

(&)

able getsthe value of thefirst component of the tuplein the formulaon the right hand side, and the
second variable gets the value of the second component.

The ‘divMod" operator computes the quotient and remainder of two integral operands. Its left
operand acts as the dividend and the right operand acts as the divisor. It delivers the quotient and
remainder in the form of atuple with two components:

x ‘divMod* d = (x ‘div* d, x ‘mod‘ d)

tuples

("Rodney Bottoms", 2. True) :: (String, Integer, Bool)
(6,1) :: (Integer, Integer) — result of 19 ‘divMod’ 3

¢ must have at least two components

« components may be of different types

e components separated by commas

¢ parentheses delimit tuple

« typeof tuplelooks like a tuple, but with types as components

The quotient x ‘div* d isthe next integer smaller than the exact ratio of the x to d, or the exact ratio
itself if x divided by d isan integer. (Thisiswhat you'd expect if both arguments are positive. If
oneis negative, then it is one less than you might expect.) The remainder x ‘mod" d is chosen to
make the following relationship True.

do(x ‘div* d) + (x ‘mod‘ d) == x
One can extract the hundreds digit of anumeral through an additiona iteration of theideausedin
extracting the units and tens digits. It amounts to successive applications of the ‘divMod' operator.

All of this could be done with the ‘div* and ‘mod" operators separately, of course, but since the
operations are used together, the ‘divMod‘ operator is more convenient.

HaskeLL Derinmion e hundredsDigit x = d2

HASKELL DEFINITION * where

HASKELL DEFINITION * (xSansLastDigit, d0) = x “divMod" 10

HASKELL DEFINITION * (xSansLast2Digits, d1) = xSansLastDigit "divMod™ 10
HASKELL DEFINITION * (xSansLast3Digits, d2) = xSansLast2Digits "divMod" 10
HaskeLL Commanp » hundredsDigit 1517

¢ HASKELL RESPONSE ?
The definition
(xSansLastDigit, d0) = x ‘divMod* 10

defines both the variable xSansLastDigit (defining its value to be the first component of the tuple
delivered by x ‘divMod* 10) and the variable dO (defining its value to be the second component of
the tuple delivered by x ‘divMod’ 10). The other definitions in the above where-clause also use
tuple patterns to define the two variables that are componentsin the tuple patterns.

11 Tuples 55Q

Review Questions

1 Thetypeof thetuple ("X Windows System", 11, "GUI") is

a (String, Integer, Char)

b (String, Integer, String)

¢ (X Windows System, Eleven, GUI)
d (Integer, String, Bool)

2 After thefollowing definition, the variables x and y are, respectively,
HASKELL DEFINITION ® (X, y) = (24, "XXIV")
a both of type Integer
b both of type String
¢ anlnteger and aString
d undefined — can't define two variables at once

3 After thefollowing definition, the variable x is

HASKELL DEFINITION ® X = (True, True, "2")
a twiceTrue
b atuplewith two components and a spare, if needed
¢ atuplewith three components
d undefined — can’'t define a variable to have more than one value

4 After thefollowing definition, the variable x is

HASKELL DEFINITION ® X = 16 ‘divMod* 12
a 1+4
b 16+4
c 1x12+4
d (1,49

5 TheformuladivMod x 12 == x ‘divMod" 12 is

a (x'div' 12, x ‘mod‘ 12)

b (True, True)

¢ Trueif x isnot zero

d True, no matter what Integer x is

6 Inadéfinition of atuple
a both components must be integers
b thetuple being defined and its definition must have the same number of components
¢ surplus components on either side of the equation are ignored
d al of the above

11 Tuples 56Q

