
12 The Class of Numbers 57Q

The Class of Numbers 12
The functionhorner10 is polymorphic. It operates on a class of numeric types.

HASKELL DEFINITION • horner10 :: Num a => [a] -> a

This type specification says that the argument ofhorner10 does not have to beIntegral. It can be
of any type belonging to the classNum.

Num is a class containing a total of six subclasses and eight specific types. So far the only specific
type from classNum that you have seen isInteger. The typeInteger is one of two types in the
class Integral. The classIntegral is a subclass of the classReal, and the classReal is, in turn,
one of the two primary subclasses of the class of numbers, which is calledNum.

One way to view the class structure ofNum is to look at it as a Venn diagram. In the diagram, a
region that is wholly contained in another region indicates a subclass relationship. Overlapping
regions represent classes that share some of their types and subclasses. Specific types that belong
to a particular class are displayed inside the region representing that class.

Each class of numbers shares a collection of operations and functions. For example, a value from
any of the eight types in the classNum is a suitable operand for addition (+), subtraction (-), or
multiplication (∗), and a suitable argument for negation (negate), absolute value (abs), signum
(signum), or conversion fromInteger to another numeric type (fromInteger). These are the
seven intrinsic operations shared among all types in classNum.

Num

Fractional

Integral
Floating

RealFloat

RealFrac

Com
plex

 F
lo

at

In
t

In
te

ger Rat
io

nal

Rat
io

 In
t

Com
plex

 D
ouble

Flo
at

Double

The Class of Numbers

Classes

Real

Ty
pes

12 The Class of Numbers 58Q

Other numeric operations are restricted to subclasses. For example,‘mod‘ and‘div‘ require oper-
ands from the classIntegral, which means their operands must either be of typeInteger or of type

Int (integers restricted to the range1 -229 to 229-1).

Another example is division (/). Operands of
the division operator must be in the classFrac-
tional. Some of the types in the classFrac-
tional are represented in what is known as
floating point form. Floating point numbers
have a fixed number of digits, but a decimal
point that can be shifted over a wide range to
represent large numbers or small fractions. On
most computer systems, the typeFloat carries
about seven decimal digits of precision, and
Double carries about sixteen digits.

There are many other functions and operators
associated with various subclasses ofNum.
You can learn about them on an as needed basis, referring to theHaskell Report where necessary.

In this chapter, the only new class of numbers you need to know about isIntegral. As you can see
in the diagram this includes two types:Int andInteger. Both types are denoted in Haskell by dec-
imal numerals, prefixed by a minus sign (-) in case they are negative. The difference between the
two types is that one has a restricted range and the other has an unlimited range.

The official Haskell requirement is that any integer in the range -229 to 229-1 is a legitimate value
of typeInt. Outside that range, there are no guarantees.

Some of the intrinsic functions in Haskell that will be needed in the next chapter deal with values
of typeInt. These intrinsic functions convert between values of typeChar and values of typeInt.
Because of the way Haskell represents characters, there are only 255 different values of type
Char. So, the typeInt has plenty of range to handle integer equivalents of values of typeChar,
and the designers of Haskell didn’t see much point in doing a complicated conversion when a sim-
ple one would do.

Given the information that addition (+) and multiplication (∗) can operate on any type in the class
Num and that’divMod’ must have operands from the classIntegral, try to figure out the most
general possible types of the following functions.

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? horner b ds = foldr (multAdd b) 0 ds

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? multAdd b d s = d + b*s

1. This range is required of all Haskell systems. Usually the range will depend on the underlying hardware.

For example,-231 to 231-1 is the range of integers supported by hardware arithmetic on many popular
chip architectures, so that is the range of values of typeInt on most Haskell systems.

Why several types of numbers?

Primarily to make efficient computation possible. The
instructions sets of most computers provide instructions
to do fast arithmetic on three types:Int, Float, and
Double. In theory, the typeInteger would be adequate
for convenient programming of any Integral computa-
tion. The typeInt wouldn’t be needed. In practice, on
the other hand, operations on numbers of typeInteger
proceed at a pace that could be a hundred times slower
than computations with numbers of typeInt. Some-
times, you just don’t have a hundred times longer to
wait. That’s whatInt is for, to make the computation go
faster when you don’t need extra range.

12 The Class of Numbers 59Q

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? integerFromNumeral b x = (horner b . reverse) x

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? numeralFromInteger b x =

¿ HASKELL DEFINITION ? reverse [d | (s,d) <- takeWhile (/= (0,0)) (sdPairs b x)]

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? sdPairs b x = iterate (nextDigit b) (x `divMod` b)

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? nextDigit b (xShifted, d) = xShifted `divMod` b

Hint on a tough one: nextDigit ignores the second component in the tuple supplied as its second
argument, so it doesn’t care what type that component has.

Review Questions

1 In the Haskell class of numbers, Int and Integer
a are basically the same type
b are the same type except that numbers of type Integer can be up to 100 digits long
c are different types but x+y is ok, even if x is of type Int and y is of type Integer
d are different types, but both in the Integral subclass

2 In the Haskell class of numbers, Float and Double
a are basically the same type
b are the same type except that numbers of type Double can be up to 100 digits long
c are different types but x+y is ok, even if x is of type Float and y is of type Double
d are different types, but both in the RealFrac subclass

3 What is the most restrictive class containing both the type Integer and the type Float?
a Num
b Real
c RealFrac
d Fractional

4 In the Haskell formula n/d, the numerator and denominator must be in the class
a Integral
b RealFrac
c Fractional
d Floating

1

12 The Class of Numbers 60Q

5 What is the type of the function f?
HASKELL DEFINITION • f x y = x / y

a Float -> Float -> Float
b Real num => num -> num -> num
c Fractional num => num -> num -> num
d Floating num => num -> num -> num

6 What is the type of the formula (g n 1) ?
HASKELL DEFINITION • g x y = x + y
HASKELL DEFINITION • n :: Int
HASKELL COMMAND • g n 1

a Int
b Integer
c Integral
d Real

13 Iteration and the Common Patterns of Repetition 61Q

Iteration and the Common Patterns of Repetition 13
Look again at the definition of the functionhundredsDigit from the previous chapter:

HASKELL DEFINITION • hundredsDigit x = d2
HASKELL DEFINITION • where
HASKELL DEFINITION • (xSansLastDigit, d0) = x `divMod` 10
HASKELL DEFINITION • (xSansLast2Digits, d1) = xSansLastDigit `divMod` 10
HASKELL DEFINITION • (xSansLast3Digits, d2) = xSansLast2Digits `divMod` 10

All of the definitions in the where-clause perform the
same operation on different data, and the data flows
from one definition to the next. That is, information
generated in the first definition is used in the second,
and information generated in the second definition is
used in the third. It is as if a function were applied to
some data, then the same function applied again to the
result produced in the first application, and finally the
same function applied a third time to the result pro-
duced in the second application. This illustrates a
common programming method known as iteration.

Technically, in software, iteration requires composing a function with itself. First, you apply the
function to an argument. That’s one iteration. Then, you apply the function again, this time to the
result of the first iteration. That’s another iteration. And so on.

The where-clause in the definition of the functionhundredsDigit almost meets this technical def-
inition of iteration, but not quite. The missing technicality is that, while data generated in one iter-
ation is used in the next, it is not used in exactly the form in which it was delivered.

The first iteration delivers the tuple(xSansLastDigit, d0), and the second iteration uses only the
first component of this tuple to deliver the next tuple(xSansLast2Digits, d1). The third iteration
follow the same practice: it uses on the first component of the tuple to compute the third tuple.
With a little thought, one can iron out this wrinkle and definehundredsDigit in the form of true
iteration in the technical sense.

The trick is to define a function that generates the next tuple from the previous one. This function
will ignore some of the information in its argument:

HASKELL DEFINITION • nextDigit(xShifted, d) = xShifted `divMod` 10
HASKELL COMMAND • nextDigit(151, 7)

¿ HASKELL RESPONSE ?

ThenextDigit function can be used to definehundredsDigit in a new way, using true iteration:

¿ HASKELL DEFINITION ? hundredsDigit x = d2

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ?

1

iteration
To iterate is to do the same thing again
and again. In software, this amounts to
a succession of applications of the
same function, repeatedly, to the result
of the previous application. In other
words, to form a composition with sev-
eral applications of the same function:

(f . f) x — 2 iterations of f
(f . f . f . f . f) x — 5 iterations of f

2
3

4

5

13 Iteration and the Common Patterns of Repetition 62Q

This scheme leads to a simple formula for extracting any particular digit from a number: put
together an n-stage composition of nextDigit to extract digit n of a decimal numeral, where n rep-
resents the power of ten for which that digit is the coefficient:

HASKELL COMMAND • x ‘divMod‘ 10 — extracts digit0
HASKELL COMMAND • nextDigit (x ‘divMod‘ 10)— extracts digit 1
HASKELL COMMAND • (nextDigit . nextDigit) (x ‘divMod‘ 10)— extracts digit2
HASKELL COMMAND • (nextDigit . nextDigit . nextDigit) (x ‘divMod‘ 10)— extracts digit3

The above formulas are iterations based on the function nextDigit. Each formula delivers a two-
tuple whose second component is the extracted digit. This formulation of digit extraction suggests
a way to derive a complete decimal numeral from a number: just build the sequence of digits
through successively longer iterations of the function nextDigit:

The Haskell language provides an intrinsic function to build the sequence of iterations described
in the above equation. The function is called iterate, and its two arguments are a (1) a function to
be repeated in the iterations and (2) an argument for that function to provide a starting point for
the iterations.

For example, if iterate were applied to the func-
tion that adds one to its argument and to a starting
point of zero, what sequence would it generate?

HASKELL DEFINITION • add1 n = n + 1
HASKELL COMMAND • iterate add1 0

In a similar way, an invocation of iterate can gen-
erate the powers of two. In this case, instead of
adding one, the iterated function doubles its argument.

HASKELL DEFINITION • double p = 2∗p
HASKELL COMMAND • iterate double 1

Combining these two ideas leads to a formula for the sequence of tuples in which the first compo-
nent is the power to which the base (2) is raised and the second component is the corresponding
power of two.

HASKELL DEFINITION • add1Double (n, p) = (n + 1, 2∗p)
HASKELL COMMAND • iterate add1Double (0, 1)
HASKELL RESPONSE •

[d0, d1, d2, d3, …] = [d | (s, d) <- [x ‘divMod‘ 10,
nextDigit (x ‘divMod‘ 10),
(nextDigit . nextDigit) (x ‘divMod‘ 10),
(nextDigit . nextDigit . nextDigit) (x ‘divMod‘ 10),

…]
]

tuple-patterns can be
used in generators, too

Hint
 iterate add1 0 =

[0, add1 0, (add1 . add1) 0,
 (add1 . add1 . add1) 0,
 (add1 . add1 . add1 . add1) 0,
 …]

13 Iteration and the Common Patterns of Repetition 63Q

In general, the function iterate builds a sequence that reflects the cumulative effects of applying a
given function, repeatedly, to an argument supplied as a starting point.

Now take another look at the formulas for the digits of the decimal numeral ofx:

Try to use the functioniterate to write a Haskell function that delivers the sequence of digits in
the decimal numeral of a given integer. Don’t worry, at this point, about the sequence being infi-
nite.

¿ HASKELL DEFINITION ? allDigitsInNumeralStartingFromUnitsPlace x =

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

HASKELL COMMAND • allDigitsInNumeralStartingFromUnitsPlace 1863
HASKELL RESPONSE • [3, 6, 8, 1, 0,

0, 0,
0, 0,
0, 0, 0, 0, 0,^C{Interrupted!}

iterate :: (a -> a) -> a -> [a]

iterate f x = [d0, d1, d2, d3, …]
where
[d0, d1, d2, d3, …] = [x, f x, (f . f) x, (f . f . f) x, …]

• iterate generates a sequence with an infinite number of elements
• calculations that useiterate will truncate the sequence it generates when the

elements needed in the computation are delivered

The above definition of iterate is intended to describe the result thatiterate delivers.
The definition uses some Haskell syntax, but is not written purely in Haskell. The fol-
lowing equation definesiterate formally in Haskell. Don’t try to puzzle out its mean-
ing at this point — you don’t have all the necessary information yet.

HASKELL DEFINITION • iterate f x = [x] ++ iterate f (f x) 6

 [x ‘divMod‘ 10,
nextDigit (x ‘divMod‘ 10),

(nextDigit . nextDigit) (x ‘divMod‘ 10),
(nextDigit . nextDigit . nextDigit) (x ‘divMod‘ 10), …]

7

interrupted by pressing control-C
— otherwise, it keeps on going like

the Energizer Bunny

13 Iteration and the Common Patterns of Repetition 64Q

Iteration consists of repeating the same compu-
tation over and over. You have seen two other
forms of repeated computation, mapping and
folding, for which Haskell provides intrinsic
operators. You have also used list comprehen-
sion to express the idea of filtering — that is,
selecting certain elements from a given
sequence to form a new one.

There is an intrinsic function filter for this tran-
sormation, which can be defined as a folding
process. Most computations calling for repeti-
tion fall into one of these patterns or into a pat-
tern called zipping, which is a generalized form
of mapping.

When you are trying to describe a computation
that involves repetition, try to view it as one of
common patterns: mapping, folding, filtering,
iteration, and zipping. The operators map, foldr,
filter, iterate, and zipWith make up a kind of
linguistic shorthand that covers probably over
90% of the computations involving repetition
that you will encounter in practice.

It pays to try to view repeated computations in
one of the common patterns because you will
acquire a facility for quickly understanding

non-terminating computations and embedded software

Iteration is one of the mechanisms that makes it possible for programmers to describe
non-terminating computations in Haskell. Such computations are needed in some types of
software. For example, the software that controls an ATM (automatic teller machine)
describes a non-terminating computation: serving a customer amounts to one session of
an unlimited number of sessions that occur as customers, one after another, use the
machine. Most software embedded in devices for control purposes has this non-terminat-
ing characteristic.

Device control is an area that has been truly liberated by the advent of small, cheap com-
puter chips. In the days of mechanical controls, most devices sensed external conditions
with the same components that actuated controls. There was little opportunity for translat-
ing conditions detected by sensors into complex control sequences. Electronic controls
have made it possible to do a great deal of analysis of conditions and to take different
actions based on those conditions. Fuel injection systems, anti-lock braking systems,
sophisticated stereo equipment, music synthesizers, electronic thermostats, and multi-
function wrist watches are examples of the benefits of this technology.

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith op [x1, x2 , x3 , …] [y1, y2 , y3 , …] =

[op x1 y1, op x2 y2 , op x3 y3 , …]
Note: zipWith delivers a sequence whose length
matches that of the shorter of the sequences supplied
as its last two arguments. Zipping stops when one of
those arguments runs out of elements.

filter :: (a -> Bool) -> [a] -> [a]
filter keep xs = [x | x <- xs, keep x]

filtering as folding:
filter keep = foldr op []

where
op x ys

| keep x = [x] ++ ys
| otherwise = ys

result if keep x is True

if not

map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

mapping as folding:
map f = foldr op []

where
op x ys = [f x] ++ ys

mapping as zipping:
map f = zipWith op (repeat(error "ignored"))

where
op ignored x = f x

13 Iteration and the Common Patterns of Repetition 65Q

computations specified in these ways, and this will make it more likely that your programs will do
what you expect. And, other people will find it easier to understand your programs when you
write them in this way.1

Review Questions

1 The iterate function
a delivers an infinite sequence as its value
b applies a function to the value that function delivers, over and over
c delivers its second argument as the first element of a sequence
d all of the above

2 What value do the following Haskell commands deliver?
HASKELL DEFINITION • add2 n = n + 2
HASKELL COMMAND • iterate add2 0
HASKELL COMMAND • iterate add2 1

a the biggest number that Haskell can compute
b nothing — they aren’t proper commands
c the number that is two more than the starting point
d one delivers the sequence of even numbers, the other the odds

3 Use theiterate function to generate the sequence [x0, x1, x2, x3, …] wherex0 = 1 andxn+1 = 11xn mod 127.
a next x = x/127 ∗ 11

iterate next 1
b next x = (11∗x) ‘mod‘ 127

iterate next (1/11 ‘div‘ 127)
c next x = (11∗x) ‘mod‘ 127

iterate next 1
d none of the above

1. There is another reason for using standard operators to specify repetition: efficiency. People who develop
systems that carry out Haskell programs realize that most repeating computations will be described in a
standard way, so they invest a great deal of effort to ensure that their systems will use computing
resources efficiently when performing one of the common repetition operations.

pseudorandom numbers
Sequences like [x0, x1, x2, x3, …] (in which each successive ele-
ment is the remainder, using a fixed divisor, when the previous
element is multiplied by a fixed multiplier) sometimes exhibit
many of the statistical properties of random sequences. This is
the usual way of generating “random” numbers on computers.

14 Truncating Sequences and Lazy Evaluation 66Q

Truncating Sequences and Lazy Evaluation 14
Sometimes a computation will need to work with part of a sequence. To accommodate situations
like these, Haskell provides intrinsic functions that accept a sequence as an argument and deliver
part of the sequence as a result. Four such functions are take, drop, takeWhile, and dropWhile.

The function take delivers an initial segment of a sequence. Its first argument says how many ele-
ments to include in the initial segment to be delivered, and its second argument is the sequence
whose initial segment is to be extracted. The function drop delivers the other part of the sequence
— that is, the sequence without a specified number of its beginning elements.

Try to define a function that delivers a sequence of the thousands digit through the units digit of
the decimal numeral denoting a given number. Use the function take and the function allDigitsIn-
NumeralStartingFromUnitsPlace (defined in the previous chapter) in your definition.

¿ HASKELL DEFINITION ? lastFourDecimalDigits x = -- you define it

¿ HASKELL DEFINITION ?

HASKELL COMMAND • lastFourDecimalDigits 1937
HASKELL RESPONSE • [1, 9, 3, 7]
HASKELL COMMAND • lastFourDecimalDigits 486

¿ HASKELL RESPONSE ?

HASKELL COMMAND • lastFourDecimalDigits 68009

¿ HASKELL RESPONSE ? [8, 0, 0, 9]

The functions takeWhile and dropWhile are similar to take and drop, except that instead of
truncating sequences based on counting off a particular number of elements, takeWhile and
dropWhile look for elements meeting a condition specified in the first argument.

take, drop :: Int -> [a] -> [a]

take n [x1, x2, …, xn, xn+1, …] = [x1, x2, …, xn]
drop n [x1, x2, …, xn, xn+1, …] = [xn, xn+1, …]

HASKELL COMMAND • take 3 [1, 2, 3, 4, 5, 6, 7]

¿ HASKELL RESPONSE ?

HASKELL COMMAND • drop 3 [1, 2, 3, 4, 5, 6, 7]

¿ HASKELL RESPONSE ?

HASKELL COMMAND • (take 3 . drop 2) [1, 2, 3, 4, 5, 6, 7]

¿ HASKELL RESPONSE ?

HASKELL COMMAND • take 3 [1, 2]
HASKELL RESPONSE • [1, 2] — takes as many as are available
HASKELL COMMAND • drop 3 [1, 2]
HASKELL RESPONSE • [] — drops as many as it can; delivers empty list

1

2
3
4

5

6

7

14 Truncating Sequences and Lazy Evaluation 67Q

The first argument of takeWhile and drop-
While is a function that delivers Boolean val-
ues (True/False). This function is called a
predicate. As long as elements in the
sequence pass the test specified by the predi-
cate (that is, as long as the predicate delivers
True when applied to an element from the ini-
tial part of the list), takeWhile continues to
incorporate these elements into the sequence it
delivers. When takeWhile encounters an ele-
ment that fails to pass the test, that element
and all that follow it in the sequence are trun-
cated (actually, they are never generated in the
first place — see box on lazy evaluation).

The function dropWhile delivers the elements from the trailing portion of the list that takeWhile
would truncate: take and takeWhile truncate a trailing segment of a sequence, and drop and
dropWhile truncate an initial segment of a sequence..

The takeWhile function provides the means to the goal of writing a function to build the decimal
numeral of a given integer. The function allDigitsInNumeralStartingFromUnitsPlace, devel-
oped in the previous chapter, almost does the trick. But, it delivers too many digits (an infinite
number) and it delivers them backwards (the units digit first, then tens digit, etc.). The function
contains essentially the right ideas, but needs to incorporate some sort of truncation.

 lazy evaluation
The Haskell system always waits until the last minute to
do computations. Nothing is computed that is not
needed to deliver the next character of the result
demanded by the command that initiated the computa-
tion in the first place.

So, when takeWhile is applied to a sequence, the only
elements of the sequence that will ever be generated are
those up to and including the first one that fails to pass
takeWhile’s test of acceptance (that is, its predicate).

This is known as lazy evaluation, and it has many conse-
quences of great value in software design.

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]

takeWhile p [x1, x2, …] = [x1, x2, …xk-1]
dropWhile p [x1, x2, …] = [xk, xk+1, …]

where xk is the first element such that p xk is False
HASKELL COMMAND • takeWhile odd [3, 1, 4, 1, 5, 9, 2, 6]

¿ HASKELL RESPONSE ?

HASKELL COMMAND • dropWhile odd [3, 1, 4, 1, 5, 9, 2, 6]

¿ HASKELL RESPONSE ?

HASKELL COMMAND • takeWhile (< 5) [3, 1, 4, 1, 5, 9, 2, 6]
HASKELL RESPONSE • [3, 1, 4, 1]
HASKELL COMMAND • dropWhile (< 5) [3, 1, 4, 1, 5, 9, 2, 6]
HASKELL RESPONSE • [5, 9, 2, 6]

odd is an intrinsic function
that delivers True if its argu-
ment is not divisible by two

operator section
• curried form of the less-than function (<)
• (< 5) x is equivalent to x < 5

14 Truncating Sequences and Lazy Evaluation 68Q

With takeWhile as the truncation mechanism, the criterion for deciding where to truncate
requires some tricky analysis.

Reconsider the functionsdPairs that was defined for the benefit ofallDigitsInNumeralStarting-
FromUnitsPlace:

HASKELL DEFINITION • sdPairs x = iterate nextDigit (x `divMod` 10)

ThesdPairs function builds the sequence of tuples thatallDigitsInNumeralStartingFro-
mUnitsPlace extracts the digits of the decimal numeral from.

HASKELL COMMAND • sdPairs 1954
HASKELL RESPONSE • [(195,4), (19,5), (1,9), (0,1), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0),

(0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0),
(0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0),
(0,^C{Interrupted!}

The digits in the numeral for the integerx are the second-components of the tuples in the sequence
sdPairs x. That is, thed-components of the following sequence are the digits of the numeral.

sdPairs x = [(s0, d0), (s1, d1), (s2, d2), …]

wheresk+1 = sk ‘div‘ 10 anddk+1 = sk ‘mod‘ 10 for all k ≥ 0

The above formulas imply that ifsk is zero, then bothsk+1 anddk+1 are zero, which means that as
soon assk becomes zero, no subsequent elements of the sequence will contain non-zero digits for
the numeral. So, to build the numeral, all elements of the sequence delivered bysdPairs x beyond
the first one where thes-component is zero can be truncated.

On the other hand, the numeral contains all non-zero
digits that occur in thed-component, so no such compo-
nents can be truncated from the sequence if the numeral
is to be constructed from what is left.

The upshot of these two observations is this: to con-
struct the numeral, all the sequence elements will be
needed up to, but not including, the first element where
both thes-component and thed-component are zero. So,
the truncation function should take elements (s, d) from
the sequence as long as (s, d) ≠ (0,0), but it can truncate
all elements starting from the first one that equals(0,0).

Obviously, lazy evaluation is going to be very important
in this computation. If the Haskell system weren’t lazy,
it might go on forever generating more and more (s, d)-
pairs that would never be needed.

The predicate to test for this condition would be the operator section(/= (0,0)), so the truncation
formula would be

takewhile (/= (0,0)) (sdPairs x)

8

9

10

operator sections
As you know, an operator with two operands
becomes a functions with two arguments
when its operator-symbol is enclosed in
parentheses.

When one operand of the operator is supplied
inside the parentheses, the resulting function
has only one argument. The other argument is
the value specified as an operand:

(== 0) x x == 0
(< 0) x x < 0
(‘div‘ 10) x x ‘div‘ 10
(c+) x c + x
(1-) x 1 - x

Exception!(-c) is not an operator section
It is a number — the negative ofc

14 Truncating Sequences and Lazy Evaluation 69Q

Imbed this truncation in the formula defining the function allDigitsInNumeralStartingFro-
mUnitsPlace, then apply reverse to get the digits in the conventional order (units digit last) to
construct a function that builds a sequence containing the digits of the decimal numeral represent-
ing a given number:

¿ HASKELL DEFINITION ? decimalNumeralFromInteger x = -- you define it

¿ HASKELL DEFINITION ?

HASKELL COMMAND • decimalNumeralFromInteger 1975
HASKELL RESPONSE • [1, 9, 7, 5]

Review Questions

1 What is the value of w?
HASKELL DEFINITION • u, v, w :: String
HASKELL DEFINITION • u = "Four vier cuatro"
HASKELL DEFINITION • v = drop 5 u
HASKELL DEFINITION • w = drop 5 v

a "Four "
b "vier "
c "cuatro"
d "cinco"

2 What string does the following command deliver?
HASKELL COMMAND • takeWhile (/= blank) "Four score and seven"

a "score and seven"
b " score and seven"
c "Four "
d "Four"

3 What string does the following command deliver?
HASKELL COMMAND • dropWhile (/= blank) "Four score and seven"

a "score and seven"
b " score and seven"
c "Four "
d "Four"

4 What value does the following command deliver?
HASKELL DEFINITION • dozen = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
HASKELL COMMAND • [take 2 xs | xs <- iterate (drop 2) dozen]

a [1, 2, 3, 4, 5, 6]
b [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [], [], [], [], [], …]
c [2, 4, 6, 8, 10, 12]
d [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]

5 Which of the following formulas delivers the product of the numbers in the sequence xs?
a dropWhile (/= 0) (iterate (∗) xs)
b takeWhile (/= 0) (iterate (∗) xs)
c foldr (∗) 0 xs
d foldr (∗) 1 xs

6 Given the following definition, which of the formulas delivers the number 3?
HASKELL DEFINITION • k x y = x
HASKELL DEFINITION • first, second, third :: Integer

11

12
13

14 Truncating Sequences and Lazy Evaluation 70Q

HASKELL DEFINITION • first = k (4-1) 0
HASKELL DEFINITION • second = k (1+2) "three"
HASKELL DEFINITION • third = k 3 (1 ‘div‘ 0)

a first
b second
c third
d all of the above

7 Consider the following function.
HASKELL DEFINITION • f :: String -> [String]
HASKELL DEFINITION • f w = [take 2 w, drop 2 w]

What does the formula iterate f "cs1323" deliver?
a ["cs", "1323", [], [], …
b ["cs", "13", "23", [], [], …
c [["cs"], ["1323"], [], [], …
d error … type mismatch

15 Encapsulation — modules 71Q

Encapsulation — modules 15
The where-clause provides one way to hide the internal details of one software component from
another. Entities defined in a where-clause are accessible only within the definition that contains
the where-clause. So, the where-clause provides a way to encapsulate information within a lim-
ited context. This keeps it from affecting other definitions. But, the most important reason for
using a where-clause is to record the results of a computation that depends on other variables
whose scope is limited to a particular context (formal parameters of functions, for example), for
use in multiple places within the definition containing the where-clause. It is best to keep where-
clauses as short as possible. When they get long, they mix up the scopes of many variables, which
can lead to confusion.

Access to entities can also be controlled by defining them in software units known as modules.
Entities defined in modules may be public (accessible from outside the module) or private (acces-
sible only inside the module).This makes it possible to define software units that are independent
of each other, except with regard to the ways in which their public entities are referred to. This, in
turn, makes it possible to improve internal details in modules without affecting other parts of the
software. Private entities within a module are said to be encapsulated in the module. .

Modern programming languages1 provide good facilities for handling this sort of encapsulation
— that is, for sharing information among a particular collection of functions, but hiding it from
the outside world. Haskell provides this facility through modules.

1. Haskell, ML, Java, Fortran 90, and Ada, for example — but not C and not Pascal

HASKELL DEFINITION • module DecimalNumerals
HASKELL DEFINITION • (integerFromDecimalNumeral, --export list
HASKELL DEFINITION • decimalNumeralFromInteger)
HASKELL DEFINITION • where
HASKELL DEFINITION •
HASKELL DEFINITION • integerFromDecimalNumeral ds = (horner10 . reverse) ds
HASKELL DEFINITION •
HASKELL DEFINITION • decimalNumeralFromInteger x =
HASKELL DEFINITION • reverse [d | (s,d) <- takeWhile (/= (0,0)) (sdPairs x)]
HASKELL DEFINITION •
HASKELL DEFINITION • horner10 ds = foldr multAdd 0 ds
HASKELL DEFINITION •
HASKELL DEFINITION • multAdd d s = d + 10*s
HASKELL DEFINITION •
HASKELL DEFINITION • sdPairs x = iterate nextDigit (x `divMod` 10)
HASKELL DEFINITION •
HASKELL DEFINITION • nextDigit(xShifted, d) = xShifted `divMod` 10 1

en
ca

ps
ul

at
in

g
de

ci
m

al
 n

um
er

al
 fu

nc
tio

ns

fil
e:

 D
ec

im
al

N
um

er
al

s.
hs

15 Encapsulation — modules 72Q

A module is a script that designates some of the entities it defines as exportable to other scripts,
but keeps all of its other definitions to itself. Other scripts using the module may use its exportable
definitions, but they have no access to its other definitions.

The module DecimalNumerals contains definitions for functions to convert between decimal
numerals and integers. The module makes the definitions of the functions integerFromDecimal-
Numeral and decimalNumeralFromInteger available to the outside world by designating them
in the export list after the module name at the beginning of the module. The other functions
defined in the module are private.

A module script begins with the keyword module, which is followed by a name for the module.
The module name must start with a capital letter. After the module name comes a list of the enti-
ties that will be available to scripts using the module. This is known as the export list. Entities not
specified in the export list remain private to the module and unavailable to other scripts.

Following the export list is a where clause in which the functions of the module are defined. The
module DecimalNumerals defines the functions integerFromDecimalNumeral, decimalNu-
meralFromInteger, horner10, multAdd, and nextDigit, all but two of which are private to the
module.

A script can import the public definitions from a module, then use them in its own definitions. The
script does this by designating the module in an import specification prior to the script’s own def-
initions. If a script has no definitions of its own, it may consist entirely of import specifications.
Each import specification in a script gives the script access to some of the public entities defined
in the module that the import specification designates, namely those public entities designated in
the import list of the import specification.

The following script imports the two public functions of the DecimalNumerals module. When
this script is loaded, the Haskell system responds to commands using either of the two public
functions of DecimalNumerals designated in the import list of the import specification. But the
Haskell system will not be able to carry out commands using any of the private functions in Dec-
imalNumerals. They cannot be imported.

HASKELL DEFINITION • import DecimalNumerals
HASKELL DEFINITION • (integerFromDecimalNumeral, decimalNumeralFromInteger)
HASKELL COMMAND • integerFromDecimalNumeral [1, 9, 9, 3]

¿ HASKELL RESPONSE ?

HASKELL COMMAND • decimalNumeralFromInteger 1993

¿ HASKELL RESPONSE ?

HASKELL COMMAND • (integerFromDecimalNumeral . decimalNumeralFromInteger) 1993

¿ HASKELL RESPONSE ?

HASKELL COMMAND • nextDigit(199, 3)
HASKELL RESPONSE • ERROR: Undefined variable "nextDigit"

2

15 Encapsulation — modules 73Q

From this point on, most of the Haskell software
discussed in this text will have a main module
that acts as the basis for entering commands. This
main module will import functions from other
modules, and the imported functions, together
with any functions defined in the main module,
will be the only functions (other than instrinsic
functions) that can be invoked in commands. The
preceding script, which imports the public func-
tions of theDecimalNumerals module, is an example of a “main module” of this kind.

The following redevelopment of the numeral conversion functions provides some practice in
encapsulation and abstraction.

As you know, decimal numerals are not the only way of representing numbers. Not by a long shot!
There are lots of completely unrelated notations (Roman numerals, for example), but the decimal
notation is one of a collection of schemes in which each digit of a numeral represents a coefficient
of a power of aradix

In the decimal notation, the radix is ten, but any
radix will do. Most computers use a radix two
representation to perform numeric calculations.
People use radix sixty representations in deal-
ing with time and angular measure.

The functions defined in the moduleDecimal-
Numerals can be generalized to handle any
radix by replacing the references to the radix10 by a parameter. For example, the function
horner10 would be replaced by a new function with an additional parameter indicating what
radix to use in the exponentiations. The following module for polynomial evaluation exports the
new horner function. The module also defines amultAdd function that factors in the radix (its
first argument), but this function is private to the module.

¿ HASKELL DEFINITION ? module PolynomialEvaluation -- you write the export list

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ? horner b ds = foldr (multAdd b) 0 ds

¿ HASKELL DEFINITION ? multAdd b d s = -- you write multAdd

¿ HASKELL DEFINITION ?

ThePolynomialEvaluation module can be used to help build the following module to handle
numerals of any radix. Some of the details are omitted, to give you a chance to practice.

The moduleNumerals imports the modulePolynomialEvaluation. This makes it possible to use
the functionhorner in within theNumerals script (but not the functionmultAdd, which is pri-
vate to thePolynomialEvaluation module).

TheNumerals module exports the functionsintegerFromNumeral andnumeralFromInteger,
which are analogous to the more specialized functions that theDecimalNumerals module

module files
By convention, each module is defined in a file — one
module to a file — with a filename that is identical to
the module name plus a.hs extension. For example,
the DecimalNumerals.hs file would contain theDeci-
malNumerals module. Exception: the file containing
the main module should be given a name indicative of
the software’s purpose. Otherwise, there will be too
many files called Main.hs.

 radix — the base of a number system
dndn-1…d1d0

is a radixb numeral for the number

dn×bn× +dn-1×bn-1× +⋅×⋅×⋅ + d1×b1× +d0×b0

• eachdi is a radixb digit.
• radix b digits come from the set {0, 1, …b-1}

3

15 Encapsulation — modules 74Q

exported. The module does not export any other functions, however. So, a script would not get
access to the function horner by importing the module Numerals.

The difference between the functions in Numerals and those in DecimalNumerals is that the
ones in Numerals have parameterized the radix. That means that the functions in Numerals have
an additional argument, which specifies the radix as a particular value when the functions are
invoked. You can construct the functions in Numerals by using the radix parameter in the same
ways the number 10 was used in the DecimalNumerals module.

¿ HASKELL DEFINITION ? module Numerals

¿ HASKELL DEFINITION ? (integerFromNumeral,

¿ HASKELL DEFINITION ? numeralFromInteger)

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ? import PolynomialEvaluation(horner)

¿ HASKELL DEFINITION ? integerFromNumeral b x = -- your turn to define a function

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? numeralFromInteger b x = -- you write this one, too

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? sdPairs b x = -- still your turn

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? nextDigit b (xShifted, d) = xShifted `divMod` b

Once the module Numerals is defined, the functions in the module DecimalNumerals can rede-
fined in terms of the functions with a parameterized radix, simply by specifying a radix of 10 in
curried invocations of the functions that Numerals exports.

HASKELL DEFINITION • module DecimalNumerals
HASKELL DEFINITION • (integerFromDecimalNumeral,
HASKELL DEFINITION • decimalNumeralFromInteger)
HASKELL DEFINITION • where
HASKELL DEFINITION • import Numerals(integerFromNumeral, numeralFromInteger)
HASKELL DEFINITION • integerFromDecimalNumeral ds = integerFromNumeral 10 ds
HASKELL DEFINITION • decimalNumeralFromInteger x = numeralFromInteger 10 x

A main module could now import functions from either the Numerals module or the Decimal-
Numerals module (or both) and be able to use those functions in commands:

HASKELL DEFINITION • import Numerals(integerFromNumeral, numeralFromInteger)
HASKELL DEFINITION • import DecimalNumerals(decimalNumeralFromInteger)
HASKELL COMMAND • decimalNumeralFromInteger 2001
HASKELL RESPONSE • [2, 0, 0, 1]
HASKELL COMMAND • numeralFromInteger 2 2001
HASKELL RESPONSE • [1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1]
HASKELL COMMAND • numeralFromInteger 60 138 — a hundred thirty-eight minutes is

HASKELL RESPONSE • [2, 18] two hours, eighteen minutes

4

5

6

15 Encapsulation — modules 75Q

HASKELL COMMAND • numeralFromInteger 60 11697 — a whole bunch of seconds is

HASKELL RESPONSE • [3, 14, 57] three hours, fourteen minutes and fifty-seven seconds

HASKELL COMMAND • numeralFromInteger 12 68 — sixty-eight inches is

HASKELL RESPONSE • [5, 8] five feet eight inches

HASKELL COMMAND • integerFromNumeral 5280 [6, 1000] — six miles and a thousand feet is

HASKELL RESPONSE • 32680 a cruising altitude of thirty-two thousand six hundred eighty feet

Now you need to know how to communicate modules to Hugs, the Haskell system you have been
using. Put each module in a separate file with a name identical to the name of the module, but with
a “.hs” extension (or a .lhs extension if you are using the literate form in your script). When Hugs
loads a Haskell script that imports a module, it finds the script defining the module by using the
module’s name to construct the name of the file containing the definition. So, the loading of mod-
ule scripts occurs automatically, as needed.

The way in which a program is organized in terms of modules is an important aspect of its overall
structure. Export lists in module specifications and import lists in import specifications reveal the
details of this structure, but in a form that is scattered across files and hard to picture all at once.
Another representation of the modular structure of the program, a documentation tool known (in
this text, at least) as aprogram organization chart, does a better job of communicating the big
picture.

A program organization chart consists of ovals linked by arrows. Each oval names a module of the
program, and an arrow from one module-oval to another indicates that the module at the head of
the arrow imports entities from the module at the tail. The imported entities appear on the chart as
labels on the arrow.1

1. Since the program organization chart contains no information that is not also specified in the modules, it
would be best to have program organization charts drawn automatically from the definitions of the mod-
ules. This would ensure their correctness. However, the charts serve also as a good planning tool. Sketch-
ing the program organization chart before writing the program, then revising it as the program evolves
helps keep the overall structure of the program in mind, which can lead to improvements in design.

Main

PolynomialEvaluation

NumeralsDecimalNumerals

horner

integerFromNumeral

numeralFromIntegerdecimalNumeralFromInteger

Program Organization Chart

integerFromNumeral

numeralFromInteger

15 Encapsulation — modules 76Q

Review Questions

1 A Haskell module provides a way to
a share variables and functions between scripts
b hide some of the variables and functions that a script defines
c package collections of variables and functions to be used in other scripts
d all of the above

2 The export list in a module designates variables and functions that
a are defined in the module and redefined in other modules
b are defined in the module and will be accessible to other scripts
c are defined in other scripts and needed in the module
d are defined in other scripts and redefined in the module

3 An import specification in a script
a makes all the definitions in a module available in the script
b designates certain variables and functions in the script to be private
c makes some public definitions from another module available for use in the script
d specifies the importation parameters that apply in the script

4 In a numeric representation scheme based on radix b,
a numbers are denoted by sequences whose elements come from a set of b digits
b numbers are written backwards
c letters cannot be used to represent digits
d numbers larger than b cannot be represented

5 Horner’s formula
a computes the reverse of a sequence of digits
b takes too long to compute when n is bigger than 10
c expresses a sum of multiples of powers of a certain base as a nest of products and sums
d is too complicated to use in ordinary circumstances

16 Definitions with Alternatives 77Q

Definitions with Alternatives 16
Julius Caesar wrote messages in a secret code. His scheme was to replace each letter in a message
with the third letter following it in the alphabet. In a coded message, he would have written URPH
for ROME, for example. The following script provides functions to encode and decode messages
using Caesar’s cipher.

HASKELL DEFINITION • cipherJulius :: String -> String
HASKELL DEFINITION • cipherJulius = map(shiftAZ 3)
HASKELL DEFINITION •
HASKELL DEFINITION • decipherJulius :: String -> String
HASKELL DEFINITION • decipherJulius = map(shiftAZ (-3))
HASKELL DEFINITION •
HASKELL DEFINITION • shiftAZ n c = ltrFromInt((intFromLtr c + n) `mod` 26)
HASKELL DEFINITION •
HASKELL DEFINITION • intFromLtr :: Char -> Int
HASKELL DEFINITION • intFromLtr c = fromEnum c - fromEnum 'A'
HASKELL DEFINITION •
HASKELL DEFINITION • ltrFromInt :: Int -> Char
HASKELL DEFINITION • ltrFromInt n = toEnum(n + fromEnum 'A')

HASKELL COMMAND • cipherJulius "VENIVIDIVICI"
HASKELL RESPONSE • "YHQLYLGLYLFL"
HASKELL COMMAND • decipherJulius "YHQLYLGLYLFL"
HASKELL RESPONSE • "VENIVIDIVICI"

You are probably wondering what the formula defining cipherJulius means. What is that map
thing anyway? This is an intrinsic function that duplicates one of the uses of list comprehensions:

map f xs = [f x | x <- xs]

It’s as simple as that. So, why use map? Mainly because it makes some formulas a bit more con-
cise. An equivalent formula for cipherJulius would be

cipherJulius plaintext = [shiftAZ 3 c | c <- plaintext]

Taking f to be the curried form shiftAZ 3 in the definition of map, this formula for
cipherJulius msg equivalent to the following:

cipherJulius plaintext = map (shiftAZ 3) plaintext

This definition of cipherJulius is almost the same as the original. The only difference is, this one
names an explicit argument, and the original uses a curried invocation of map, leaving the argu-
ment implicit. But, the definitions are equivalent because of the following observation:

f x = g x for all x means f = g

This is what it means for two functions to be the same: they deliver the same values when sup-
plied with the same arguments. Because Haskell allows curried function invocations, the mathe-

1

16 Definitions with Alternatives 78Q

matical idea of function equality carries over to the syntax of Haskell. The following two Haskell
definitions are equivalent, no matter how complicated theanyFormula part is:

f x = anyFormula x is equivalent to f = anyFormula

The same trick works if thef part is a curried form:

g y z x = anyFormula x is equivalent to g y z = anyFormula

So, cipherJulius msg = map (shiftAZ 3) msg is equivalent to
cipherJulius = map (shiftAZ 3)

From now on, you’ll see this form of expression in lots of definitions. When definitions omit some
of the parameters of the function being defined, subtle ambiguities1 can arise. For this reason, it is
necessary to include explicit type specifications for such functions. Generally, explicit type speci-
fications are good practice anyway, since they force the person making the definition to think
clearly about types. So, most definitions from this point on will include explicit type specifica-
tions.

Now, back to the script for computing Caesar ciphers.

The functionshiftAZ 3 in this script does the work of encoding a letter:

shiftAZ 3 c = ltrFromInt((intFromLtr c + 3) `mod` 26)

The function first translates the character supplied as its argument to an integer between zero and
twenty-five (intFromLtr c), then it adds three, computes the remainder in a division by twenty-six
(to loop around to the beginning if the letter happened to be near the end of the alphabet), and
finally converts the shifted number back to a letter (ltrFromInt(all that stuff)).

The functions that do the conversions between
letters and integers use some intrinsic func-
tions,toEnum andfromEnum, that do a
slightly different conversion between letters
and integers. The functiontoEnum will trans-
late any argument of typeChar into a value of
typeInt between zero and 255 (inclusive).2 For
any characterc in the standard electronic
alphabet, the Haskell formulafromEnum(c)
denotes its ASCII code, which is a number
between zero and 127. The functiontoEnum
converts back to typeChar. That is, for any
ASCII character, toEnum(fromEnum(c))=c.

The designers of the ASCII character set arranged it so that the capital letters A to Z are repre-
sented by a contiguous set of integers, and the functionsintFromLtr andltrFromInt use this fact to
their advantage: For any letter c,

fromEnum(’A’) ≤ fromEnum(c) ≤ fromEnum(’Z’)

1. Explained in the Haskell Report (see “monomorphism restriction”).
2. Haskell uses typeInt instead ofInteger for these functions becauseInt is adequate for the range 0 to 255.

ASCII character set
A standard known as ISO8859-1 specifying represen-
tations of a collection of 128 characters has been estab-
lished by the International Standards Organization.
These are usually called the ASCII characters—the
American Standard Code for Information Interchange.
ASCII, an older standard essentially consistent with
ISO8859-1 but less inclusive of non-English alphabets,
represents 128 characters (94 printable ones, plus the
space-character, a delete-character, and 32 control-
characters such as newline, tab, backspace, escape,
bell, etc.) as integers between zero and 127

16 Definitions with Alternatives 79Q

Therefore,
fromEnum(’A’) - fromEnum(’A’) ≤

fromEnum(c) - fromEnum(’A’) ≤
fromEnum(’Z’) - fromEnum(’A’)

And, since the codes are contiguous,fromEnum(’Z’) - fromEnum(’A’) must be 25, which means
0 ≤ fromEnum(c) - fromEnum(’A’) ≤ 25

Because of these relationships, you can see that
intFromLtr will always deliver an integer between
zero and 25 when supplied with a capital letter as its
argument, andltrFromInt just inverts this process to
get back to the capital letter that the integer code
came from.

The deciphering process is basically the same as the
process of creating a ciphertext, except that instead
of shifting by three letters forward (shiftAZ 3), you shift by three letters back in the alphabet
(shiftAZ (-3)). So, the formula for thedecipherJulius function is similar to the one forcipherJu-
lius:

HASKELL DEFINITION • cipherJulius = map (shiftAZ 3)
HASKELL DEFINITION • decipherJulius = map (shiftAZ (-3))

The script, as formulated, takes some chances. It assumes that the supplied argument will be a
sequence of capital letters — no lower case, no digits, etc. If someone tries to make a ciphertext
from the plaintext “Veni vidi vici,” it will not decipher properly:

HASKELL COMMAND • cipherJulius "Veni vidi vici."
HASKELL RESPONSE • YNWRWERMRWERLRK
HASKELL COMMAND • decipherJulius "YNWRWERMRWERLRK"
HASKELL RESPONSE • VKTOTBOJOTBOIOH

This is not good. This is not right. My feet stick out of … oh … sorry … lapsed into some old
Dr Seuss rhymes … let me start again …

This is not good. It’s ok for a program to have some restrictions on the kinds of data it can handle,
but it’s not ok for it to pretend that it’s delivering correct results when, in fact, its delivering non-
sense — especially if what you’re expecting from the program is a ciphertext, which is supposed
to look like nonsense, so you can’t tell when the program is outside its domain.

One way to fix the program is to check for valid letters (that is, capital letters) when making the
conversions between letters and integers. To do this, you need some way to provide alternatives in
definitions, so that theintFromLtr function can apply the conversion formula when its argument is
a capital letter and can signal an error1 if its argument is something else.

Definitions present alternative results by prefacing each alternative with a guard. The guard is a
formula denoting a Boolean value. If the value isTrue, the result it guards is delivered as the value

1. Any function can signal an error by delivering as its value the result of applying the functionerror to a
string. The effect of delivering this value will be for the Haskell system to stop running the program and
send the string as a message to the screen.

fromEnum and toEnum

The class Enum includesChar, Bool, Int, and
several other types. The functionfromEnum con-
verts from any of these types toInt, andtoEnum
goes in the other direction. Since there are several
target types fortoEnum to choose from,explicit
type declarations are often needed.

16 Definitions with Alternatives 80Q

of the function. If not, the Haskell system proceeds to the next guard. The first guard to deliver
True selects its associated formula as the value of the function. The last guard is always the key-
word otherwise: if the Haskell system gets that far, it selects the alternative guarded by other-
wise as the value of the function. One way to look at this is that each formula that provides an
alternative value for the function is guarded by a Boolean value: they are a collection of guarded
formulas.

A guard appears in a definition as a Boolean formula following a vertical bar (|, like the one used
in list comprehensions). After a guard comes an equal sign (=), and then the formula that the
guard, if True, is supposed to select as the value of the function. Here’s a function that delivers 1
if its argument exceeds zero and -1 otherwise:

HASKELL DEFINITION • f x
HASKELL DEFINITION • | x > 0 = 1
HASKELL DEFINITION • | otherwise = -1

Try to apply this idea in the following script defining a safer version of the Caesar cipher system.
In case the conversion functions intFromLtr and ltrFromInt encounter anything other than capital
letters, use the error function to deliver their values. To test for capital letters, you can use the
intrinsic function isUpper Char -> Bool, which delivers the value True if its argument is a capi-
tal letter, and False otherwise.

¿ HASKELL DEFINITION ? import Char(isUpper)

¿ HASKELL DEFINITION ? cipherJulius :: String -> String

¿ HASKELL DEFINITION ? cipherJulius = map(shiftAZ 3)

¿ HASKELL DEFINITION ? shiftAZ :: Int -> Char -> Char

¿ HASKELL DEFINITION ? shiftAZ n c = ltrFromInt((intFromLtr c + n) `mod` 26)

¿ HASKELL DEFINITION ? decipherJulius :: String -> String

¿ HASKELL DEFINITION ? decipherJulius = map(shiftAZ (-3))

¿ HASKELL DEFINITION ? intFromLtr :: Char -> Int

¿ HASKELL DEFINITION ? intFromLtr c -- you fill in the two-alternative definition

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? ltrFromInt :: Int -> Char

¿ HASKELL DEFINITION ? ltrFromInt n -- again, you fill in the definition

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

HASKELL COMMAND • cipherJulius "VENIVIDIVICI"
HASKELL RESPONSE • "YHQLYLGLYLFL"

2

16 Definitions with Alternatives 81Q

HASKELL COMMAND • cipherJulius "Veni vidi vici."
HASKELL RESPONSE • "Y
HASKELL RESPONSE • Program error: intFromLtr(non-letter) not allowed

Another problem with the Caesar cipher system is that it uses a modern alphabet. The Roman
alphabet in Caesar’s time had twenty-three letters, not twenty-six. The letters J, U, and W from
the modern alphabet were not in the ancient one.1 This, too, can be fixed by putting some addi-
tional alternatives in the conversion functions to squeeze out the gaps in that the omission of J, U,
and W leave in the integer codes.

The idea is to check to see what range the letter is in A-I, K-T, V, or X-Z, then adjust by zero, one,
two, or three, respectively. (Of course the clock arithmetic has to be done mod 23 rather than mod
26, too.) Checking for a range like A-I takes two tests: c >= ’A’ and c < ’J’. For compound formu-
las like this, Haskell provides the and-operator (&&). It takes two Boolean operands and delivers
the value True if both operands are True and False otherwise. (Haskell also provides an or-oper-
ator (||) and a not-function (not), but they won’t be needed in this case.)

Try to work out the gaps in the following script, which encodes using the ancient Roman alphabet.

¿ HASKELL DEFINITION ? cipherJulius :: String -> String

¿ HASKELL DEFINITION ? cipherJulius = map(shiftRomanLetter 3)

¿ HASKELL DEFINITION ? shiftRomanLetter :: Int -> Char -> Char

¿ HASKELL DEFINITION ? shiftRomanLetter n c = romFromInt((intFromRom c + n) `mod` 23)

¿ HASKELL DEFINITION ? intFromRom :: Char -> Int

¿ HASKELL DEFINITION ? intFromRom c -- you fill in the definition (5 alternatives)

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ? cInt = fromEnum c - fromEnum 'A'

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? romFromInt :: Int -> Char

¿ HASKELL DEFINITION ? romFromInt n -- again, you fill in the definition

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

1. A problem the cipher system doesn’t have that it might seem to have is that it can’t deal with spaces and
punctuation. As it happens, the Romans didn’t use spaces and punctuation in their writing. I don’t know if
they used lower case letters or not, but the all-upper-case messages look really Roman to me.

16 Definitions with Alternatives 82Q

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ? fromASCII code = toEnum(code + fromEnum 'A')

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? decipherJulius :: String -> String

¿ HASKELL DEFINITION ? decipherJulius = map(shiftRomanLetter (-3))

HASKELL COMMAND • cipherJulius "VENIVIDIVICI"
HASKELL RESPONSE • "ZHQMZMGMZMFM"
HASKELL COMMAND • decipherJulius "ZHQMZMGMZMFM"
HASKELL RESPONSE • "VENIVIDIVICI"

The Caesar cipher is not a very good one. You can look at even a short ciphertext, such as
“ZHQMZMGMZMFM” and guess that M probably stands for a vowel. Ciphers like Caesar’s are
easy to break.1

Review Questions

1 Guards in function definitions
a hide the internal details of the function from other software components
b remove some of the elements from the sequence
c select the formula that delivers the value of the function
d protect the function from damage by cosmic rays

2 The formula map reverse ["able", "was", "I"] delivers the value
a ["I", "saw", "elba"]
b ["elba", "saw", "I"]
c ["I", "was", "able"]
d ["able", "was", "I", "not"]

3 The formula map f xs delivers the value
a f x
b [f x | x <- xs]
c f xs
d [f xs]

4 Which of the following formulas is equivalent to the formula[g x y | y <- ys] ?
a (map . g x) ys
b (map g x) ys
c map(g x y) ys
d map(g x) ys

1. The article “Contemporary Cryptology: An Introduction,” by James L. Massey, which appears inCon-
temporary Cryptology, The Science of Information Integrity, edited by Gustavus J. Simmons (IEEE Press,
1992), discusses methods of constructing good ciphers.

3

16 Definitions with Alternatives 83Q

5 The following function delivers
HASKELL DEFINITION • h xs
HASKELL DEFINITION • | xs == reverse xs = "yes"
HASKELL DEFINITION • | otherwise = "no"

a "yes", unless xs is reversed
b "yes" if its argument is a palindrome, "no" if it’s not
c "no" if xs is not reversed
d "yes" if its argument is written backwards, "no" if it’s not

6 The following function
HASKELL DEFINITION • s x
HASKELL DEFINITION • | x < 0 = -1
HASKELL DEFINITION • | x == 0 = 0
HASKELL DEFINITION • | x > 0 = 1

a the value of its argument
b the negative of its argument
c a code indicating whether its argument is a number or not
d a code indicating whether its argument is positive, negative, or zero

7 Assuming the following definitions, which of the following functions puts in
sequence of x’s in place of all occurrences of a given word in a given
sequence of words?

HASKELL DEFINITION • rep n x = [x | k <- [1 . . n]]
HASKELL DEFINITION • replaceWord badWord word
HASKELL DEFINITION • | badWord == word = rep (length badWord) ’x’
HASKELL DEFINITION • | otherwise = word

a censor badWord = map (replaceWord badWord)
b censor badWord = map . replaceWord badWord
c censor badWord = replaceWord badWord . map
d censor badWord = map badWord . replaceWord

length :: [a] -> Int
length[x1, x2, …, xn] = n

17 Modules as Libraries 84Q

Modules as Libraries 17
Encryption is an important application of computational power. It is also an interesting problem in
information representation, and in that way is related to the question of representing numbers by
numerals, which you have already studied. In fact, the numeral/number conversion software you
studied earlier can be used to implement some reasonably sophisticated ciphers. So, constructing
encryption software provides an opportunity to reuse some previously developed software.

Reusing existing software in new applications reduces the development effort required. For this
reason, software reuse is an important idea in software engineering. Programming languages pro-
vide a collection of intrinsic functions and operations. Whenever you use one of these, you are
reusing existing software. Similarly, when you package functions in a module, then import them
for use in an application, you are reusing software. Modules and intrinsic functions provide repos-
itories or libraries of software intended to be used in other applications.

This chapter presents some software for encryption, that is for encoding messages so that they
will be difficult for people other than the intended receivers to decode. Encoding methods for this
purpose are known as ciphers.

Substitution ciphers, in which there is a fixed replacement for each letter of the alphabet, are easy
to break because the distribution of letters that occur in ordinary English discourse (or any other
language) are known. For example, the letter E occurs most frequently in English sentences, fol-
lowed by the letter T, etc. If you have a few sentences of ciphertext, you can compute the distribu-
tion of occurrence of each letter. Then you can guess that the most frequently occurring letter is
the letter E, or maybe T, or one of the top few of the most frequently occurring letters. After
guessing a few of the letter-substitutions by this method, you can break the code easily.1

The statistics on pairs of letters are also known. So, even if the cipher is designed to substitute a
fixed new pair of letters for each pair that occur in the original message (maybe XQ for ST, RY for
PO, and so on for all possible two-letter combinations), the cipher will not be hard to break. The
code breaker will need access to a longer ciphertext, however, because the statistical differences
among occurrences of different letter combinations are more subtle than for individual letters.

The same goes for substitution ciphers that use three-letter combinations, and so on. But, the
longer the blocks of letters for which the cipher has a fixed replacement, the harder it is to break
the code. Ciphers of this kind (that is, multi-letter substitution ciphers) make up a class known as
block ciphers. The Data Encryption Standard (DES), which was designed and standardized in the
1970s, is a substitution cipher based on blocks of eight to ten letters, depending on how the mes-
sage is represented. The method of computing the replacement combination, given the block of
characters for which a new block is to be substituted, has sixteen stages of successive changes. It
scrambles the message very successfully, but in principle, it is a multi-letter, substitution cipher.

To encode a message with the DES cipher, the correspondents agree on a key. The DES cipher
then uses this key to compute the substitutions it will make to encrypt and decrypt messages. As

1. Edgar Allan Poe’s story, The Gold Bug, contains an account of the breaking of a substitution cipher.

17 Modules as Libraries 85Q

long as the key is kept secret, people other than the correspondents will have a very tough time
decoding encrypted messages.

A block cipher is like the Caesar cipher, but on a larger alphabet. For example, if the message-
alphabet consisted of capital letters and blanks, 27 symbols in all, and the block cipher substituted
new three-letter combinations for the three-letter combinations in the message, then this would be
a substitution cipher on an alphabet with 27×27×27 letters — that’s 19,683 letters in all.

The following module, Encryption, contains
software that implements a block cipher of this
kind. It is not limited to three-letter combinations.
Instead, it is parameterized with respect to the
number of letters in the substitution-blocks. They
can be of any length.

The overall structure of the program to be constructed is illustrated in the accompanying program
organization chart. The Encryption module will import a function from the SequenceUtilities
module (in the Appendix) to package messages into blocks. Each block will then be encrypted,
with the help of some entities imported from an EncryptionUtilities module, which, itself, gets
some help from the Numerals module developed previously. The Numerals module imported a
function from the PolynomialEvaluation module. The program organization chart displays all
these relationships. You can use it to help you keep track of what is going on as you work your
way through this lesson.

The encipher and decipher functions in the Encryption module are also parameterized with
respect to the key. The correspondents can agree on any sequence of characters they like as a key
for the software to use to encipher and decipher messages.

DES Efficiency
The encryption software developed in this lesson
scrambles messages successfully, but requires
much more computation than the DES procedure,
which is carefully engineered for both security
and efficient use of computational resources.

PolynomialEvaluation

Numerals

horner

EncryptionUtilities
integerFromNumeral

numeralFromInteger

EncryptionSequenceUtilities

Main

symFromBlock, blockFromSym

numeralBase

blocksRigid

encipher
decipher

Message Encryption Program
Organization Chart

17 Modules as Libraries 86Q

The cipher works like this. Given a fixed block size, it partitions the message into blocks of that
length (say, for example, 20 characters per block). If the number of characters in the message is
not an exact multiple of the block size, then the last block is padded with blanks to make it come
out even.

Each block is then converted to a numeral (see page 74) by translating its block of characters into
a block of integers. To do this, each letter in the alphabet that the message is written in is associ-
ated with an integer code (first letter coded as zero, second letter as on, etc.). The resulting
numeral then denotes a number in standard, positional notation with a radix equal to the number
of letters in the alphabet. The function integerFromNumeral (from the Numerals module), the
numeral is converted into an integer, and it is this integer that is viewed as a character in the cipher
alphabet.

The number of characters in the cipher alphabet varies with the chosen block size:

cipher-alphabet size = αβ,
where α = message-alphabet size

β = block size

The message alphabet consists of the printable
characters of the ASCII character set (see “ASCII
character set” page 78) plus the space, tab, and
newline characters, for a total of 97 characters
(α = 97). If the correspondents were to choose a
block size of one (β = 1) then the cipher alphabet
would contain the same number of symbols as the
message alphabet (97), which would produced a
simple substitution cipher similar to the Caesar
cipher. But, with a block size of five (β = 5), the
number of symbols in the cipher alphabet goes up

to several billion (975 = 8,587,340,257), and with a
block size of twenty (β = 20) up to huge number with forty digits in its decimal numeral (enter the
Haskell command (97::Integer)^20 if you want to see the exact number).

After converting a block of characters in the original message to an integer (denoting a symbol in
the cipher alphabet), an integer version of the key is added. (The integer version of the key is got-
ten by interpreting the key as a base-97 numeral, just as with blocks of characters from a mes-
sage.) This sum denotes another symbol in the cipher alphabet, shifted from the original symbol
by the amount denoted by the key (just as with the Caesar cipher, but on a larger scale: the remain-

der is computed modulo the number of characters in the cipher alphabet — that is 97β, where β is
the block size). And, finally, the shifted integer is converted back to a block of characters by
reversing the process used to convert the block of characters in the original message to an integer.

character-blocks as numerals
The encryption software essentially interprets each
block of characters as a base-97 numeral. The
“digits” in the numeral are ASCII characters.

Example, block-length 3, numeral “AbX”:

AbX

 denotes the cipher-alphabet symbol

code(A)×972 + code(b)×971 + code(X)×970

where code(A), code(b), and code(X) are numbers
between zero and 96 computed from the ASCII
codes for those characters.

17 Modules as Libraries 87Q

In this way, encoding a message is a five-step process:

1 group characters in original message into blocks
2 convert each block to a symbol in the cipher alphabet
3 shift the cipher-alphabet symbol by the amount denoted by the key
4 convert each (shifted) cipher-alphabet symbol into a block of characters
5 string the blocks together into one string, which is the encoded message (ciphertext)

The function cipher in the Encryption module is defined as five-step composition of functions,
one function for each step in the encoding process. The functions encipher and decipher both
use the function cipher, one with a forward version of the key and the other with a backward ver-
sion (just as in the Caesar cipher, where the forward key advanced three letters in the alphabet to
find the substitute letter, and the backward key shifted three letter back in the alphabet). The struc-
ture of these functions matches their counterparts in the Caesar cipher software, except for the
addition of the blocking and de-blocking concepts.

The Encryption module imports functions from a module called EncryptionUtilities to convert
between blocks of ASCII characters (type String) and cipher-alphabet symbols (type Integer). It
maps the block-to-symbol function (called symFromBlock) onto the sequence of blocks of the
original message, then maps the symbol-shifter function (shiftSym) onto the sequence of sym-
bols, and then maps the symbol-to-block function (blockFromSym) onto the sequence of shifted
symbols to get back to blocks again.

HASKELL DEFINITION • module Encryption
HASKELL DEFINITION • (encipher, decipher)
HASKELL DEFINITION • where
HASKELL DEFINITION •
HASKELL DEFINITION • import EncryptionUtilities
HASKELL DEFINITION • import SequenceUtilities
HASKELL DEFINITION •
HASKELL DEFINITION • encipher, decipher :: Int -> String -> String -> String
HASKELL DEFINITION • encipher blockSize key =
HASKELL DEFINITION • cipher blockSize (symFromBlock key)
HASKELL DEFINITION • decipher blockSize key =
HASKELL DEFINITION • cipher blockSize (- symFromBlock key)
HASKELL DEFINITION •
HASKELL DEFINITION • cipher :: Int -> Integer -> String -> String
HASKELL DEFINITION • cipher blockSize keyAsInteger =
HASKELL DEFINITION • concat . -- de-block
HASKELL DEFINITION • map blockFromSym . -- back to blocks (from symbols)
HASKELL DEFINITION • map shiftSym . -- encipher symbols
HASKELL DEFINITION • map symFromBlock . -- convert to cipher-alphabet symbol
HASKELL DEFINITION • blocksRigid blockSize ' ' -- form blocks
HASKELL DEFINITION • where
HASKELL DEFINITION • shiftSym n = (n + keyAsInteger) `mod` alphabetSize
HASKELL DEFINITION • alphabetSize = numeralBase^blockSize 1

17 Modules as Libraries 88Q

The Encryption module also uses the variable numeralBase from
the EncryptionUtilities module, which provides the size of the
cipher alphabet (alphabetSize). The Encryption module needs
this value to do the shifting modulo the size of the alphabet, so that
symbols that would shift off the end of the cipher-alphabet are recir-
culated to the front.

The Encryption module also uses a function called blocksRigid
from the module SequenceUtilities to build blocks of characters from the original message
string. It uses an intrisic function, concat, to paste the blocks of the encoded message back into a
single string.

The SequenceUtilities module appears in the Appendix. It is a library of several functions useful
for building or converting sequences in various ways. The blocksRigid function takes three argu-
ments: a block size, a pad, and a sequence to group into blocks. It groups the sequence into as
many blocks as it takes to contain all of its elements. The last block will be padded at the end, if
necessary, to make it the same size as the others (the second argument says what pad-character to
use). For now, it’s best to accept that this function works as advertised, but when you have some
free time, you can take a look at the Appendix and try to understand it. The definition uses some
intrinsic functions that you haven’t studied. You can look them up in the Haskell Report.

The intrinsic function, concat, which converts the
blocks back into one long string works as if you had put
an append operator (++) between each pair of blocks in
the sequence. In fact, it could be defined in exactly that
manner using a fold operator.

The Encryption module defines two functions for
export: encipher and decipher. It also defines a private function, cipher, which describes the
bulk of the computation (that’s where the five-link chain of function compositions is). It imports
two functions (symFromBlock and blockFromSym) and a variable (numeralBase) from the
EncryptionUtilities module. These entities are not exported from the Encryption module, so a
script importing the Encryption module would not have access to symFromBlock, blockFrom-
Sym, or numeralBase. This is by design: presumably a script importing the Encryption module
would do so to be able to encipher and decipher messages; it would not import the Encryption
module to get access to the utility functions needed to encipher and decipher messages. The addi-
tional functions would just clutter up the name space.

Now, take a look at the EncryptionUtilities module (see page 90). It defines four functions: sym-
FromBlock, blockFromSym, integerCodeFromChar, and charFromIntegerCode.

The purpose of the functions integerCodeFromChar, and charFromIntegerCode is to convert
between values of type Integer and blocks with elements of type Char. These functions make this
conversion for individual elements, and then they are mapped onto blocks to make the desired
conversion. The functions are defined in a manner similar to intFromLtr and ltrFromInt in cipher-
Julius (see page 80), except that the new functions are simpler because there is only one gap in
the ASCII codes for the characters involved (the ancient Roman character set had three gaps).

The ASCII codes for the space character and the 94 printable characters are contiguous, running
from 32 for space (fromEnum(’ ’)=32) up to 126 for tilde (fromEnum(’~’)=126). The only gap is

append operator (++)
glues two sequences together

"Thelma" ++ "Louise" means
"ThelmaLouise"

[1, 2, 3, 4] ++ [5, 6, 7] means
[1, 2, 3, 4, 5, 6, 7]

concat :: [[a]] -> [a]

concat [[1,2,3], [4,5], [6,7,8,9]] =
[1, 2, 3, 4, 5, 6, 7, 8, 9]

concat = foldr (++) []

17 Modules as Libraries 89Q

between those characters and the other two in the character set the software uses for encoding
messages, namely tab (ASCII code 9 — fromEnum(’/t’)=9) and newline (ASCII code 10 —
fromEnum(’/n’)=10). Given this information, try to write the definitions of these functions that
convert between integers and code-characters.

Try to write the other two functions, too. Their definitions can be constructed as a composition of
one of the integer/numeral conversion-functions in the Numerals module (see page 74) and a
mapped version of one of the integer/code-character conversion-functions. It might take you a
while to puzzle out these definitions — the three-minute rule is a bit short here. But, if you can
work these out, or even get close, you should feel like you’re really getting the hang of this.

¿ HASKELL DEFINITION ? module EncryptionUtilities

¿ HASKELL DEFINITION ? (symFromBlock, blockFromSym, numeralBase)

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ? import Numerals

¿ HASKELL DEFINITION ? symFromBlock :: String -> Integer -- you write the function

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? blockFromSym :: Integer -> String -- again, you write it

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? integerCodeFromChar :: Char -> Integer -- write this one, too

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? | fromEnum c >= minCode =

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? charFromIntegerCode :: Integer -> Char -- and this one

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? | intCode >=

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? maxCode, minCode, numExtraCodes :: Int

¿ HASKELL DEFINITION ? maxCode = 126 -- set of code-characters =

¿ HASKELL DEFINITION ? minCode = 32 -- {tab, newline, toEnum 32 ... toEnum 126}

¿ HASKELL DEFINITION ? numExtraCodes = 2

17 Modules as Libraries 90Q

¿ HASKELL DEFINITION ? numeralBase :: Integer

¿ HASKELL DEFINITION ? numeralBase =

¿ HASKELL DEFINITION ? fromIntegral(maxCode - minCode + 1 + numExtraCodes)

As you can see, the EncryptionUtilities module is rather fastidious about the differences between
type Int and type Integer. The reason the issue arises is that the functions fromEnum and toE-
num, which are used to convert between characters and ASCII codes, deal with type Int. They
may as well, after all, because all the integers involved are between zero and 255, so there is no
need to make use of the unbounded capacity of type Integer. Type Int is more than adequate with

its range limit of 229 - 1, positive or negative (see page 58).

However, Int is definitely not adequate for representing the integers that will occur in the cipher
alphabet. These numbers run out of the range of Int as soon as the block size exceeds four.1 So,
the computations specified by the integer/numeral conversion functions of the Numerals module
must be carried out using type Integer. For this reason, the functions integerCodeFromChar
and charFromIntegerCode use type Integer on the integer side of the conversion and type Int on
the character side. To do this it is necessary to convert between Int and Integer, and an intrinsic
function is available to do this: fromIntegral. The function fromIntegral, given an argument in
the class Integral (that is, an argument of type Int or Integer), delivers a number of the appropri-
ate type for the context of the invocation.

The following script encrypts a maxim from Professor Dijkstra, which appeared in an open letter
in 1975 and later in an anthology of his writings.2 It imports the Encryption module and uses its
exported functions. As the commands demonstrate, enciphering the message, then deciphering it
gets back to the original (plus a few blanks at the end, depending on how the blocking goes).

HASKELL DEFINITION • import Encryption
HASKELL DEFINITION •
HASKELL DEFINITION • maximDijkstra, ciphertext, plaintext :: String
HASKELL DEFINITION • maximDijkstra =
HASKELL DEFINITION • "Besides a mathematical inclination, an exceptionally\n" ++
HASKELL DEFINITION • "good mastery of one's native tongue is the most vital\n" ++
HASKELL DEFINITION • "asset of a competent programmer.\n"
HASKELL DEFINITION • ciphertext = encipher blockSize key maximDijkstra
HASKELL DEFINITION • plaintext = decipher blockSize key ciphertext
HASKELL DEFINITION •
HASKELL DEFINITION • key :: String
HASKELL DEFINITION • key = "computing science"
HASKELL DEFINITION • blockSize :: Int
HASKELL DEFINITION • blockSize = 10

Using this program involves displaying messages that may be several lines long. If these mes-
sages are displayed directly as strings, they will be represented in the form that strings are denoted
in Haskell programs. In particular, newline characters will appear in the form “\n”, and, of course
the string will be enclosed in quotation marks.

1. 975 > 229 - 1
2. Selected Writings on Computing: A Personal Perspective, Edsger W. Dijkstra (Springer-Verlag, 1982).

2

3

17 Modules as Libraries 91Q

The putStr directive makes it possible to display the con-
tents of a string, rather than the Haskell notation for the
string. This leaves off the surrounding quotation marks and
interprets special characters in their intended display form.
For example, the newline will be displayed by starting a
new line and displaying subsequent characters from that
point. The following commands, making use of the above
program, use putStr to improve the display in this way.

HASKELL COMMAND • putStr maximDijkstra — display contents of string
HASKELL RESPONSE • Besides a mathematical inclination, an exceptionally
HASKELL RESPONSE • good mastery of one's native tongue is the most vital
HASKELL RESPONSE • asset of a competent programmer.
HASKELL COMMAND • putStr ciphertext — display contents of encrypted string
HASKELL RESPONSE • 2Mv^IPYqEg]Iw]JXHdNIQT# … and a bunch more gobbledygook …
HASKELL COMMAND • putStr plaintext — display contents of deciphered string
HASKELL RESPONSE • Besides a mathematical inclination, an … etc. (as above) …

Review Questions

1 Software libraries
a contain functions encapsulated in modules
b provide a way to package reusable software
c both of the above
d none of the above

2 A module that supplies reusable software should
a export all of the functions it defines
b import all of the functions it defines
c export reusable functions, but prevent outside access to functions of limited use
d import reusable functions, but avoid exporting them

3 The formula concat ["The", "Gold", "Bug"] delivers
a "The Gold Bug"
b ["The", "Gold", "Bug"]
c "TheGoldBug"
d [["The], ["Gold"], ["Bug"]]

4 Encryption is a good example to study in a computer science course because
a it is an important use of computers
b it involves the concept of representing information in different ways
c both of the above
d well … really … it’s a pretty dumb thing to study

5 The DES cipher is a block cipher. A block cipher is
a a substitution cipher on a large alphabet
b a rotation cipher with scrambled internal cycles
c less secure than a substitution cipher
d more secure than a substitution cipher

putStr directive
putStr :: String -> IO()

Causes the contents of the string specified
as its argument to be displayed on the
screen with each character interpreted in
the normal way (e.g., newline characters
start new lines, tabs cause spacing, etc.).

17 Modules as Libraries 92Q

6 Professor Dijkstra thinks that in the software development profession
a mathematical ability is the only really important asset that programmers need
b the ability to express oneself in a natural language is a great asset to programmers
c mathematical ability doesn’t have much influence on a programmer’s effectiveness
d it’s a waste of time to prove, mathematically, the correctness of program components

18 Interactive Keyboard Input and Screen Output 93Q

Interactive Keyboard Input and Screen Output 18
Input and output are managed by the operating system. Haskell communicates with the operating
system to get these things done. Through a collection of intrinsic functions that deliver values of
IO type, Haskell scripts specify requests for services from the operating system. The Haskell sys-
tem interprets IO type values and, as part of this interpretation process, asks the operating system
to perform input and output.

For example, the following script uses the intrinsic function putStr to display the string “Hello
World” on the screen:

HASKELL DEFINITION • main = putStr "Hello World"

By convention, Haskell scripts that perform input and/or output define a variable named main in
the main module. Entering the command main then causes Haskell system to compute the value
of the variable main. That value, itself, is of no consequence. But, in computing the value,
Haskell uses the operating system to perform the input/output specified in the script.

HASKELL COMMAND • main
OP SYS RESPONSE • Hello World

When the value delivered by a Haskell command is of IO type (e.g., main) the Haskell system
does not respond by printing the value. Instead it responds by sending appropriate signals to the
operating system. In this case, those signals cause the operating system to display the string
"Hello World" on the screen. This is an output directive performed by the operating system.

Input directives are another possibility. For example, Haskell can associate strings entered from
the keyboard with variables in a Haskell program.

Any useful program that reads input from the keyboard will also contain output directives. So, a
script containing an input directive will contain one or more output directives, and these directives
will need to occur in a certain sequence. In Haskell, such sequences of input/output directives are
specified in a do-expression.

HASKELL DEFINITION • main =
HASKELL DEFINITION • do
HASKELL DEFINITION • putStr "Please enter your name.\n"
HASKELL DEFINITION • name <- getLine
HASKELL DEFINITION • putStr("Thank you, " ++ name ++ ".\n" ++
HASKELL DEFINITION • "Have a nice day (:-)\n") 6

HASKELL COMMAND • main
OP SYS RESPONSE • Please enter your name.

OP SYS ECHO • Fielding Mellish
OP SYS RESPONSE • Thank you, Fielding Mellish.
OP SYS RESPONSE • Have a nice day (:-)

echo by operating system
of keyboard entry

Haskell-induced output

18 Interactive Keyboard Input and Screen Output 94Q

A do-expression consists of the keyword do followed by a sequence of input/output directives.
The example presented here contains a sequence of three such directives:

The first directive sends the string "Please enter your name.\n" to the screen. Since the string ends
in a newline character, the string "Please enter your name." appears on the screen, and the cursor
moves to the beginning of the next line. The second directive (name <- getLine) reads a line
entered from the keyboard and associates the sequence of characters entered on the line1 with the
variable specified on the left side of the arrow (<-), which in this example is the variable called
name. Any subsequent directive in the do-expression can refer to that variable, but the variable is
not accessible outside the do-expression. And finally, the third directive sends a string constructed
from name (the string retrieved from the keyboard) and some other strings ("Thank you, ", a
string containing only the newline character, and "Have a nice day (:-)\n").

When the name is entered, the Haskell system builds
a string from the characters entered and associates
that string with the variable called name. While it is
doing this, the operating system is sending the char-
acters entered to the screen. This is known as echoing
the input, and it is the normal mode of operation;
without echoing, people could not see what they were
typing.

When the string is complete, the person at the key-
board enters a newline character. This terminates the getLine directive (a newline is what it was
looking for). And, since the operating system echoes the characters as they come in, the newline
entry causes the cursor on the screen to move to the beginning of the line following the name-
entry line.

The third directive sends a string to the screen containing two newline characters. In response to
this signal, two new lines appear on the screen. You can see by looking at the script that the first
one ends with a period, and the second one ends with a smiley-face.

What happens to the rest of the characters? The ones entered at the keyboard after the newline?
Well, this particular script ignores them. But, if the sequence of input/output directives in the do-
expression had contained other getLine directives, the script would have associated the strings
entered on those lines with the variables specified in the getLine directives.

The sequence of input/output directives in the do-expression could, of course, include more steps.
The following script retrieves two entries from the keyboard, then incorporates the entries into a
screen display, and finally retrieves a sign-off line from the keyboard.

1. That is, all the characters entered up to, but not including, the newline character. The newline character is
discarded

1 putStr "Please enter your name.\n"
2 name <- getLine
3 putStr("Thank you, " ++ name ++ ".\n" ++

"Have a nice day (:-)\n")

causes operating system to display two lines on screen

causes operating system to read a line entered
at the keyboard — the string entered becomes
the value of the variable name

causes operating system to display a line on the screen

echo
Operating systems normally send characters to
the screen as they are entered at the keyboard.
This is known as echoing the characters, and it
is usually the desired form of operation. Most
operating systems have a way to turn off the
echo when that is more desirable, such as for
password entry. Haskell provides a directive to
control echoing. See the Haskell Report.

18 Interactive Keyboard Input and Screen Output 95Q

HASKELL DEFINITION • main =
HASKELL DEFINITION • do
HASKELL DEFINITION • putStr "Please enter your name: "
HASKELL DEFINITION • name <- getLine
HASKELL DEFINITION • putStr "And your email address, please: "
HASKELL DEFINITION • address <- getLine
HASKELL DEFINITION • putStr(unlines[
HASKELL DEFINITION • "Thank you, " ++ name ++ ".",
HASKELL DEFINITION • "I'll send your email to " ++ address,
HASKELL DEFINITION • "Press Enter to sign off."])
HASKELL DEFINITION • signOff <- getLine
HASKELL DEFINITION • return()
HASKELL COMMAND • main

HASKELL RESP / OS ECHO • Please enter your name: Captain Ahab
HASKELL RESP / OS ECHO • And your email address, please: cap@mobydick.org

HASKELL RESPONSE • Thank you, Captain Ahab.
HASKELL RESPONSE • I'll send your email to cap@mobydick.org
HASKELL RESPONSE • Press Enter to sign off.

OP SYS ECHO •

There are a few subtleties going on with newline characters. The string sent to the screen by the
first directive does not end with a newline. For that reason, the cursor on the screen remains at the
end of the string "Please enter your name: " while waiting for the name to be entered.

After completing the name entry, the person at the keyboard presses the Enter key (that is, the
newline character). The operating system echoes the newline to the screen, which moves the cur-
sor to the beginning of the next line, and the Haskell system completes its performance of the get-
Line directive. Then, a similar sequence occurs again with the request for an email address.

Next, the putStr directive sends a three-line
display to the screen. This string is constructed
with an intrinsic function called unlines. The
unlines function takes a sequence of strings as
its argument and constructs a single string con-
taining all of the strings in the argument
sequence, but with a newline character inserted
at the end of each them. In this case, there are
three strings in the argument, so the result is a
string containing three newline characters. This string, displayed on the screen, appears as three
lines.

The last input/output directive in the do-expression is another getLine. This one simply waits for
the entry of a newline character. Because the variable that gets the value entered (signOff) is not
used elsewhere in the script, all characters entered up to and including the expected newline are,
effectively, discarded.

7

underline shows OS echo

echo of Enter-key from keyboard

unlines :: [String] -> String
unlines = concat . map (++ "\n")

unlines ["line1", "line2", "line3"] =
"line1\nline2\nline3\n"]

unlines takes a sequence of strings and delivers a
string that appends together the strings in the
sequence, each followed by a newline character.

18 Interactive Keyboard Input and Screen Output 96Q

Review Questions

1 Values of IO type
a are in the equality class Eq
b specify requests for operating system services
c represent tuples in a unique way
d describe Jovian satellites

2 Which of the following intrinsic functions in Haskell causes output to appear on the screen?
a concat :: [[any]] -> [any]
b putStr :: String -> IO ()
c printString :: Message -> Screen
d getLine :: IO String

3 What will be the effect of the command main, given the following script?
HASKELL DEFINITION • main =
HASKELL DEFINITION • do putStr "Good "
HASKELL DEFINITION • putStr "Vibrations\n"
HASKELL DEFINITION • putStr " by the Beach Boys\n"

a one line displayed on screen
b two lines displayed on screen
c three lines displayed on screen
d audio effects through the speaker

4 What will be the effect of the command main, given the following script?
HASKELL DEFINITION • main =
HASKELL DEFINITION • do putStr "Please enter your first and last name (e.g., John Doe): "
HASKELL DEFINITION • firstLast <- getLine
HASKELL DEFINITION • putStr (reverse firstLast)

a display of name entered, but with the last name first
b display of last name only, first name ignored
c display of last name only, spelled backwards

5 display of name spelled backwards How should the last input/output directive in the preceding question be
changed to display the first name only?
a putStr(take 1 firstLast)
b putStr(drop 1 firstLast)
c putStr(takeWhile (/= ’ ’) firstLast)
d putStr(dropWhile (/= ’ ’) firstLast)

19 Interactive Programs with File Input/Output 97Q

Interactive Programs with File Input/Output 19
Software can interact with people through the keyboard and the screen, and you have learned how
to construct software that does this (see “Interactive Keyboard Input and Screen Output” on
page 93). Since the screen is a highly volatile device, information displayed on it doesn’t last long
— it is soon overwritten with other information. The computer system provides a facility known
as the file system for recording information to be retained over a period of time and retrieved as
needed. By interacting with the file system, software can retrieve information from files that were
created at an earlier time, possibly by other pieces of software, and can create files containing
information for processing at a later time.

Suppose, for example, you wanted to write a Haskell script that would record, in a file that could
be accessed at a later time, a line of text entered at the keyboard. The script would begin by dis-
playing a message on the screen asking the person at the keyboard to enter the line of text. Then it
would write a file consisting of that line.

HASKELL DEFINITION • main =
HASKELL DEFINITION • do
HASKELL DEFINITION • putStr(unlines["Enter one line."])
HASKELL DEFINITION • lineFromKeyboard <- getLine
HASKELL DEFINITION • writeFile filename lineFromKeyboard
HASKELL DEFINITION • putStr("Entered line written to file \"" ++ filename ++ "\"")
HASKELL DEFINITION • where
HASKELL DEFINITION • filename = "oneLiner.txt"

Writing the file is accomplished through an output
directive called writeFile. The first argument of write-
File is a string containing the name of the file to be
created, and the second argument is the string to be
written to the file. In this case, the string contains only
one line, but it could contain any number of lines. For
example, the following script writes a file containing
three lines.

HASKELL DEFINITION • main =
HASKELL DEFINITION • writeFile "restaurant.dat" (unlines pepes)
HASKELL DEFINITION • where
HASKELL DEFINITION • pepes = ["Pepe Delgados", "752 Asp", "321-6232"]

So, the writeFile directive creates a file of text. The
readFile directive does the reverse: it retrieves the
contents of an existing file. In a script, the readFile
directive is used much as getLine is used, except that
instead of retrieving a single line from the screen,
readFile retrieves the entire contents of a file.

1

writeFile :: String -> String -> IO()

writeFile filename contents

name of file
to be created entire contents of

file to be created

readFile :: String -> IO String

contents <- readFile filename

name of file to
be retrieved

entire contents of file,
retrieved as needed

19 Interactive Programs with File Input/Output 98Q

The contents are retrieved on an as-needed basis, following the usual Haskell strategy of lazy
evaluation. But, the script accesses the file contents through the variable named on the left of the
arrow (<-) preceding the readFile directive, and any input/output command following the read-
File command in the do-expression containing it can refer to that variable.

To illustrate the use of file input/output, consider the problem of encrypting the text contained in a
file. That is, suppose you want to retrieve a text from a file, encrypt it, then create a new file con-
taining an encrypted version of the file contents.

The following script solves this problem by first asking for the name of a file from the keyboard,
confirming it, then asking for a sequence of characters to use as an encryption key. When the key
is entered, the script reads the contents of the file (that is, the plaintext), enciphers it using a func-
tion from the Encryption module developed earlier (page 87), and writes the encrypted message
in a file with the same name as the one containing the plaintext, but with an extended name
(“.ctx”, for ciphertext, is added to the filename).

HASKELL DEFINITION • import Encryption(encipher)
HASKELL DEFINITION •
HASKELL DEFINITION • main =
HASKELL DEFINITION • do
HASKELL DEFINITION • filename <- getFilename
HASKELL DEFINITION • confirmFilename filename
HASKELL DEFINITION • key <- getKey
HASKELL DEFINITION • confirmKey
HASKELL DEFINITION • putStr(msgReading filename)
HASKELL DEFINITION • plaintext <- readFile filename
HASKELL DEFINITION • putStr msgComputing
HASKELL DEFINITION • writeFile (outFile filename) (encipher blockSize key plaintext)
HASKELL DEFINITION • putStr (msgSignOff(outFile filename))
HASKELL DEFINITION •
HASKELL DEFINITION • getFilename =
HASKELL DEFINITION • do
HASKELL DEFINITION • putStr msgEnterFilename
HASKELL DEFINITION • filename <- getLine
HASKELL DEFINITION • return filename
HASKELL DEFINITION •
HASKELL DEFINITION • confirmFilename filename = putStr (msgThxForFilename filename)
HASKELL DEFINITION •
HASKELL DEFINITION • getKey =
HASKELL DEFINITION • do
HASKELL DEFINITION • putStr msgEnterKey
HASKELL DEFINITION • key <- getLine
HASKELL DEFINITION • return key
HASKELL DEFINITION •
HASKELL DEFINITION • confirmKey = putStr msgThxForKey
HASKELL DEFINITION •
HASKELL DEFINITION • msgEnterFilename = "Enter name of file containing plaintext: "
HASKELL DEFINITION •

19 Interactive Programs with File Input/Output 99Q

HASKELL DEFINITION • msgThxForFilename filename =
HASKELL DEFINITION • unlines[
HASKELL DEFINITION • "Thank you",
HASKELL DEFINITION • " ... will read plaintext from " ++ filename,
HASKELL DEFINITION • " ... and write ciphertext to " ++ outFile filename]
HASKELL DEFINITION •
HASKELL DEFINITION • msgEnterKey = "Enter key: "
HASKELL DEFINITION •
HASKELL DEFINITION • msgThxForKey =
HASKELL DEFINITION • unlines[
HASKELL DEFINITION • "Thank you ...",
HASKELL DEFINITION • " ... will use key, then throw into bit-bucket"]
HASKELL DEFINITION •
HASKELL DEFINITION • msgReading filename =
HASKELL DEFINITION • unlines["Reading plaintext from " ++ filename]
HASKELL DEFINITION •
HASKELL DEFINITION • msgComputing = unlines[" ... computing ciphertext"]
HASKELL DEFINITION •
HASKELL DEFINITION • msgSignOff filename =
HASKELL DEFINITION • unlines[" ... ciphertext written to " ++ filename]
HASKELL DEFINITION •
HASKELL DEFINITION • outFile filename = filename ++ ".ctx"
HASKELL DEFINITION •
HASKELL DEFINITION • blockSize :: Int
HASKELL DEFINITION • blockSize = 10

Some of the functions in this script retrieve input from the keyboard (getLine or readFile) and
need to deliver the input as their IO String values. This can be accomplished from a do-expres-
sion by using the return directive. When the return directive at the end of a do-expression con-
taining input/output directives is supplied with an argument that is a String, then the do-
expression delivers a value that can be used in the same way as a value delivered by getLine or
readFile. In this way, you can write functions that do specialized sorts of input directives, such
prompting for and retrieving the filename (getFilename) and the key (getKey) in the above
script.

2

19 Interactive Programs with File Input/Output 100Q

The following interactive session illustrates the use of the preceding script. Its effects, other than
the interaction you seen on the screen, are the file reading and writing shown in the diagram.

HASKELL COMMAND • main
HASKELL RESP / OS ECHO • Enter name of file containing plaintext: sussman.txt

HASKELL RESPONSE • Thank you
HASKELL RESPONSE • Reading plaintext from sussman.txt
HASKELL RESPONSE • Writing ciphertext to sussman.txt.ctx

HASKELL RESP / OS ECHO • Enter key (best if 10 or more characters): functional programming
HASKELL RESPONSE • Thank you ...
HASKELL RESPONSE • ... will use key, then throw into bit-bucket

underline indicates OS echo

The ultimate value generated by computer scientists is
the invention of languages for describing processes ...
What computer science delivers, has delivered, and is
continuing to and will be developing in the future, are
methods of describing complicated processes such that
what used to take hundreds of pages of English text
to describe will take a few lines in a formal language.
Formal is important, because it is possible for us to
understand it, and to communicate it quickly, and for
it not to be ambiguous and perhaps for us to run it.

Gerald Sussman (Comm ACM, Nov 1991) 3

file: sussman.txt

HYMuX[cT]IhUjjD[dOqOY_NfDcTNqJlrLcP_d_UZudL]
H]cTc\frRfccWOqQbgNbWX^XqWYrUUQVdLWMfrOc
TpSPcKfZK]QUp[bWWV\gHaoy~wtHQUVpRZ]XieNedb
RTUVWUjXH[XaUZf}j\DapOUT]gNfHR{lQVWrRfcR^
YdQbfRbIpcYqIbTjkL[ZlRMuUNjH[^[YVZrRadcWOqNi
e^fG{pLbMt^NhK^S]qWYrMYVRaTRQbWjWR_WYK
UeNWd_aZSMgdNfdbdNWihYJgcfWLciidNWdc]ldI_Uj\
X]S]ULfrXYd_PRU[u`Nu(]VWY[[r]Y[bo_^iXV\WUXQ
Oq_]]TuWPZOqIuWNjd[XYU[uZVuCpUZbUU\j`D]V`Q
OY
i:Ra\L[i]cj]P_^]dIbduuETRLe[XrRgdXal`WgdRVOSpQ_Z

file: sussman.txt.ctx

reads this file

writes this file

… etc. …

newline characters
not shown accurately

20 Fractional Numbers 101Q

Fractional Numbers 20
All of the software developed so far in this textbook has dealt primarily with strings or, in some
cases integral numbers, but even then with some sort of string processing as an ultimate goal. This
chapter discusses a computing application that makes use of non-integral numbers — that is,
numbers in the Haskell class Fractional. This class encompasses the intrinsic types in Haskell
that represent numbers with fractional parts.

There are six intrinsic types in this class. Two of them, the Complex types, are used to build mod-
els of many phenomena studied in mathematics, physics, and engineering. You can learn about
Complex types on your own, using the Haskell Report as a reference, if you decide to build soft-
ware that requires them. The types used in the examples in this chapter fall into the subclass Real-
Frac.

The term “real number,” in mathematics, refers to the kinds of numbers used to count things and
measure things. They can be whole numbers, which Haskell represents by the class Integral, or
numbers with fractional parts, which Haskell represents by the class RealFrac. The most com-
monly used types in this class are Float and Double.

Numbers of type Float and Double have two parts: a mantissa and an exponent. The mantissa
can be viewed as a whole number with a fixed number of digits (maybe decimal digits, but proba-
bly binary digits — the Haskell system uses a radix compatible with the computer system’s
instruction set), and the exponent as another whole number that specifies a scaling factor for the

Num

Fractional

Integral
Floating

RealFloat

RealFrac

Com
plex

 F
lo

at

In
t

In
te

ger Rat
io

nal

Rat
io

 In
t

Com
plex

 D
ouble

Flo
at

Double

The Class of Numbers

Classes

Real

Ty
pes

20 Fractional Numbers 102Q

mantissa. The scaling factor will be a power of the radix of the number system used to represent
the mantissa. In effect, the exponent moves the decimal point in the mantissa (or binary point …
or whatever) to the right or left. The decimal point moves to the right when the exponent is posi-
tive and to the left when it is negative. This is called afloating point representation. It is the basis
of most numerical computations in scientific computing. All computers intended for use in study-
ing models of scientific phenomena include, in their basic instruction sets, operators to do arith-
metic with floating point numbers at speeds ranging from thousands of floating point operations
per second on inexpensive systems to billions per second on computers intended for large-scale
scientific computation.

The difference between typeFloat and typeDouble is that numbers of typeDouble carry about
twice the precision of numbers of typeFloat (that is, their mantissas contain twice as many dig-
its). Both types are denoted in Haskell scripts by a decimal numeral specifying themantissa and
another decimal numeral specifying the exponent. The mantissa portion is separated from the
exponent portion by the lettere.

Theexponent portion is optional. It may be either negative (indicated by a minus sign beginning
the exponent) or positive (indicated by a plus sign beginning the exponent or by the absence of a
sign on the exponent). If the exponent part is present, then the mantissa must contain a decimal
point, and that decimal point must be imbedded between two digits. Negative numbers have a
minus sign at the beginning of the mantissa.

This chapter illustrates the use of fractional numbers through an example that builds a graphical
representation of a numeric function. That is, given a function that, when supplied with a frac-
tional number, delivers a new fractional number, the software will deliver a string that represents
the curve the function describes. When printed, this string will look like a graph of the function.1

1. Not a very good picture of the graph, really. It will be printed as ordinary text, so the resolution (distance
between discrete points on the display device) will be poor. But, in principle, the ideas developed in the
chapter could be applied to a graphical display device capable of any level of resolution.

floating point numbers and scientific notation

Because the numbers that occur in measuring physical phenomena range from very small to very large, and
because the precision with which they can be measured runs from a few decimal digits to many, but usually not
more than ten or twenty decimal digits of precision, measurements are often expressed as numbers that specify
quantities in the form of a mantissa times a power of ten. In effect, the power of ten shifts the decimal point to
scale the measured quantity appropriately. This scheme for denoting numbers, known as scientific notation, is a
form of floating point representation.

1.89533 × 1025

number of molecules in a
pint of beer in Glasgow
written in scientific notation

mantissa
exponent

1.89533e+25

in Haskell notation (Float or Double)

1.05522e-24

1.05522 × 10-24

mantissa exponent

ounces in a typical mol-
ecule of beer written in
scientific notation

bonafides: Avogadro’s number = 6.0221367e23, molecular weight of H2O = 18.01528, grams per ounce = 28.24952

20 Fractional Numbers 103Q

A key step in the computation of a graphical representation of a numeric function is the conver-
sion of analog values to digital values. The plotting device is a printer or screen, which has a cer-
tain number of positions along the horizontal axis in which it can display marks, and, likewise, a
discrete resolution in the vertical direction. A printer is, in this sense, a digital display device.

Analog display devices are not limited to certain fixed display points. In principle, an analog dis-
play device would be able to display a point anywhere within a given range.1 The numeric func-
tion whose graph will be plotted has an analog character. It’s input will be a fractional number,
and its output will be a fractional number. Both numbers will be of high enough precision that it is
reasonable to view them as analog measurements. The software will have to convert each analog
measurement into a digital level that represents a position in which a printer can make a mark.

Suppose the analog measurements x fall in the range a < x < b, for some fractional numbers a and
b, and the available digital levels are {0, 1, 2, …, n-1} for some integral number n. The idea is to
divide the analog range into n segments, label the segments from smallest to largest, 0, 1, … n-1,
and figure out which segment x falls in. The label of that segment will be the digital level of the
analog measurement x.

There is an arithmetic formula that produces the digital
level from the analog measurement x, given the analog
range (a, b) and the number of digital levels n. It works
like this: divide x - a, which is the distance between x
and the low end of the analog range, by dx = (b - a) / n, which is the length of the segments in the
analog range corresponding to the digital levels (dx is called the step size in the analog domain),
then convert the quotient to a whole number by dropping down to the next smaller integer (if by
chance the quotient falls on an integral boundary, just use that integer as the converted quotient —
this next-lower-integer, or, more precisely, the largest integer not exceeding x, is known as the
floor of x). The whole number delivered by this process is the digital level of the analog measure-
ment x.

digital level of x = floor((x - a) / dx)

This formula always works properly when the computations are exact. Floating point numbers,
however, involve approximate arithmetic because the precision of the mantissa is limited. Impre-

1. In practice, this will not be so. Any physical device is capable of a certain amount of precision. The real
difference between digital devices and analogue devices is that digital representations are exactly repro-
ducible. You can make an exact copy of a digital picture. Analog representations, on the other hand, are
only approximately reproducible. A copy will be almost the same, but not exactly.

analog to digital conversion
n —digital levels = {0, 1, ... n-1}
x — analog measurement
a < x < b — analog range
dx — stepsize, analog domain

0.3 0.7 1.1 1.5 1.9

x = 0.84

digital level 0 digital level 4 digital level 7 = n-1

a = 0.3
b = 1.9

digital level of x= floor((x - a) / dx) = 2

n = 8

dx = = 0.2b a–
n

floor ::
(RealFrac x, Integral n) => x -> n

floor x = largest integer not exceeding x

20 Fractional Numbers 104Q

cise arithmetic causes no problems for most of the range of values of the analog measurement x.
At worst, the digital level is off by one when x is very close to a segment boundary — no big deal.
No big deal, that is, unless off by one can put the digital level outside the set of n possible digital
levels {0, 1, 2, …, n-1}.

If that happens, it’s a disaster, because the software will need to use the digital level to control a
digital device that cannot operate with digital levels outside its expectations. So, it is best to make
a special case in the calculation when x is near the low end of the range, a, or near the high end of
the range, b.

These ideas are put together in the following definition of the function digitize. It selects a special
formula to avoid the out-of-range disaster when the analog value is within a half-step of either end
of the analog range and uses the standard formula otherwise.

The definition has two other notable features. One, it signals an error if invoked with zero or a
negative number of digital levels — no way to make sense out of such a request. Two, it uses the
function fromIntegral to make the divisor compatible with the dividend in the computation of the
step size. The function is packaged with some other utilities for numeric computation in a module
called NumericUtilities, (provided in the Appendix).

¿ HASKELL DEFINITION ? -- n-way analog-to-digital converter for a <= x < b

¿ HASKELL DEFINITION ? digitize:: RealFrac num => Int -> num -> num -> num -> Int

¿ HASKELL DEFINITION ? digitize n a b x -- you write this function

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ? xDist = x - a

¿ HASKELL DEFINITION ? dx = analogRangeSize/(fromIntegral nSafe)

¿ HASKELL DEFINITION ? halfStep = dx/2

¿ HASKELL DEFINITION ? nSafe | n > 0 = n

¿ HASKELL DEFINITION ? | otherwise = error "digitize: zero or negative levels"

¿ HASKELL DEFINITION ? analogRangeSize = b - a

The function digitize is polymorphic: it can deal with any representation of analog values in the
class RealFrac. This includes not only floating point numbers, but also rational numbers. Ratio-
nal numbers are constructed from a numerator and denominator, both of which are integral num-
bers. If the numerator and denominator have type Integer, then the rational number has type
Rational (short for Ratio Integer). If they have type Int, then the rational number has type
Ratio Int. Rational numbers are written as a pair of Haskell integral numbers with a percent sign
between them. The graph-plotting function, showGraph, will make use of a rational number
denoted in this way.

With the digitizing function understood, the next step is to construct the graph-plotting function.
This will be done in steps, from a version that is relatively easy to design, but not very desirable to
use, to a version that has more complex formulas, but is more convenient to use.

1

20 Fractional Numbers 105Q

The graph-plotting function will deliver a string that, when displayed on the screen, will appear as
lines containing asterisks to form the curve that represents the graph of the function being plotted.
The arguments supplied to the graph-plotting function will include the function to be plotted, the
extent of the domain over which to plot the function, and the desired number of digitizing levels to
break the range into.

graph-plotting function — showGraph
arguments

w — number of digitizing levels for the abscissa (a value of type Int)
f — function to plot (type num->num, where num is a type in the class RealFrac)
a — left-hand endpoint of the domain over which to plot the function
b — right-hand endpoint of the domain over which to plot the function

result delivered
string that will display a curve representing the function-graph {f x | a < x < b}

The function will first build a sequence of strings,
each to become one line in the result, then apply the
intrinsic function unlines to convert this sequence
of strings in to one string with newline characters
separating the strings in the original sequence.

The string will display the curve with the abscissa
running down the screen1 for w lines in all (one line
for each segment in the digitized version of the
abscissa). The function will need to choose some
appropriate level of digitization for the ordinate. Initially, this will be 20, corresponding to 20
character positions across a line, but it could be any number, as long the printed characters will fit
on a line of the printing device. (If they were to wrap around or get lopped off, the graph wouldn’t
look right.)

The step size in the direction of the abscissa will be dx = (b - a) / w, so digital level k corresponds
to the segment a + k∗dx < x < a + (k+1)∗dx. The function’s value at the centers of these segments
will be plotted. This means that the function values must be computed at the set of points

{ a + dx / 2 + k∗dx | n ∈ {0, 1, …, w-1} }

1. This is not very desirable. The abscissa is normally plotted along the horizontal axis. This is one of the
things to be improved in subsequent versions of the showGraph function.

Haskell notations for numbers in class RealFrac
numbers of type Float or Double

3.14159 .1

0.31415926e+01

31415926356.0e-10

-3.1415926 100.

-0.31416e+01

dangling decimal point
not allowed

numbers of type Rational or Ratio Int

3%5 — three fifths

5%3 — five thirds

-279%365 — negative two hundred sev-
enty-nine three hundred
sixty-fifths

unlines :: [String] -> String

concatenates all the strings in the argu-
ment together and inserts newline charac-
ter at the end of each

unlines ["IEEE", "Computer"] =
"IEEE\nComputer\n"

unlines = concat . map(++"\n")

20 Fractional Numbers 106Q

The maximum and minimum of the function values at
these points (call them yMax and yMin) determine the
range of values on the ordinate scale. This scale will be
digitized into 20 levels by applying digitize to each of the
function values.

The sketch of the function showGraph outlines this plan.
Try to fill in the details yourself, to make sure you under-
stand how to apply the concepts and formulas presented so far.

HASKELL COMMAND • putStr(showGraph 20 sin (-2*pi) (2*pi))
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *
HASKELL RESPONSE • *

maximum, minimum ::
Real num => [num] -> num

computing the largest or smallest
number in a sequence

maximum[5, 9, 2] = 9
minimum[4.7, -1.3, 3.14] = -1.3

¿ HASKELL DEFINITION ? showGraph:: RealFrac num =>

¿ HASKELL DEFINITION ? Int -> (num->num) -> num -> num -> String

¿ HASKELL DEFINITION ? showGraph w f a b = unlines graph

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ? graph = [spaces y ++ "*" | y <- ysDigitized]

¿ HASKELL DEFINITION ? ysDigitized = -- use the digitize function for this

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? ys = [f x| x<-xs] -- ordinates

¿ HASKELL DEFINITION ? xs = -- centered abscissas (you define xs)

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? dx = -- step size for abscissa (you define dx)

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? yMax = maximum ys

¿ HASKELL DEFINITION ? yMin = minimum ys 2

fromIntegral convertsw to
the type of (b-a)

sin :: Floating num =>
num-> num

sin is an intrinsic function
that delivers the (approxi-
mate) trigonometric sine of a
floating point argument

pi :: Floating num => num
pi is an intrinsic variable
whose value approximates the
ratio of the circumference of a
circle to its diameter

20 Fractional Numbers 107Q

In the definition of showGraph, the variable graph is a sequence of strings, one string for each
line that will appear in the display. Each of these lines is a sequence of spaces (delivered by a
function, spaces — see SequenceUtilities (Appendix) followed by an asterisk. The spaces shift
the asterisk further to the right for larger function values, and the overall effect is a curve showing
the behavior of the function, as shown in the following Haskell command and response.

It’s a little disorienting to see the curve running down the page. Normally the abscissa is plotted in
the horizontal direction. The next version of showGraph corrects this situation.

Think of the display of the graph as a table of rows and columns of characters. The rows go across
the page and the columns go up and down. Each row has 20 characters, since that is the number of
digitized levels in the ordinate, and each column has w characters, since w specifies the number of
digitized levels in the abscissa.

To display the graph in the usual orientation (horizontal axis for the abscissa), the last column of
the table (that is, the right-most column) needs to become the top row, the next-to-last column the
second row, and so on. This is known as a transposition of rows and columns in the table. A func-
tion called transpose in the SequenceUtilities module (Appendix) that does this operation.

Well … not quite. The function transpose actually makes the left-most column the top row and
the right-most column the bottom row, rather than the other way around.1 This can be fixed by
reversing the order of the strings that plot the abscissas before feeding this sequence of strings to
the unlines function.

However, there is a slight complication that needs to addressed before the transpose function
will work properly in this application. The complication is that the strings in the graph variable
are not full rows. They don’t have all 20 characters in them. Instead, they have just enough spaces,
followed by an asterisk, to plot a point on the graph in the right position.

For transpose to work as intended, the rows must be full, 20-column units. So, the formula for a
row must append enough spaces on the end to fill it out to 20 columns. Try to put the proper row-
formula in the following version of showGraph.

¿ HASKELL DEFINITION ? showGraph:: RealFrac num =>

¿ HASKELL DEFINITION ? Int -> (num->num) -> num -> num -> String

¿ HASKELL DEFINITION ? showGraph w f a b = (unlines . reverse . transpose) graph

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ? graph -- you fill in the formula for graph

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? ysDigitized = [digitize 20 yMin yMax y| y<-ys]

¿ HASKELL DEFINITION ? ys = [f x| x<-xs]

¿ HASKELL DEFINITION ? xs = [a + dx/2 + fromIntegral(k)*dx| k<-[0..w-1]]

¿ HASKELL DEFINITION ? dx = (b-a)/fromIntegral(w)

1. The function transpose is designed to work on matrices. According to the usual conventions in mathe-
matics, the transpose of a matrix makes the left-most column into the top row, the second column (from
the left) into the second row, and so on.

20 Fractional Numbers 108Q

¿ HASKELL DEFINITION ? yMax = maximum ys

¿ HASKELL DEFINITION ? yMin = minimum ys

With this change, the showGraph function displays the graph in the usual orientation (abscissa
running horizontally).

HASKELL COMMAND • putStr(showGraph 20 sin (-2*pi) (2*pi))
HASKELL RESPONSE • * *
HASKELL RESPONSE • * * * *
HASKELL RESPONSE •
HASKELL RESPONSE •
HASKELL RESPONSE •
HASKELL RESPONSE •
HASKELL RESPONSE • * * * *
HASKELL RESPONSE •
HASKELL RESPONSE •
HASKELL RESPONSE •
HASKELL RESPONSE •
HASKELL RESPONSE •
HASKELL RESPONSE •
HASKELL RESPONSE • * * * *
HASKELL RESPONSE •
HASKELL RESPONSE •
HASKELL RESPONSE •
HASKELL RESPONSE •
HASKELL RESPONSE • * * * *
HASKELL RESPONSE • * *

Wait a minute! Why is the graph all squeezed up?

There are two factors involved in this phenomenon. One is that the program exercises no discre-
tion about how many levels to use in digitizing the ordinate. It just picks 20 levels, no matter what.
So, some graphs will look squeezed up, some spread out, depending on scale.

This can be fixed by scaling the ordinate to match the abscissa, so that a unit moved in the vertical
direction on the plotting device will correspond to about the same range of numbers as a unit
moved in the horizontal direction. Another way to look at this is to choose the scaling factor so
that a segment in the range of the abscissa that corresponds to one digitization level has the same
length as a digitization segment in the range of the ordinate. In arithmetic terms, the following
proportions need to be approximated:

height / w = (yMax - yMin) / (b - a)

where height is the number of digitizing levels in the vertical (ordinate) direction.

The other factor is that the resolution of the printer in the vertical direction is not the same as the
resolution in the horizontal direction. Typically a movement on the printer in the vertical direction
is about twice as far as a movement in the horizontal direction. The exact ratio depends on the
printer, but a ratio of about five to three is typical. So, to get the proportions right, horizontal units
need to be adjusted by a factor of three-fifths to make them comparable to vertical units.

3

20 Fractional Numbers 109Q

Combining this aspect ratio of the horizontal and vertical resolutions of the printer with the main-
tenance of the above scaling proportions leads to the following formula for the number of digitiz-
ing levels in the vertical direction:

height = nearest integer to w* *(yMax - yMin) / (b - a)

The final version of showGraph is packaged in a module for use in other scripts. The module
assumes that the function digitize can be imported from a module called NumericUtilities and
that the functions spaces and transpose can be imported from a module called SequenceUtili-
ties.

Try to use the above formulas to fill in the details of the function showGraph. To compute the
nearest integer to a fractional number, apply the intrinsic function round. Note that the transpose
function has been packaged in the SequenceUtilities module, and the digitize function has been
packaged in the NumericUtilities module. Both of these modules are contained in the Appendix.

¿ HASKELL DEFINITION ? module PlotUtilities

¿ HASKELL DEFINITION ? (showGraph)

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ? import SequenceUtilities(transpose)

¿ HASKELL DEFINITION ? import NumericUtilities(digitize)

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? showGraph:: RealFrac num =>

¿ HASKELL DEFINITION ? Int -> (num->num) -> num -> num -> String

¿ HASKELL DEFINITION ? showGraph w f a b = (unlines . reverse . transpose) graph

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ? graph = -- you define graph

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? ysDigitized = [digitize height yMin yMax y| y<-ys]

¿ HASKELL DEFINITION ? height = -- you define height

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? ys = [f x| x<-xs]

¿ HASKELL DEFINITION ? xs = [a + dx/2 + fromIntegral(k)*dx| k<-[0..w-1]]

¿ HASKELL DEFINITION ? dx = (b-a)/fromIntegral(w)

¿ HASKELL DEFINITION ? yMax = maximum ys

¿ HASKELL DEFINITION ? yMin = minimum ys

¿ HASKELL DEFINITION ? aspect = fromRational(3%5)

3
5

4

20 Fractional Numbers 110Q

The following command applies showGraph in the usual way.

HASKELL DEFINITION • import PlotUtilities(showGraph)
HASKELL COMMAND • putStr(showGraph 20 sin (-2*pi) (2*pi))
HASKELL RESPONSE • ***** *****
HASKELL RESPONSE • ***** *****

Whoops! Poor resolution in the vertical direction. Doubling the resolution gives a better picture.

HASKELL COMMAND • putStr(showGraph 40 sin (-2*pi) (2*pi))
HASKELL RESPONSE • ****** ******
HASKELL RESPONSE • ** ** ** **
HASKELL RESPONSE • ** ** ** **
HASKELL RESPONSE • ****** ******

Review Questions

1 The Haskell class Fractional includes
a integral, real, and complex numbers
b numbers between zero and one, but not numbers bigger than one
c both floating point and rational numbers
d the Mandelbrot set

2 The mantissa of a floating point number determines
a where the decimal point goes
b the range of the number and its sign
c the magnitude and precision of the number
d the sign of the number and the digits in its decimal numeral

PlotUtilities

NumericUtilitiesSequenceUtilities

 digitize

 tr
anspose

Main

showGraph

Graph-plotting Program
Organization Chart

20 Fractional Numbers 111Q

3 The exponent of a floating point number determines
a where the decimal point goes
b the range of the number and its sign
c the magnitude and precision of the number
d the sign of the number and the digits in its decimal numeral

4 The following denote floating point numbers as the should appear in a Haskell script
a 1.89533e+25, 18.01528974, 1.05522e-24, +27.0

b 1.89533 × 1025, 18.01528974, 1.05522 × 10-24, -27.0
c 1.89533e+25, 18.01528974, 1.05522e-24, -27.0
d all of the above

5 Analog to digital conversion converts a number
a from a set containing a great many numbers to a number from a much smaller set
b to zero or one
c to a pattern of zeros and ones
d by a digital analogy process

6 Which of the following formulas would useful for analog to digital conversion?
a floor((x - a)/dx)
b floor(n∗(x - a)/(b - a))
c floor . (/ dx) . (+(- a))
d all of the above

7 Numbers of type Rational in Haskell scripts are
a compatible with floating point numbers in arithmetic operations
b constructed from two integers by putting a percent-sign between them
c especially useful when precision is not the most important factor
d all of the above

21 Patterns as Formal Parameters 112Q

Patterns as Formal Parameters 21
When you know something about the structure of an argument that may be supplied to a function,
you can take advantage of that knowledge to make the definition more concise and easier to
understand. For example, suppose you are writing a function whose argument will be a two-tuple
of numbers, and the function is supposed to deliver the sum of those numbers. You could write the
definition as follows.

HASKELL DEFINITION • sumPair :: Num num => (num, num) -> num
HASKELL DEFINITION • sumPair (x, y) = x + y

The formal parameter in this case is a two-tuple pattern. When the function is used in a formula, it
will be supplied with a two-tuple of numbers as an argument. At that point, the first component of
the tuple argument gets associated with the first component of the tuple-pattern in the definition
(that is, x), and the second component of the tuple argument gets associated with the second com-
ponent of the tuple-pattern (that is, y).

HASKELL COMMAND • sumPair(12, 25) — matches x in definition with 12, y with 25
HASKELL RESPONSE • 37 — delivers 12 + 25

This idea can also be used with arguments that are sequences. For example, the following function
expects its argument to be a sequence of two strings, and it returns a string containing the first
character in the first string and the last character in the second string.

HASKELL DEFINITION • firstAndLast :: [String] -> String
HASKELL DEFINITION • firstAndLast [xs, ys] = [head xs] ++ [last ys]

This function could be generalized to handle arguments with other sequence-patterns. Values to
be delivered for other patterns are simply written in separate equations. The following definition
would cover three cases: (1) an argument with two elements, as above, (2) an argument with one
element, and (3) an argument with no elements.

HASKELL DEFINITION • firstAndLast :: [String] -> String
HASKELL DEFINITION • firstAndLast [xs, ys] = [head xs] ++ [last ys]
HASKELL DEFINITION • firstAndLast [xs] = [head xs] ++ [last xs]
HASKELL DEFINITION • firstAndLast [] = []

This amounts to a function with three separate cases in its definition. The appropriate case is
selected by matching the supplied argument against the patterns in the defining equations and
choosing the defining equation that matches. If no pattern matches the supplied argument, the
function is not defined for that argument. The preceding definition of firstAndLast does not
define the function on sequences with three or more elements.

To define firstAndLast on sequences with any number of elements, a pattern involving the
sequence constructor can be used. The sequence constructor is an operator denoted by the colon
(:) that inserts a new element at the beginning of an existing sequence.

x : xs = [x] ++ xs

21 Patterns as Formal Parameters 113Q

Of course, you already know how to insert an element at the beginning of an existing sequence by
using the append operator (++). Unfortunately, however, the append operator is not included in
the class of operators that can be used to form patterns in formal parameters. Operators in this
class are known as constructors, and it just happens that the colon operator is one of those, but the
plus-plus operator isn’t.

Using the sequence constructor, the definition of firstAndLast can be extended to deal with all
finite sequences:

HASKELL DEFINITION • firstAndLast :: [String] -> String
HASKELL DEFINITION • firstAndLast (xs : yss) = [head xs] ++ [last(last(xs : yss))]
HASKELL DEFINITION • firstAndLast [] = []

In this definition, the first equation will be selected to deliver the value if the supplied argument
has one or more elements because the pattern (xs : yss) denotes a sequences that contains at least
the element xs. If the supplied argument has no elements, then the second equation will be
selected.

HASKELL COMMAND • firstAndLast ["A", "few", "words"] — selects first equation
HASKELL RESPONSE • As
HASKELL COMMAND • firstAndLast["Only", "two"] — selects first equation
HASKELL RESPONSE • Oo
HASKELL COMMAND • firstAndLast["one"] — selects first equation
HASKELL RESPONSE • oe
HASKELL COMMAND • firstAndLast [] — selects second equation
HASKELL RESPONSE • []

Many definitions use patterns involving the sequence constructor (:) because it often happens that
a different formula applies when an argument is non-empty than when the argument is empty.1 Of
course, you could always write the definition using guards:

HASKELL DEFINITION • firstAndLast :: [String] -> String
HASKELL DEFINITION • firstAndLast xss
HASKELL DEFINITION • | null xss = []
HASKELL DEFINITION • | otherwise = [head(head xss)] ++ [last(last xss)]

But, the pattern-matching form of the definition
has the advantage of attaching names to the com-
ponents of the sequence that can be used directly
in the definition, rather than having to apply
head or tail to extract them. For example, in the
pattern-matching form of the definition of fir-
stAndLast, the first component of the argument sequence in the non-empty case as associated
with the name xs. So, it can be used in the definition: head xs, rather than the more complicated
head(head xss) required in the definition that does not rely on pattern-matching.

1. In the firstAndLast function, for example, the an empty argument presents a special case because there
are no strings from which to extract first and last elements.

head, last :: [a] -> a — intrinsic functions

tail :: [a] -> [a]

head([x] ++ xs) = x tail([x] ++ xs) = xs
last = head . reverse

21 Patterns as Formal Parameters 114Q

Review Questions

1 The formula (x : xs) is equivalent to
a x ++ xs
b [x] ++ xs
c [x] ++ [xs]
d all of the above

2 The definition
HASKELL DEFINITION • f(x : xs) = g x xs
HASKELL DEFINITION • f [] = h

a defines h in terms of g
b defines f for arguments that are either empty or non-empty sequences
c will not work if xs is the empty sequence
d all of the above

3 The definition
HASKELL DEFINITION • f(x : xs) = g x xs

is equivalent to
a f xs | null xs = g x xs
b f xs = g x xs || h
c f xs | not(null xs) = g (head x) (tail xs)
d f x xs = g(x : xs)

4 Which of the following defines a function of type ([Char], Char) -> [Char] ?
a f((x : xs), ’x’) = [x] ++ reverse xs ++ [’x’]
b f(x , y : ys) = [] ++ reverse ys ++ [x]
c f((xs : ’x’), x) = [x] ++ reverse xs ++ [’x’]
d all of the above

5 Which of the following formulas delivers every third element of the sequence xs?
a foldr drop [] xs
b [foldr drop [] suffix | suffix <- iterate (drop 3) xs]
c [x | (x : suffix) <- takeWhile (/= []) (iterate (drop 3) (drop 2 xs))]
d takeWhile (/= []) (iterate (take 3) xs)

22 Recursion 115Q

Recursion 22
You have learned to use several patterns of computation that involve repetition of one sort or
another: mapping (applying the same function to each element in a sequence), folding (collapsing
all the elements of a sequence into one by inserting a binary operation between each adjacent
pair), iterating (applying a function to its own output, repeatedly), filtering (forming a new
sequence from the elements of an existing one that pass a certain criterion), and extracting a prefix
or suffix of a sequence. Most important computations can be described using just these patterns of
repetition. But not all.

Some computations require other patterns of repetition. In fact, there is no finite collection of pat-
terns that cover all of the possibilities. For this reason, general purpose programming languages
must provide facilities to permit the specification of arbitrary patterns of repetition. In Haskell,
recursion provides this capability.

A definition that contains a formula that refers to the term being defined is called a recursive for-
mula. All of the patterns of repetition that you have seen can be described with such formulas.

Take iteration, for example. The iterate function constructs a sequence in which each successive
element is the value delivered by applying a given function to the previous element. It is an intrin-
sic function, of course, but if it weren’t, the following equation would define it.

HASKELL DEFINITION • iterate f x = [x] ++ iterate f (f x)

What does this mean? It means that the value iterate delivers will be a sequence whose first ele-
ment is the same as the second argument supplied to iterate and whose subsequent elements can
be computed by applying iterate to different arguments. Well … not completely different. The
first argument is the same as the first argument originally supplied to iterate. The second argu-
ment is different, however. What was x before is now (f x).

Therefore, the first element of the value delivered by the subformula iterate f (f x) will be (f x).
This value becomes the second element in the sequence delivered by iterate f x. What about the
third element? The third element will be the second element delivered by the subformula
iterate f (f x).

To see what this value is, just re-apply the definition of iterate:

iterate f (f x) = [(f x)] ++ iterate f (f (f x))

The second element in this sequence is the first element in the sequence delivered by the subfor-
mula iterate f (f (f x)), and that value is (f (f x)), as you can see from the definition of iterate.

And so on. This is how recursion works.

Look at another example: the function foldr, defined via recursion:

HASKELL DEFINITION • foldr op z (x : xs) = op x (foldr op z xs)
HASKELL DEFINITION • foldr op z [] = z

You can see the pattern of repetition that this definition leads to by applying the definition to the
formula foldr (+) 0 [1, 2, 3].

22 Recursion 116Q

foldr (+) 0 [1, 2, 3] = (+) 1 (foldr (+) 0 [2, 3]) — according to the definition of foldr
= 1 + (foldr (+) 0 [2, 3]) — switching to operator notation for (+)
= 1 + ((+) 2 (foldr (+) 0 [3]) — applying the definition of foldr again

= 1 + (2 + (foldr (+) 0 [3])) — switching to operator notation for (+)

= 1 + (2 + ((+) 3 (foldr (+) 0 []))) — applying the definition again

= 1 + (2 + (3 + (foldr (+) 0 []))) — switching to operator notation for (+)

= 1 + (2 + (3 + 0)) — applying the definition again (empty-case this time)

This is the operational view of recursion — how it works. Generally, it’s not a good idea to worry
about how recursion works when you are using it to specify computations. What you should con-
cern yourself with is making sure the equations you write establish correct relationships among
the terms you are defining.

Try to use recursion to define the take function. The trick is to make the defining formula push the
computation one step further along (and to make sure your equations specify correct relation-
ships).

¿ HASKELL DEFINITION ? take n (x : xs) — you take a stab at the definition

¿ HASKELL DEFINITION ? | n > 0 =

¿ HASKELL DEFINITION ? | n == 0 =

¿ HASKELL DEFINITION ? otherwise = error("take (" ++ show n ++ ") not allowed")

¿ HASKELL DEFINITION ? take n [] = — don’t forget this case

So much for using recursion to define what you already understand. Now comes the time to try it
on a new problem.

Suppose you have a sequence of strings that occur in more-or-less random order and you want to
build a sequence containing the same elements, but arranged alphabetical order. This is known as
sorting. The need for sorting occurs so frequently that it accounts for a significant percentage of
the total computation that takes place in businesses worldwide, every day. It is one of the most
heavily studied computations in computing.

There are lots of ways to approach the sorting problem. If you know something about the way the
elements of the sequence are likely to be arranged (that is, if the arrangement is not uniformly ran-
dom, but tends to follow certain patterns), then you may be able to find specialized methods that
do the job very quickly. Similarly if you know something about the elements themselves, such as
that they are all three-letter strings, then you may be able to do something clever. Usually, how-
ever, you won’t have any specialized information. The sorting method discussed in this chapter is,
on the average, the fastest known way1 to sort sequences of elements when you don’t know any-
thing about them except how to compare pairs of elements to see which order they should go in.

Fortunately, it is not only the fastest known method, it is also one of the easiest to understand. It
was originally discovered by C. A. R. Hoare in the early days of computing. He called it quick-
sort, and it goes like this: Compare each element in the sequence to the first element. Pile up the
elements that should precede it in one pile and pile up the elements that should follow it in another
pile. Then apply the sorting method to both piles (this is where the recursion comes in). When you

1. There are all sorts of tricks that can be applied to tweak the details and get the job done faster, but all of
these tricks leave the basic method, the one discussed in this chapter, in place.

22 Recursion 117Q

are finished with that, build a sequence that (1) begins with the elements from first pile (now that
they have been sorted), (2) then includes the first element of the original sequence, and (3) ends
with the elements from the second pile (which have also been sorted at this point).

Try your hand at expressing the quick-sort computation in Haskell.

¿ HASKELL DEFINITION ? quicksort (firstx : xs) = — you try to define quicksort

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? quicksort [] = []

HASKELL COMMAND • quicksort["Billy", "Sue", "Tom", "Rita"]
HASKELL RESPONSE • ["Billy", "Rita", "Sue", "Tom"] — works on strings
HASKELL COMMAND • quicksort[32, 5280, 12, 8]
HASKELL RESPONSE • [8, 12, 32, 5280] — works on numbers, too
HASKELL COMMAND • quicksort[129.92, -12.47, 59.99, 19.95]
HASKELL RESPONSE • [-12.47, 19.95, 59.99, 129.92]
HASKELL COMMAND • quicksort["Poe", "cummings", "Whitman", "Seuss", "Dylan"]
HASKELL RESPONSE • ["Dylan", "Poe", "Seuss", "Whitman", "cummings"] — whoops!

As written, quicksort puts numbers in increasing order and puts strings in alphabetical order. But,
it seems to have some sort of lapse in the last of the preceding examples. It puts "cummings" last,
when it should be first, going in alphabetical order.

The problem here is that quicksort is using the intrinsic comparison operation (<), and this oper-
ation arranges strings in the order determined by the ord function, applied individually to charac-
ters in the strings. The ord function places capital letters prior to lower case letters, so
"cummings" is last because it starts with a lower case letter.

This kind of problem applies to many kinds of things you might want to sort. For example, if you
had a sequence of tuples containing names, addresses, and phone numbers of a group of people,
you might want to sort them by name, or by phone number, or by city. The built in comparison
operation (<), no matter how it might be defined on tuples, could not handle all of these cases.

What the quicksort function needs is another argument. It needs to be parameterized with respect
to the comparison operation. Then, an invocation could supply a comparison operation that is
appropriate for the desired ordering.

A version of quicksort revised in this way is easy to construct from the preceding definition. Try
to do it on your own.

¿ HASKELL DEFINITION ? quicksortWith precedes (firstx : xs) — you define quicksortWith

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? quicksortWith precedes [] = []

Now, if the intrinsic comparison operation (<) is supplied as the first argument of quicksortWith,
it will work as quicksort did before.

HASKELL COMMAND • quicksortWith (<) ["Poe", "cummings", "Whitman", "Seuss", "Dylan"]
HASKELL RESPONSE • ["Dylan", "Poe", "Seuss", "Whitman", "cummings"]

22 Recursion 118Q

However, if a special operation is provided to do a better job of alphabetic comparison, then
quicksort can deliver an alphabetical arrangement that is not subject to the whims of ord.

HASKELL DEFINITION • import Char -- get access to toLower function
HASKELL DEFINITION • precedesAlphabetically x y
HASKELL DEFINITION • | xLower == yLower = x < y
HASKELL DEFINITION • | otherwise = xLower < yLower
HASKELL DEFINITION • where
HASKELL DEFINITION • xLower = map toLower x
HASKELL DEFINITION • yLower = map toLower y

¿ HASKELL COMMAND ? — you write the invocation

¿ HASKELL COMMAND ?

HASKELL RESPONSE • ["cummings", "Dylan", "Poe", "Seuss", "Whitman"]

The new version of quicksort is a general purpose sorting method for sequences. It can be applied
to any kind of sequence, as long as a comparison operation is supplied to compare the elements of
the sequence.

Review Questions

1 Which of the following defines a function that delivers the same results as the intrinsic function reverse?
a rev(x : xs) = xs ++ [x]

rev [] = []
b rev(xs : x) = x : xs

rev [] = []
c rev(x : xs) = rev xs ++ [x]

rev [] = []
d none of the above

2 Which of the following defines a function that would rearrange a sequence of numbers to put it in decreasing
numeric order?
a sortDecreasing = quickSortWith (>)
b sortDecreasing = quickSortWith (>) [18.01528974, 1.89533e+25, 1.05522e-24, 27.0]
c sortDecreasing = quickSortWith (>) numbers
d all of the above

3 The following function
HASKELL DEFINITION • sorta(x : xs) = insert x (sorta xs)
HASKELL DEFINITION • sorta [] = []
HASKELL DEFINITION • insert a (x : xs)
HASKELL DEFINITION • | a <= x = [a, x] ++ xs
HASKELL DEFINITION • | otherwise = [x] ++ (insert a xs)
HASKELL DEFINITION • insert a [] = [a]

a delivers the same results as quicksort
b delivers the same results as quicksortWith (<)
c both of the above
d neither of the above

23 Ifs, Lets and Unlimited Interactive Input 119Q

Ifs, Lets and Unlimited Interactive Input 23
The interactive programs described up to this point have had a rigid structure. They all performed
a fixed number of input/output directives. In each case, the exact number of input/output direc-
tives had to be known before the script was written. This is fine as far as it goes, but what do you
do when you cannot predict in advance how many input items there might be?

For example, suppose you want to write a script that will ask the person at the keyboard in enter a
sequence of names, any number of them, and finally enter some signal string like “no more
names”, to terminate the input process. Then, the program is to display something based on the
names entered, such as displaying the names in alphabetical order (using the quicksortWith func-
tion, which has been packaged in the SequenceUtilities module from the Appendix). In a case
like this, you cannot know in advance how many input directives there will be. So, you cannot use
a do-expression made up of a simple list of input/output directives.

The solution to the problem is to use a recursive formulation of the input function to continue the
process as long as necessary and to select an alternative formulation, without the recursion, when
the special signal (e.g., “no more names”) is entered. The following script does this. It uses two
new kinds of expressions: let expressions and conditional expressions (if-then-else). Take a look
at the script, and try to follow the logic. The new constructs are explained in detail in the text fol-
lowing the script.

HASKELL DEFINITION • import Char(toLower)
HASKELL DEFINITION • import SequenceUtilities(quicksortWith)
HASKELL DEFINITION •
HASKELL DEFINITION • main =
HASKELL DEFINITION • do
HASKELL DEFINITION • names <- getNames
HASKELL DEFINITION • do
HASKELL DEFINITION • let sortedNames = quicksortWith namePrecedes names
HASKELL DEFINITION • putStr(unlines sortedNames)
HASKELL DEFINITION •
HASKELL DEFINITION • getNames =
HASKELL DEFINITION • do
HASKELL DEFINITION • name <- getName
HASKELL DEFINITION • if name == "no more names"
HASKELL DEFINITION • then return []
HASKELL DEFINITION • else
HASKELL DEFINITION • do
HASKELL DEFINITION • names <- getNames
HASKELL DEFINITION • return([name] ++ names)
HASKELL DEFINITION •
HASKELL DEFINITION • getName =
HASKELL DEFINITION • do
HASKELL DEFINITION • putStr "Enter name (or \"no more names\" to terminate): "
HASKELL DEFINITION • name <- getLine

23 Ifs, Lets and Unlimited Interactive Input 120Q

HASKELL DEFINITION • return name
HASKELL DEFINITION •
HASKELL DEFINITION • namePrecedes name1 name2 = precedesAlphabetically lnf1 lnf2
HASKELL DEFINITION • where
HASKELL DEFINITION • lnf1 = lastNameFirst name1
HASKELL DEFINITION • lnf2 = lastNameFirst name2
HASKELL DEFINITION •
HASKELL DEFINITION • lastNameFirst name =
HASKELL DEFINITION • dropWhile (== ' ') separatorThenLastName ++ " " ++ firstName
HASKELL DEFINITION • where
HASKELL DEFINITION • (firstName, separatorThenLastName) = break (== ' ') name
HASKELL DEFINITION •
HASKELL DEFINITION • precedesAlphabetically :: String -> String -> Bool
HASKELL DEFINITION • precedesAlphabetically x y
HASKELL DEFINITION • | xLower == yLower = x < y
HASKELL DEFINITION • | otherwise = xLower < yLower
HASKELL DEFINITION • where
HASKELL DEFINITION • xLower = map toLower x
HASKELL DEFINITION • yLower = map toLower y

Directives in a do-expression have a different nature from operations in ordinary formulas. One
difference is that the do-expression imposes a sequence on the directives. Another is that vari-
ables used to stand for data retrieved from input directives are accessible only in subsequent direc-
tives within the do-expression. For these reasons, the where clauses and guarded formulas that
you have been using to define functions do not fit into the realm of do-expressions.

Instead, two other notations are used for this purpose: the let expression serves the role of the
where clause and the conditional expression (if-then-else) provides a way to select alternative
routes through the sequence of input/output directives, much like guarded formulas provided a
way to select alternative values for ordinary functions.

A let expression may appear at the beginning of a do-expression to give names to values to be
used later in the do-expression. The let expression may contain any number of definitions, each of
which associates a name with a value. These appear as equations following the let keyword, one
equation per line and indented properly to observe the offsides rule for grouping. Variables
defined in let expressions can be used at any subsequent point in the do-expression containing
them, but they are not accessible outside that do-expression.

A conditional expression provides a way to select between two alternative sequences of input/out-
put commands. It begins with the keyword if, which is followed by a formula that delivers a Bool-
ean value (True or False). Following the Boolean formula is the keyword then and a sequence of
input/output directives. Fnally, the keyword else followed by an alternative sequence of
input/outpout directives completes the conditional expression. When the Boolean formula deliv-
ers the value True, the computation proceeds with the input/output commands in the then-branch
of the conditional expression; otherwise, it proceeds with those in the else-branch.

Take another look at the function getNames in the script. This is the function that has uses recur-
sion to allow the sequence of input/output directives to continue until the termination signal is
entered, no matter how many names are entered before that point. The key step occurs in the con-

23 Ifs, Lets and Unlimited Interactive Input 121Q

ditional expression. After retrieving a name from the keyboard, getNames tests it in the Boolean
formula following the if keyword in the conditional expression. If the termination string “no more
names” was entered, then getNames returns the empty list. Otherwise it returns a sequence
beginning with the name retrieved and followed by all the rest of the names entered (as retrieved
by the recursive invocation of getNames). In this way, getNames builds a sequence of names
from the lines entered at the keyboard.

The rest of the script is composed from bits and pieces
that you’ve seen before. The only other new element is
the break function. This is an intrinsic function that
splits a given sequence into two parts, breaking it at
the first point in the sequence where an element occurs
that passes a given test. The sequence is supplied as the second argument of break, and the test is
supplied as the first argument of break in the form of a function that delivers a Boolean value
when applied to an element of the sequence.

break :: (a -> Bool) -> [a] -> ([a],[a])
break breakTest xs =

(takeWhile (not . breakTest) xs,
dropWhile (not . breakTest) xs)

24 Algebraic Types 122Q

Algebraic Types 24
Up to this point, all of the Haskell formulas you have seen or written have dealt with types that are
intrinsic in the language: characters, Boolean values, and numbers of various kinds, plus
sequences and tuples built from these types, and functions with arguments and values in these
domains, etc. This system of types provides a great many ways to represent information.

Some classes of computing problems, however, deal with information that is clumsy to describe in
terms of Haskell’s intrinsic types. For such problems, it is more effective to be able to design your
own types, then write functions making use of those types. Haskell provides a way to do this.

In addition to making it more convenient to describe some computations, types defined by soft-
ware designers also provide an important measure of safety. The type checking mechanisms in
Haskell systems are put to work checking for consistent usage of these newly defined types. Since
they cannot mix in unanticipated ways with other types, these consistency checks often prevent
subtle and hard-to-find defects from slipping into your definitions.

Suppose, for example, you were creating some software that needed to deal with the primary col-
ors red, yellow, and blue. You could define a data type to represent these colors and use it wher-
ever your program needed to record a color:

HASKELL DEFINITION • data Color = Red | Yellow | Blue

This definition of the type Color names the three values the Color can take: Red, Yellow, and
Blue. These values are known as the constructors of the type, and they are listed in the definition,
one after another, separated by vertical bars.1 Constructor names, like data types, must begin with
capital letters.

To take the example a bit further, suppose your software needed to deal with two kinds of geomet-
ric figures: circles and rectangles. In particular, the software needs to record the dimensions for
each such figure and its color. The following definition would provide an appropriate type for this
application:

HASKELL DEFINITION • data Figure =
HASKELL DEFINITION • Circle Color Double | Rectangle Color Double Double

This data type specifies two fields for the value that Circle constructs (a field of type Color, to
record the color of the Circle, and a field of type Double, to record its radius) and three fields for
Rectangle (for color, length, and width). The script could use the Figure data type to define vari-
ables.

HASKELL DEFINITION • circle = Circle Red 1
HASKELL DEFINITION • rectangle = Rectangle Blue 5 2.5
HASKELL DEFINITION • otherCircle = Circle Yellow pi

The above definitions define three variables of type Figure: two circles (a red one with unit radius
and a yellow one with radius π) and a blue rectangle twice as long as it is wide.

1. This vertical bar is the same one used in list comprehensions, but in the context of data definitions, you
should read it as “or.” A value of type Color, for example, is either Red or Yellow or Blue.

24 Algebraic Types 123Q

When you define data types, you will normally want them to inherit certain intrinsic operations,
such as equality tests (==, /=) and the show operator, which converts values to strings, so that
they can be displayed on the screen or written to files. To accomplish this, attach a deriving clause
to the definition that names the classes whose operators the type is to inherit.

HASKELL DEFINITION • data Color =
HASKELL DEFINITION • Red | Yellow | Blue
HASKELL DEFINITION • deriving (Eq, Ord, Enum, Show)
HASKELL DEFINITION •
HASKELL DEFINITION • data Figure =
HASKELL DEFINITION • Circle Color Double | Rectangle Color Double Double
HASKELL DEFINITION • deriving (Eq, Show)

With the above inheritance characteristics, equality and
show operators can be applied to values of either Color
or Figure type. In addition, order operators (<, >, etc.)
can be applied to Color data, and sequences can be con-
structed over ranges of Color values.

HASKELL COMMAND • Red < Yellow

¿ HASKELL RESPONSE ?

HASKELL COMMAND • [Red .. Blue]

¿ HASKELL RESPONSE ?

HASKELL COMMAND • Circle Red 1 == Circle Red 2

¿ HASKELL RESPONSE ?

HASKELL COMMAND • show(Rectangle Blue 5 2.5)
HASKELL RESPONSE • "Rectangle Blue 5.0 2.5"
HASKELL COMMAND • [Circle Red 1 .. Circle Blue 2]
HASKELL RESPONSE • ERROR: Figure is not an instance of class "Enum"

The last command makes no sense because the type Figure is not in the Enum class. The deriving
clause for Figure could not include the Enum class because only enumeration types (that is,
types whose constructors have no fields) can be in that class.

The fields in type Figure have specific types (Color, Double). But, this need not always be the
case. A field can polymorphic. For example, a script might want to use different kinds of numbers
to represent the dimensions of circles and rectangles — Double in one part of the script, Integer in
another, and perhaps Rational in a third part of the script.

To define polymorphic types, a type parameter (or several type parameters) can be included in the
definition:

HASKELL DEFINITION • data (Real realNumber) =>
HASKELL DEFINITION • Figure realNumber =
HASKELL DEFINITION • Circle Color realNumber |
HASKELL DEFINITION • Rectangle Color realNumber realNumber
HASKELL DEFINITION • deriving (Eq, Show)

show :: Text a => a -> String
show 2 = "2"

show (3+7) = "10"
show "xyz" = " \"xyz\" "

show ’x’ = " ’x’ "
• show delivers a string that would denote,

in a script, the value of its argument
• useful primarily in putting together

strings for output to the screen or files

24 Algebraic Types 124Q

This polymorphic version of the Figure type defines several different types:
• Figure Double — measurements recorded as double-precision, floating point numbers
• Figure Int — measurements recorded as integers
• Figure Rational — measurements recorded as rational numbers

To illustrate the use of defined types in an important area of computing science, consider the prob-
lem of analyzing sequences of plays in certain kinds of two-player games. Such games fall into a
general pattern that could be called minimax tree-games. Tic-tac-toe, chess, and gin rummy are a
few examples. At each stage, one player or the other is obliged to take an action. The rules specify
the allowable actions, and each action by one player presents a new stage of the game to the other
player. That player is then obliged to select one of the actions permitted by the rules.

The opponents have opposite goals: what is good for one is bad for the other. The software in this
lesson will represent these goals as numeric scores. One player will seek to conclude the game
with the highest possible score, and the other try to force as low a score as possible.

To get a feeling for this model, study the diagram of the two-move tree-game. In this game, Player
A, to maximize his score, will choose position A2. From position A2 the worst score Player A can
get is 2, while from position A1 he could get a score as low as 1. In fact Player A will definitely
get a score of 1 of he moves to position A1 unless Player B makes a mistake.

When Player A chooses position A2, he is using what is known as a minimax strategy. He
chooses the position that maximizes, over the range of options available, the smallest possible
score he could get. Player B uses the same strategy, but inverted. She chooses the position that
minimizes, over her range of options, the largest possible score that she might obtain (because her
goal is to force the game to end with the lowest score possible).

These games are artificial ones, described directly in terms of diagrams showing possible moves
and eventual scores, but the same sort of structure can be used to describe many two-player

1

5

2

3

4

S

A1

A2

Two-move Tree-game

Game starts in position S.
Player A chooses position A1 or A2.
If Player A chooses A1
 then Player B may choose a position with
 a score of 1 or a position with a score of 5
If Player A chooses A2.
 then Player B may has a choice of three
 positions, one with score 2, another with
 score 3, and a third with score 4.

Goals
 Player A — highest possible score
 Player B — lowest possible scorePlayer A moves Player B moves

24 Algebraic Types 125Q

games. If you have following three pieces of information about a game, you can draw diagram for
the game similar to these tree-game charts:

1. moves — a rule that specifies what moves can take place from a given position,
2 score — a function that can compute the score from a position that ends a game, and
3 player — a rule that, given a game position, can determine which player is to play next.

Diagrams of this form occur frequently in computer science. They are called tree diagrams, or,
more commonly, just trees. In general, a tree consists of an entity known as its root, plus a collec-
tion of subtrees. A subtree is, itself, a tree.

In these terms, the two-move game in the diagram is a tree with root S and two subtrees. One of
the subtrees is a tree with root A1 and two subtrees (each of which has a root and an empty collec-
tion of subtrees). The other subtree is a tree with root A2 and three subtrees (each of which, again,
has a root and an empty collection of subtrees).

The goal of this chapter will be to write a function that, given the three necessary pieces of infor-
mation (in the form of other functions: moves, score, and player) and a starting position for a
game will build a representation of a tree-diagram, use it to carry out a game played perfectly by
both players, and report the position at the end of the game.

One piece of information the software will need to deal with from time to time is the identity of
the player whose turn it is to proceed. This information could be represented in terms of intrinsic
types in many ways. A player’s identity could be known by a character for example, perhaps ’A’
for Player A and ’B’ for Player B. Or, integers could be chosen to designate the players, perhaps 1
for Player A and 2 for Player B.

S

2

A1 4

5

3

1

4

7

A2

B1

B2

Player A moves Player B moves Player A moves

Tree-game with
two or three moves

Game starts in position S
Goals

Player A — highest possible score
Player B — lowest possible score

Test your understanding of minimax principles by analyzing thistree game.

It requires either two or three moves, depending on which move is chosen first.

24 Algebraic Types 126Q

Instead of using one of these alternatives, the identity of the player will be represented by a newly
defined data type called Player. This will take advantage of the Haskell system’s type checking
facility to keep from mixing up a player’s identity with a character or number used for some other
purpose. The functions that need the player’s identity will get a value of the newly defined type
and will not be able to use it as if it were a character or integer or some other type of value. This
reduces the number of ways that the program can be in error.

This definition establishes the Player type with two constructors, PlayerA and PlayerB:

HASKELL DEFINITION • data Player = PlayerA | PlayerB

A type need not have more than one constructor. For example, the following type will be used to
represent game trees.

HASKELL DEFINITION • data Game position = Plays position [Game position]

The type Game is polymorphic. The parameter that makes it polymorphic (denoted by the name
position in the definition), can be any type. Therefore, Game is really a family types, one for
each possible type that position might be (Int, String, [Int], or whatever).

Any value of type Game will be built by the constructor Plays and will take the form of the con-
structor name Plays followed by a value of type position, followed in turn by a sequence of val-
ues of type Game. The definition is recursive, as you might expect it to be, since a game is a tree
and a tree is a root and a collection of subtrees.

The name position in the definition of Game is simply a placeholder. A variable of type Game
will actually have type Game Int if the placeholder is the type Int. On the other hand, the variable
will have type Game [Int] if the placeholder is the type [Int]. The polymorphic nature of the type
Game is necessary because the function to be written is supposed to work regardless of the
details of the game itself. Different games, of course, would need to record different information
to represent a position in the game. One representation of position would not fit all games.

The function to carry out a game from a given position, a function called perfectGameFromPo-
sition, will be packaged in a module called Minimax. Since all computations requiring an under-
standing of the details of a value of type position will be performed by functions supplied as
arguments to perfectGameFromPosition, the module Minimax can treat position in an entirely
abstract way. It matters not at all to functions in the module Minimax how the type position is
represented.

There are two components of the computation that perfectGameFromPosition carries out: one
to generate the game tree and the other to use the minimax strategy to find the final position of a
game played perfectly from the point of view of both players.

Consider first the problem of building the game tree. This can be done in stages. Starting from a
given position, compute all of the positions attainable in one move from that position. (One of the
functions supplied as an argument to perfectGameFromPosition is responsible for delivering
this collection of positions — this function is referred to as moves in the module Minimax.)

The positions computed from the initial position become the starting positions of the subtrees of
the root in the game tree Their game trees can, of course, be computed in the same way. The com-
putation is recursive in the same way that the type representing game trees is recursive.

24 Algebraic Types 127Q

HASKELL DEFINITION • gameTree:: (position -> [position]) -> position -> Game position
HASKELL DEFINITION • gameTree moves p = Plays p (map (gameTree moves) (moves p))

Depending on the game, this tree could be infinite, in which case the minimax strategy won’t
work. To use the minimax strategy, potentially infinite games, such as checkers, must be arbi-
trarily cut off at some stage by the moves function. (This is what people do, in a sense, when they
try to plan ahead a few moves in games like checkers. They analyze the situation as far ahead as
they can manage, then guess that the final score will be related to the quality of their position at
that point.) However, the game tree will be finite if every route down through the subtrees eventu-
ally comes to a tree containing an empty sequence of subtrees.

Now consider the problem of choosing a move from a collection of alternatives in the game tree.
If it is Player A’s turn to move, he will need to look at the scores Player B could get by making her
best move from each of the positions Player A can move to. Once this is computed, all Player A
has to do is choose the move that maximizes his score. The following definition of the function
play follows this strategy, but only for the case when it is Player A’s turn to play. (The function
score in this definition is the function supplied to perfectGameFromPosition, which can com-
pute the score in the game, given a game-ending position.)

HASKELL DEFINITION • play PlayerA score (Plays p gs)
HASKELL DEFINITION • | null gs = p
HASKELL DEFINITION • | otherwise = foldr1 (maxPosition score)
HASKELL DEFINITION • (map (play PlayerB score) gs)
HASKELL DEFINITION • maxPosition score p q
HASKELL DEFINITION • | score p > score q = p
HASKELL DEFINITION • | otherwise = q
HASKELL DEFINITION • Player B would, of course, follow the same strategy, but looking for

a minimal rather than a maximal score:
HASKELL DEFINITION • play PlayerB score (Plays p gs)
HASKELL DEFINITION • | null gs = p
HASKELL DEFINITION • | otherwise = foldr1 (minPosition score)
HASKELL DEFINITION • (map (play PlayerA score) gs)
HASKELL DEFINITION • minPosition score p q
HASKELL DEFINITION • | score p < score q = p
HASKELL DEFINITION • | otherwise = q

All that is left to do to put together the function perfectGameFromPosition is to apply the play
function to the game tree generated from the initial position supplied as an argument. Try to fill in
the definition of perfectGameFromPosition yourself, as part of the module Minimax, which
pulls together the functions defined so far in this chapter.

¿ HASKELL DEFINITION ? module Minimax

¿ HASKELL DEFINITION ? (Player(PlayerA, PlayerB),

¿ HASKELL DEFINITION ? perfectGameFromPosition)

¿ HASKELL DEFINITION ? where

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? data Player = PlayerA | PlayerB

24 Algebraic Types 128Q

¿ HASKELL DEFINITION ? data Game position = Plays position [Game position]

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? perfectGameFromPosition :: Real num =>

¿ HASKELL DEFINITION ? (position->[position]) -> (position->num) -> (position->Player)

¿ HASKELL DEFINITION ? -> position -> position

¿ HASKELL DEFINITION ? perfectGameFromPosition moves score player p =

¿ HASKELL DEFINITION ? --you define this function

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? gameTree:: (position -> [position]) -> position -> Game position

¿ HASKELL DEFINITION ? gameTree moves p =

¿ HASKELL DEFINITION ? Plays p (map (gameTree moves) (moves p))

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? play :: Real num =>

¿ HASKELL DEFINITION ? Player -> (position -> num) -> Game position -> position

¿ HASKELL DEFINITION ? play PlayerA score (Plays p gs)

¿ HASKELL DEFINITION ? | null gs = p

¿ HASKELL DEFINITION ? | otherwise = foldr1 (maxPosition score)

¿ HASKELL DEFINITION ? (map (play PlayerB score) gs)

¿ HASKELL DEFINITION ? play PlayerB score (Plays p gs)

¿ HASKELL DEFINITION ? | null gs = p

¿ HASKELL DEFINITION ? | otherwise = foldr1 (minPosition score)

¿ HASKELL DEFINITION ? (map (play PlayerA score) gs)

¿ HASKELL DEFINITION ?

¿ HASKELL DEFINITION ? minPosition, maxPosition:: Real num =>

¿ HASKELL DEFINITION ? (position -> num) -> position -> position -> position

¿ HASKELL DEFINITION ? minPosition score p q

¿ HASKELL DEFINITION ? | score p < score q = p

¿ HASKELL DEFINITION ? | otherwise = q

¿ HASKELL DEFINITION ? maxPosition score p q

¿ HASKELL DEFINITION ? | score p > score q = p

¿ HASKELL DEFINITION ? | otherwise = q

A notable feature of the module Minimax is that it exports not only the function that carries out
the minimax strategy, but also the type Player and its constructors. This is necessary because any
other module using the facilities of Minimax will have to define a function that delivers the iden-
tity of the player whose turn it is to play, given a particular position in the game. To supply this
function, the module will require access to the type used in module Minimax to represent players.

1

24 Algebraic Types 129Q

The other type defined in the module Minimax, that is the type Game position, does not need to
be visible outside the module. So, Game position is not exported. The module Minimax does not
import the facilities of any other module, but it will inherit the type position from any module that
uses Minimax to carry out a game computation. In this sense, the type position, is abstract with
respect to the module Minimax, while the type Player is concrete in Minimax and will also be
concrete in any module using Minimax.

To see how the module Minimax can be used, consider the game of tic-tac-toe. Players take turns
marking squares on a three-by-three grid. If one player marks three squares in a line (horizontally,
vertically, or diagonally), that player wins. The game is sometimes called noughts and crosses
because the first player to mark the grid normally marks with an X, the other an O.

One way to represent a position in tic-tac-toe is to
use a sequence of nine integers. The first three
positions in the sequence represent the top row of
the grid, the next three the middle row, and the last
three the bottom row. If an integer in the sequence
is zero, it indicates that the corresponding square in
the grid is unmarked. If the integer is a non-zero
value n, it indicates that the corresponding square

was marked in the nth move of the game.

From this representation, you can figure out which player marked each square: if the integer is
odd, the X player marked it, and if it is even the O player marked it. You can also figure out which
player’s turn it is to play (the largest integer in the grid indicates which player played last — the
other player is next to play). This provides a way to write the necessary player function:

HASKELL DEFINITION • ticTacToePlayer(Grid g)
HASKELL DEFINITION • | even(maximum g) = PlayerA
HASKELL DEFINITION • | otherwise = PlayerB

You can also determine from a position represented in
this form whether or not the game is over and, if it is
over, which player won. To do this, just extract from
the grid each of the triples of integers corresponding to
eight straight lines through the grid (top row, middle
row, bottom row, left column, middle column, right
column, diagonal, and back diagonal).1 Then check to see of any of these triples contains three
X’s (odd integers) or three O’s (even integers other than zero).

If there are three X’s in a row, then X wins; score that as 1. If there are three O’s in a row, then O
wins; score that a -1 (since the Minimax module is set up so that PlayerB, the name it uses for the
O player, tries to force the game to a minimum score). If the grid is entirely marked with X’s and
O’s and there is no place left to mark, then the game is over, and it is a draw; score that as zero.

1. These elements of the grid could be extracted using combinations of head and tail, but it is more concise
to use the indexing operator (!!). If xs is a sequence and n is an integer, the xs!!n is element n of xs. Ele-
ments are numbered starting from zero, so xs!!0 is head(xs), xs!!1 is head(tail(xs)), and so on. Of
course, xs!!n is not defined if xs has no element n.

position and game history
The minimax computation delivers the final posi-
tion of a game played perfectly from a supplied
starting position. Normally, one would like to see
the sequence of moves leading to the final position.
One way to get that information is to design the
representation of positions so that each position
contains the entire sequence of moves leading up to
it. The encoding chosen for TicTacToePosition
follows this strategy.

odd :: Integral num => num -> Bool
even :: Integral num => num -> Bool

intrinsic functions
 odd = True iff argument is an odd integer
 even = not . odd

24 Algebraic Types 130Q

HASKELL DEFINITION • ticTacToeScore p
HASKELL DEFINITION • | win PlayerA p = 1
HASKELL DEFINITION • | win PlayerB p = -1
HASKELL DEFINITION • | otherwise = 0

The win function used in the definition of ticTacToeScore is a bit awkward because it has to
extract all the lines from the grid and deal with other technicalities. Nevertheless, it follows the
above outline in a straightforward way. You can work out the details for yourself more easily than
you can read an explanation of them.

The other function that the Minimax module uses to carry out the minimax calculation is the func-
tion that generates the possible moves for a player from a given position. Since a player can make
a mark in any open square, this computation amounts to locating the unmarked squares, that is the
squares with zeros in them. Given an existing position and the location of an open square, you can
build a new position by copying the grid representing the old one, except that in the open square,
you put an integer that is one greater than the largest integer in the existing grid.

HASKELL DEFINITION • ticTacToeMoves:: TicTacToePosition -> [TicTacToePosition]
HASKELL DEFINITION • ticTacToeMoves p
HASKELL DEFINITION • | ticTacToeGameOver p = []
HASKELL DEFINITION • | otherwise = map (makeMark p) (openSquares p)
HASKELL DEFINITION •

Again, the details (buried in the functions makeMark and openSquares) are more easily under-
stood by working them out for yourself than by reading someone else’s explanation..

The preceding explanation will help you work your way through the following module. It imports
several functions from the SequenceUtilities module (in the Appendix). And, you will need to
either work out for yourself some way to display the information in a grid, or just accept the

Main

TicTacToe

Minimax SequenceUtililities

Tic-Tac-Toe Program
Organization Chart

tic
Ta

cT
oe

pam
indicesOfOccurrence
blocks
packetstranspose

Player(PlayerA, PlayerB)

perfectGameFromPosition

24 Algebraic Types 131Q

showGrid function defined in the module as a suitable display generator. It builds a three-line
sequence containing a picture of the grid marked with X’s and O’s and another picture marked
with integers, so you can follow the progress of the game.

HASKELL DEFINITION • module TicTacToe(ticTacToe)
HASKELL DEFINITION • where
HASKELL DEFINITION • import Minimax
HASKELL DEFINITION • (Player(PlayerA, PlayerB), perfectGameFromPosition)
HASKELL DEFINITION • import SequenceUtilities
HASKELL DEFINITION • (pam, indicesOfOccurence, blocks, packets, transpose)
HASKELL DEFINITION • import Char(toUpper)
HASKELL DEFINITION •
HASKELL DEFINITION • ticTacToe =
HASKELL DEFINITION • showGrid .
HASKELL DEFINITION • perfectGameFromPosition
HASKELL DEFINITION • ticTacToeMoves ticTacToeScore ticTacToePlayer .
HASKELL DEFINITION • positionFromString
HASKELL DEFINITION •
HASKELL DEFINITION • data TicTacToePosition = Grid [Int]
HASKELL DEFINITION • -- Grid g :: TicTacToePostition means
HASKELL DEFINITION • -- g = [mark-1, mark-2, ..., mark-9] and
HASKELL DEFINITION • -- 0 <= mark-i <= 9
HASKELL DEFINITION • -- mark-i = 0 means empty square
HASKELL DEFINITION • -- mark-i = odd means X occupies square
HASKELL DEFINITION • -- mark-i = even, > 0 means O occupies square
HASKELL DEFINITION •
HASKELL DEFINITION • data Gridline = Slice [Int]
HASKELL DEFINITION • -- row, column, or diagonal of grid (length 3)
HASKELL DEFINITION • -- Slice [mark-1, mark-2, mark-3] :: Gridline means
HASKELL DEFINITION • -- 0 <= mark-i <= 9
HASKELL DEFINITION •
HASKELL DEFINITION • positionFromString :: String -> TicTacToePosition
HASKELL DEFINITION • positionFromString =
HASKELL DEFINITION • Grid . map intFromDigit . takeWhile(/= '.') .
HASKELL DEFINITION • convert '#' empties .
HASKELL DEFINITION • convert 'O' movesO .
HASKELL DEFINITION • convert 'X' movesX .
HASKELL DEFINITION • (++ ".") . filter(`elem` "XO#") . map toUpper
HASKELL DEFINITION • where
HASKELL DEFINITION • empties = repeat '0'
HASKELL DEFINITION • movesX = "13579"
HASKELL DEFINITION • movesO = "2468"
HASKELL DEFINITION •
HASKELL DEFINITION • intFromDigit :: Char -> Int
HASKELL DEFINITION • intFromDigit digit = fromEnum(digit) - fromEnum('0')
HASKELL DEFINITION •
HASKELL DEFINITION • convert :: Char -> String -> String -> String

24 Algebraic Types 132Q

HASKELL DEFINITION • convert thisMoveSymbol moveDigits =
HASKELL DEFINITION • concat . zipWith pasteIn moveDigits .
HASKELL DEFINITION • packets(== thisMoveSymbol)
HASKELL DEFINITION • where
HASKELL DEFINITION • pasteIn moveDigit otherMoveSymbols =
HASKELL DEFINITION • otherMoveSymbols ++ [moveDigit]
HASKELL DEFINITION •
HASKELL DEFINITION • ticTacToeMoves:: TicTacToePosition -> [TicTacToePosition]
HASKELL DEFINITION • ticTacToeMoves p
HASKELL DEFINITION • | ticTacToeGameOver p = []
HASKELL DEFINITION • | otherwise = map (makeMark p) (openSquares p)
HASKELL DEFINITION •
HASKELL DEFINITION • ticTacToeScore:: TicTacToePosition -> Int
HASKELL DEFINITION • ticTacToeScore p
HASKELL DEFINITION • | win PlayerA p = 1
HASKELL DEFINITION • | win PlayerB p = -1
HASKELL DEFINITION • | otherwise = 0
HASKELL DEFINITION •
HASKELL DEFINITION • ticTacToeGameOver:: TicTacToePosition -> Bool
HASKELL DEFINITION • ticTacToeGameOver =
HASKELL DEFINITION • or . pam[gridFull, win PlayerA, win PlayerB]
HASKELL DEFINITION •
HASKELL DEFINITION • openSquares:: TicTacToePosition -> [Int]
HASKELL DEFINITION • openSquares(Grid g) = indicesOfOccurence 0 g
HASKELL DEFINITION •
HASKELL DEFINITION • makeMark:: TicTacToePosition -> Int -> TicTacToePosition
HASKELL DEFINITION • makeMark (Grid g) indexOfSquare =
HASKELL DEFINITION • Grid(take indexOfSquare g ++ [maximum g + 1] ++
HASKELL DEFINITION • drop (indexOfSquare + 1) g)
HASKELL DEFINITION •
HASKELL DEFINITION • diag, backdiag, toprow, midrow, botrow, lftcol, midcol, rgtcol ::
HASKELL DEFINITION • TicTacToePosition -> Gridline
HASKELL DEFINITION • diag(Grid g) = Slice[g!!0, g!!4, g!!8]
HASKELL DEFINITION • backdiag(Grid g) = Slice[g!!2, g!!4, g!!6]
HASKELL DEFINITION • toprow(Grid g) = Slice[g!!0, g!!1, g!!2]
HASKELL DEFINITION • midrow(Grid g) = Slice[g!!3, g!!4, g!!5]
HASKELL DEFINITION • botrow(Grid g) = Slice[g!!6, g!!7, g!!8]
HASKELL DEFINITION • lftcol(Grid g) = Slice[g!!0, g!!3, g!!6]
HASKELL DEFINITION • midcol(Grid g) = Slice[g!!1, g!!4, g!!7]
HASKELL DEFINITION • rgtcol(Grid g) = Slice[g!!2, g!!5, g!!8]
HASKELL DEFINITION •
HASKELL DEFINITION • gridlines:: [TicTacToePosition -> Gridline]
HASKELL DEFINITION • gridlines = [diag, backdiag,
HASKELL DEFINITION • toprow, midrow, botrow, lftcol, midcol, rgtcol]
HASKELL DEFINITION •
HASKELL DEFINITION • gridlineFilledByPlayer :: Player -> Gridline -> Bool

24 Algebraic Types 133Q

HASKELL DEFINITION • gridlineFilledByPlayer PlayerA (Slice s) = (and . map odd) s
HASKELL DEFINITION • gridlineFilledByPlayer PlayerB (Slice s) =
HASKELL DEFINITION • (and . map positiveEven) s
HASKELL DEFINITION • where
HASKELL DEFINITION • positiveEven k = k > 0 && even k
HASKELL DEFINITION •
HASKELL DEFINITION • win:: Player -> TicTacToePosition -> Bool
HASKELL DEFINITION • win player =
HASKELL DEFINITION • or . map(gridlineFilledByPlayer player) . pam gridlines
HASKELL DEFINITION •
HASKELL DEFINITION • gridFull:: TicTacToePosition -> Bool
HASKELL DEFINITION • gridFull(Grid g) = maximum g == 9
HASKELL DEFINITION •
HASKELL DEFINITION • showGrid:: TicTacToePosition -> String
HASKELL DEFINITION • showGrid(Grid g) =
HASKELL DEFINITION • (unlines . map concat . transpose)
HASKELL DEFINITION • [gridMarkedXO, map (" "++) gridMarkedByMoveNumber]
HASKELL DEFINITION • where
HASKELL DEFINITION • gridMarkedXO = blocks 3 (map markFromMoveNumber g)
HASKELL DEFINITION • gridMarkedByMoveNumber =
HASKELL DEFINITION • blocks 3 (map digitFromMoveNumber g)
HASKELL DEFINITION • markFromMoveNumber m
HASKELL DEFINITION • | m == 0 = '#'
HASKELL DEFINITION • | odd m = 'X'
HASKELL DEFINITION • | otherwise = 'O'
HASKELL DEFINITION • digitFromMoveNumber m
HASKELL DEFINITION • | m == 0 = '#'
HASKELL DEFINITION • | otherwise = head(show m)
HASKELL DEFINITION •
HASKELL DEFINITION • ticTacToePlayer :: TicTacToePosition -> Player
HASKELL DEFINITION • ticTacToePlayer(Grid g)
HASKELL DEFINITION • | odd(maximum g) = PlayerB
HASKELL DEFINITION • | otherwise = PlayerA

The following module imports the tic-tac-toe module and defines a few game setups.The com-
mands then show the results that the minimax strategy produces for these situations. The first two
of the setups begin from a partially played game, played imperfectly, to show that the minimax
strategy will if it has an opportunity.

HASKELL DEFINITION • import TicTacToe(ticTacToe)
HASKELL DEFINITION •
HASKELL DEFINITION • advantageO =
HASKELL DEFINITION • "XX#" ++
HASKELL DEFINITION • "###" ++
HASKELL DEFINITION • "##O"
HASKELL DEFINITION •
HASKELL DEFINITION • advantageX =

2

24 Algebraic Types 134Q

HASKELL DEFINITION • "X##" ++
HASKELL DEFINITION • "###" ++
HASKELL DEFINITION • "O##"
HASKELL DEFINITION •
HASKELL DEFINITION • cat8 =
HASKELL DEFINITION • "###" ++
HASKELL DEFINITION • "#X#" ++
HASKELL DEFINITION • "###"
HASKELL DEFINITION •
HASKELL DEFINITION • cat9 =
HASKELL DEFINITION • "###" ++
HASKELL DEFINITION • "###" ++
HASKELL DEFINITION • "###"
HASKELL DEFINITION •

HASKELL COMMAND • putStr(ticTacToe advantageO)
HASKELL RESPONSE • XXO 134
HASKELL RESPONSE • ##O ##6
HASKELL RESPONSE • #XO #52

HASKELL COMMAND • putStr(ticTacToe advantageX)
HASKELL RESPONSE • X#X 1#7
HASKELL RESPONSE • #OX #65
HASKELL RESPONSE • OOX 243

HASKELL COMMAND • putStr(ticTacToe cat8)
HASKELL RESPONSE • XOO 948
HASKELL RESPONSE • OXX 615
HASKELL RESPONSE • XXO 732

HASKELL COMMAND • putStr(ticTacToe cat9)
HASKELL RESPONSE • XOX 985
HASKELL RESPONSE • XOO 726
HASKELL RESPONSE • OXX 431

Some of the game sequences generated by minimax analysis may look like one player is inten-
tionally throwing the game. When there are more routes than one to a win for one player or the
other, the minimax computation will select one of those routes, without regard to whether it may
or may not look competitive to an experienced player. The essential fact is this: when one player
is in a position to win, there is nothing the other player can do to keep that player from winning.
So, the losing player can make arbitrary moves without affecting the result. The minimax strategy
examines all of the relevant possibilities, but the game it selects as its route to the end could be
any of the possible routes. The winning player will never give the losing player an opportunity to
win. But, the player in a losing position may give the other player an opportunity to win easily.

Finally, you may be interested in knowing that most game playing programs, such as chess play-
ers, checkers players, go players, backgammon players, and so on, use the minimax strategy for at
least part of their analysis. However, they use a form of the computation that involves substan-
tially less computation.

2a

24 Algebraic Types 135Q

This more efficient form of the computation is known as the alpha-beta algorithm. It looks ahead
in the game tree and eliminates, without further analysis on the subtree, options that cannot
improve the situation for a given player.1 This almost always makes it possible to complete the
computation in something like a small multiple of the square root of the time it would take using
the naive form of the minimax algorithm (the one presented in this chapter). The analysis can then
proceed about twice as far down the game tree as it could have with naive minimax analysis.

Nevertheless, even with the alpha-beta form of minimax analysis, it is impractical to analyze very
deeply in game trees for large games like chess because such game trees increase in size so rap-
idly with the number of moves analyzed that even the square root of the minimax time is still
impossibly long. So, practical game playing programs combine minimax analysis (in its alpha-
beta form) with specialized analysis methods designed around particular approaches to playing
the game.

Review Questions

1 A tree, in computer science, is an entity
a with a root and two subtrees
b with a root and a collection of subtrees, each of which is also a tree
c with a collection of subtrees, each of which has one or more roots
d described in a diagram with circles, lines, and random connections

2 A sequence, in Haskell, is an entity
a with one or more elements
b that is empty or has a first element followed by a sequence of elements
c whose elements are also sequences
d with a head and one or more tails

3 The following definition specifies
HASKELL DEFINITION • data WeekDay =
HASKELL DEFINITION • Monday | Tuesday | Wednesday | Thursday | Friday

a a type with five constructors
b a type with five explicit constructors and two implicit ones
c a tree with five roots
d a sequence with five elements

4 Given the definition in the preceding question, what is the type of the following function f?
HASKELL DEFINITION • f Tuesday = "Belgium"

a f :: WeekDay -> String
b f :: Tuesday -> "Belgium"
c f :: Day -> Country
d type of f cannot be determined

1. You can find out how it does this in any standard text on artificial intelligence. Also, the text Introduction
to Functional Programming by Bird and Wadler, Prentice-Hall, 1988, contains an elegant derivation of
the alpha-beta algorithm as a Haskell-like program from a form of the minimax program similar to the
one in this chapter.

24 Algebraic Types 136Q

5 Types defined in Haskell scripts with the data keyword
a must begin with a capital letter
b may be imported from modules
c must be used consistently in formulas, just like intrinsic types
d all of the above

6 What kind of structure does the following type represent?
HASKELL DEFINITION • data BinaryTree = Branch BinaryTree BinaryTree | Leaf String

a a type with four constructors
b a digital structure
c a tree made up of ones and zeros
d a tree in which each root has either two subtrees or none

7 Given the preceding definition of the type BinaryTree, which of the following defines a function that computes
the total number of Branch constructors in an entity of type BinaryTree?
a branches binaryTree = 2
b branches (Branch left right) = 2

branches (Leaf x) = 0
c branches (Branch left right) = 1 + branches left + branches right

branches (Leaf x) = 0
d branches (Branch left right) = 2∗branches left + 2∗branches right

branches (Leaf x) = 1

8 The formula xs!!(length xs - 1)
a is recursive
b has the same type as xs
c delivers the same result as last xs
d none of the above

9 Given the definition of the function pam in the module SequenceUtilities, the formula
pam (map (+) [1 . . 5]) 10

a delivers the same result as map (1+) [1 . . 5]
b delivers the same result as pam [1 .. 5] (map (1+))
c delivers the result [11, 12, 13, 14, 15]
d all of the above

10 Given the Grid [1,3,0, 0,0,0, 0,0,2] (as in the tic-tac-toe script), what is the status of the game?
a game over, X wins
b game over, O wins
c O’s turn to play
d X’s turn to play

11 Which of the following formulas extracts the diagonal of a grid (as in the tic-tac-toe program)?
a (take 3 . map head . iterate(drop 4)) grid
b [head grid, head(drop 4 grid), head(drop 8 grid)]
c [head grid, grid!!4, last(grid)]
d all of the above

Index 147

A
abstract data types. See types.
abstraction 20, 73
addition. See operators.
aggregates. See structures
algebraic types 122
alphabet. See characters, ASCII.
alpha-beta algorithm 135
alphabetizing. See sorting.
also. See commands.
analog/digital conversion 103, 104
apostrophe, backwards 54
apostrophes 17
append. See operators.
applications. See functions.
arguments 7

omitted. See functions, curried
omitted. See functions, curried.

arithmetic. See operators.
arrows

(<-) See input/output operations. 98
(->). See functions, type of.

ASCII. See characters.
aspect ratio 108
assembly lines. See functions, composition.
associative 43

B
backquote 54
backslash. See escape.
bang-bang (!!). See operators, indexing.
bar (|). See vertical bar.
base of numeral 73
batch mode 15
begin-end bracketing. See offsides rule.
binary numerals. See numerals.
Bird, Richard 135
Bool 33
Boolean (True, False) 8, 33
brackets (begin-end). See offsides rule.
break. See operators.

C
Caesar cipher 77, 78, 79, 80, 81, 82
Chalmers Haskell-B Compiler 16
character strings. See strings.
characters

ASCII 78
in formulas 17
vs. strings 18

choice. See definitions, alternatives in.
ciphers 77, 78, 79, 80, 81, 82, 84, 87

block substitution 84
DES 84

classes 38
Complex 101
Enum 123
equality (Eq) 38, 39, 50
Floating 101
Fractional 101
Integral 48
Num 57
order (Ord) 40, 50
RealFrac 101
Show 123

clock remainder (mod). See operators.
coded message 77, 78, 79, 80, 81, 82, 84, 87
coded, ASCII. See characters.
colon. See operators.
commands

:? 15
:also 15
:edit 14
:load 14
:quit 15
Haskell 5
type inquiry 34

comparing
See also, operators, equality-class.
strings 6, 7, 8

compilers
Chalmers Haskell-B Compiler
Glasgow Haskell Compiler

Complex. See classes.
composition of functions. See functions, com-

position

Index

Index 148

comprehensions, list 17, 77
computation

lazy 98
non-terminating 64
patterns of 25

computer science 100
concat. See operators.
concatenation. See operators.
conditional expressions 119, 120
constructors

sequences. See operators (:).
types 122

conversion
letter case. See toLower, toUpper.
operators/functions 27, 54

curried invocations. See functions, curried.

D
Data Encryption Standard (DES) 84
data types. See types.
data. See algebraic types.
datatypes. See types.
decimal numerals 73, 74

See also, numerals.
See numerals.

decimal numerals. See numerals.
decipher 77, 78, 79, 80, 81, 82, 84, 87
definitions

alternatives in 79, 80
Haskell 10, 11, 12
parameterized 11
private (where) 48, 49

delivering input values. See return.
deriving 123
digital/analog conversion 103, 104
Dijkstra, E. W. 90
display. See operators, unlines.
division

fractional (/). See operators
division. See operators.
divMod. See also: operators, division. 54
do-expression. See input/output.
do-expressions. See input/output.
Double. See numbers.

Dr Seuss 79
drop. See operators.
dropWhile. See operators.

E
echoing, operating system 94
edit. See commands.
embedded software 64
encapsulation 46, 71
encipher 77, 78, 79, 80, 81, 82, 84, 87
encryption 84, 87
enumeration types 123
equality

class. See classes.
operator (==). See operators.

equations. See definitions.
error. See operators.
errors

type mismatch 33
escape (strings) 29, 30
evaluation

lazy 98
polynomial 73

exit. See command (quit).
exponent. See numbers.
exponentiation. See operators.
exporting definitions 72, 74

F
False. See Boolean.
feedback. See iteration.
fields in algebraic types 122

polymorphic 123
files 97
filter. See operators.
Float. See numbers.
floating point. See numbers.
Floating. See classes.
floor. See operators.
folding 26, 64

See operators (foldr, foldr1).
foldr. See operators.

Index 149

foldr1
pronunciation 26
See operators.
vs. foldr 51

formulas 10, 11, 12
Fractional. See classes.
functions

applications 33
as operators 54
composition (.) 21, 22, 23, 25, 26
curried 23, 42, 43, 78
higher order 43
invocation 11, 22
missing arguments. See functions, curried.

42
polymorphic 37, 38
See also, operators.
type declaration 39
type of 37, 38
vs. operators 7

G
games 124, 135

tree 124, 125
generators (in list comprehension) 17, 29
generic functions. See polymorphism.
getLine. See input/output.
Glasgow Haskell Compiler 16
graphing 105, 106, 107, 108, 109
greater (>, >=). See operators.
guards

in list comprehension 17
See definitions, alternatives in 80

guards. See definitions, alternatives in.

H
Haskell

commands 5
definitions 10, 11, 12
programs 12

Haskell Report 3
head. See operators.
help. See command.

hexadecimal numerals. See numerals.
hiding information. See encapsulation.
higher order. See functions.
Hoare, C. A. R. 116
Horner formula 47, 48, 49, 51, 73
Hugs 14, 75

I
if-choice. See definitions, alternatives in.
if-then-else. See conditional expressions.
import. See importing definitions.
importing definitions 72, 73, 74
indentation 18, 48, 49
indexing. See operators
inequality (/=). See operators.
information

hiding. See encapsulation.
representation of 46

inheriting operators. See deriving.
input/output 93

do-expression 93, 94, 119
do-expression 120
getLine 94
putStr 91, 93
readFile 97
return 99
unlimited 119
writeFile 97

integers
from fractional numbers. See floor.
range 58

integers. See numbers.
integral division. See operators.
integral numbers

ambiguous 48
Integer, Int 48
literals 48

interactive mode 15
invocation. See function.
IO type 93
ISO8859-1. See characters, ASCII.
iterate. See operators.
iteration 61, 64

Index 150

J
Jones, Mark 14

K
kinds. See types.

L
language definition. See Haskell Report.
last. See operators.
lazy evaluation 98
length. See operators.
less (<, <=). See operators.
let expressions 119, 120
letters

lower case. See toLower
libraries, software 84
lines display. See operators, unlines.
lines on screen 95
list comprehensions 17, 77
list constructor. See operators (:).
lists. See sequences.
literals

Booleans 8
characters 18
floating point numbers 102, 105
Integral, See integral numbers.
rational numbers 105
sequences 34
strings 6, 30

looping. See mapping, folding, zipping, itera-
tion, recursion.

lower case. See toLower.

M
main module 93
mantissa. See numbers.
map. See operators.
mapping 28, 64, 77
match error (See also: types, errors) 33
matrix transpose 107
maximum. See operators.
Mellish, Fielding 93
message, coded 77, 78, 79, 80, 81, 82, 84, 87

minimax strategy 124, 134
minimum. See operators.
mod

See operators.
modularity. See encapsulation.
module, main 93
modules 71, 72, 73, 75, 84

See also, program organization charts
monomorphism restriction. See type specifica-

tions, explicit required.
multiplication. See operators.

N
names. See variables.
newline characters 95
non 64
non-terminating 64
not-equal-to operation (/=) 17
Num. See classes.
numbers

class Complex. 101
class Fractional. 101
class Num. 57
class RealFrac. 101
Double 101, 105
exponent 101, 102
Float 101, 105
floating point 102
imaginary. See Complex
Int 48
Integer 48
mantissa 101, 102
pi 106
precision 102
Rational 104, 105

numerals 86
arbitrary radix 74
base 73
binary 46
decimal 46, 47, 50, 51, 73, 74
hexadecimal 46
positional notation 46
Roman 46
vs. numbers 46

Index 151

O
offsides rule 18, 48, 49
operands 7
operating system 93
operating system echo 94
operations

repeated. See repetition.
operators

addition(+) 48
append (++, concat) 88
as arguments 27
as functions 27, 54
break 121
colon 112
comparison 17
composition (.) 21, 22, 23, 25, 26
concatenation (++, concat) 88
division, fractional (/) 104
division, integral (div, mod) 48, 54, 55
drop 66
dropWhile 66, 67
equality (==) 6, 7, 17, 39, 50
error 79, 104
exponentiation, integral (^) 48
filter 64
floor 103
foldr 51, 64
foldr1 26, 44
greater(>, >=) 17, 50
head 113
indexing (!!) 129
inequality (/=) 17, 50
input/output, See input/output.
integral remainder (mod) 48
iterate 62, 63, 64
last 113
length 83
less(<, <=) 17, 50
map 64, 77
maximum 106
minimum 106
mod 48
multiplication(*) 48
not equal to (/=) 17

order of application 9
plus-plus 88
precedence 9
reverse 5
round 109
section 68
sequence constructor (:) 112
show 123
sin 106
subscripting (!!) 129
subtraction (-) 48
tail 113
take 66
takeWhile 66, 67
toLower 28, 37
unlines 95, 105
vs. functions 7
zipWith 64

order class. See classes.
order of operations. See operators.
ordering. See sorting.
output. See input/output.

P
palindromes 11
parameterization 20
parameterized definitions 11
patterns

as parameters 112
See also, computation patterns.
See also, repetition patterns. 64
sequences 112
tuple 54

period operator. See functions, composition.
persistent data. See files.
Peterson, John 3
pi. See numbers.
pipelines. See functions, composition.
plotting 105, 106, 107, 108, 109
polymorhic fields 123
polymorphism 37, 38
polynomial evaluation 73
positional notation. See numerals.
precedence. See operators.

Index 152

precision. See numbers.
private definitions. See where clause, modules.
program organization charts 75
programming, procedural vs Haskell 4
putStr. See input/output.

Q
qualifiers 17
quick-sort 117, 118
quit. See command.
quotation marks (") 6
quotient. See operators, division.

R
radix 73
range of Int. See integers.
rational numbers. See numbers.
Rational. See numbers.
readFile. See input/output.
reading files. See input/output.
RealFrac. See classes.
rearranging in order. See sorting.
recursion 62, 115, 116

in input/output 120
Reid, Alastair 14
remainder (mod). See operators.
repetition

patterns of 62, 115
See mapping, folding, zipping, iteration, re-

cursion.
report on Haskell. See Haskell Report
representation of information 46
return. See input/output.
reverse. See operators. 5
Roman numerals. See numerals.
round. See operators.

S
scaling factor. See numbers, exponent.
scientific computation 102
scientific notation 102
sections. See operators.
selection. See definitions, alternatives in.

sequences 17, 27, 77
all but first element. See operators, tail.
constructor (:). See operators.
first element. See operators, head.
initial segment. See operators, take
last element. See operators, last.
See also types.
trailing segment. See operators, drop.
truncation. See operators, take, drop

set, notation for 17
Seuss, Dr 79
Show. See classes.
show. See operators.
significand. See numbers, mantissa.
sin. See operators.
software libraries 84
software, embedded 64
sorting 116, 117
strings 6

equality of (==) 6, 7, 8
special characters in 29, 30
vs. characters 18

structures
See program organization charts.
See sequences.
tuples 54, 55

subscripts. See operators.
subtraction. See operators.
Sussman, Gerald 100

T
tail. See operators.
take. See operators.
takeWhile. See operators.
tic-tac-toe 129
toLower. See operators.
transposing a matrix 107
tree games 124, 125
trees 125
trigonometric operators. See operators.
True. See Boolean.
tuple patterns. See patterns.
tuples. See structures.
type inquiry. See commands.

Index 153

type specifications
explict required 78

type variables 34
types 18, 33, 34

abstract vs. concrete 129
algebraic 122
declaration 39
enumeration 123
of functions 38, 43
of functions. See functions.
polymorphic 126
recursive 126
See also: classes.
sequences 34

U
unlines. See operators. 95

V
variables 46

type 34
vertical bar (|)

See constructors, type 122
See definitions, alternatives in.
See list comprehensions.

W
Wadler, Phil 135
where clause 48, 49
writeFile. See input/output.
writing files. See input/output.

Y
Yale Haskell Project 3, 14

Z
zipping, See operators (zipWith).

Index 154

