The Class of Numbers 1 2

The functionhorner10 is polymorphic. It operates on a class of numeric types.
HaskeLL Derinmion e hornerlO :: Num a => [a] -> a

This type specification says that thguament ohorner10 does not hee to belntegral. It can be
of ary type belonging to the clasdsum.

Num is a class containing a total of six subclasses and eight specific typastt&odnly specifi
type from clas®Num that you hge seen isnteger. The typelnteger is one of tvo types in the
class htegral. The classntegral is a subclass of the claBeal, and the clasReal is, in turn,
one of the tw primary subclasses of the class of numbers, which is déilled

One vay to viev the class structure &fum is to look at it as a&hn diagram. In the diagram,
region that is wholly contained in anothegi@n indicates a subclass relationshipe@apping
regions represent classes that share some of their types and subclasses. Specific types t
to a particular class are displayed inside tiggorerepresenting that class.

Each class of numbers shares a collection of operations and functioesaffple, a alue from
ary of the eight types in the claBlsim is a suitable operand for additior)( subtraction+), or
multiplication (@, and a suitable gument for ngation (iegate), absolute &lue @bs), signum
(signum), or comversion frominteger to another numeric typéréminteger). These are the
seven intrinsic operations shared among all types in tass.

The Class of Numbers

Classes
& Num

Fractional
RealFrac

Floating

12 The Class of Numbers 57Q

Other numeric operations are restricted to subclaseesx&mple,'mod* and‘div‘ require oper-
ands from the cladategral, which means their operands must either be ofliyeger or of type

Int (integers restricted to the ranige2? to 2°-1).

Another eample is diision (). Operands of
the dvision operator must be in the cldssac-
tional. Some of the types in the cla&sc- Primarily to male eficient computation possible. The

. . . instructions sets of most computersyide instructions
tional are represented in what is as to do fast arithmetic on three typdst, Float, and

floating point form. Floating point numbers Double. In theory the typelnteger would be adequatg
have a fixed number of digits, i a decimal for corvenient programming of grintegral computa-
point that can be shiftedrer a wide range to | tion. The typdnt wouldn't be needed. In practice, on
represent laye numbers or small fractions. Onthe other hand, operations on numbers of typeger

most computer systems, the tyfleat carries proceed at a pace thgt could be a hundred timegslic
about seen decimal digits of precision, and | (3" computations with numbers of tyjpé Some-

. g . times, you just dot’have a hundred times longer to
Double carries about sixteen digits. wait. Thats whatint is for, to male the computation gt

There are manother functions and operators| faster when you donheed &tra range.
associated witharious subclasses Bfum.
You can learn about them on an as needed basis, referring-tasitet Report where necessary

Why several types of numbers?

In this chapterthe only ne class of numbers you need to wnabout idntegral. As you can see
in the diagram this includes twtypes:Int andinteger. Both types are denoted in Ha#lilby dec-
imal numerals, prefed by a minus sign)in case thg are ngative. The diference between the
two types is that one has a restricted range and the other has an unlimited range.

The oficial Haslell requirement is that grinteger in the range 2 to 2°1 is a lgitimate \alue
of typelnt. Outside that range, there are no guarantees.

Some of the intrinsic functions in Haskthat will be needed in the xiechapter deal withalues
of typelnt. These intrinsic functions ceert between alues of typeChar and \alues of typént.
Because of the ay Haslell represents characters, there are only 258rdift \alues of type
Char. So, the typént has plenty of range to handle igée equvalents of @lues of typeChar,

and the designers of Haskdidn't see much point in doing a complicatedv@nsion when a sim-
ple one vould do.

Given the information that additiorr and multiplication ) can operate on griype in the class
Num and thatdivMod’ must hae operands from the clakgegral, try to figure out the most
general possible types of the fallimg functions.

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? horner b ds = foldr (multAdd b) O ds
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? multAdd b d s= d + b*s

1. This range is required of all Hasdksystems. Usually the range will depend on the underlying laaedw

For e(ample,—231 to 211 s the range of ingers supported by hardwe arithmetic on marpopular
chip architectures, so that is the rangeatigs of typént on most Haséll systems.

12 The Class of Numbers 58Q



¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? integerFromNumeral b x = (horner b . reverse) x

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? numeralFrominteger b x =

¢ HASKELL DEFINITION ? reverse [d | (s,d) <- takeWhile (/= (0,0)) (sdPairs b x)]

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? sdPairs b x = iterate (nextDigit b) (x "divMod" b)

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? nextDigit b (xShifted, d) = xShifted “divMod" b

Hint on a tough one: nextDigit ignores the second component in the tuple supplied as its second
argument, so it doesn’t care what type that component has.

Review Questions

In the Haskell class of numbers, Int and Integer

a arebasicaly the sametype

b  arethe same type except that numbers of type Integer can be up to 100 digits long
c aredifferent types but x+y is ok, even if x isof type Int and y is of type Integer

d aredifferent types, but both in the Integral subclass

In the Haskell class of numbers, Float and Double

a arebasicaly the sametype

b  arethe same type except that numbers of type Double can be up to 100 digitslong
¢ aredifferent types but x+y is ok, even if x is of type Float and y is of type Double
d aredifferent types, but both in the RealFrac subclass

What is the most restrictive class containing both the type Integer and the type Float?
a Num

b Real

¢ RealFrac

d Fractional

In the Haskell formula n/d, the numerator and denominator must be in the class

a Integral

b RealFrac
c Fractional
d Floating

12 The Class of Numbers

59Q

What is the type of the function f?
HASKELL DEFINITION e f Xy = Xy
a Float -> Float -> Float
b Real num => num -> num -> num
¢ Fractional num => num -> num -> num
d Floating num => num -> num -> num

What isthe type of theformula(gn 1) ?
HASKELL DEFINITION® g X Yy = X+Y
HASKELL DEFINITION ® 1 :: Int
HASKELL COMMAND® g n 1

a Int

b Integer
c Integral
d Real

12 The Class of Numbers

60Q



lteration and the Common Patterns of Repetition 1 3

Look again at the definition of the functidrundredsDigit from the preious chapter:

HaskeLL Derinmion e hundredsDigit x = d2

HASKELL DEFINITION ® where

HASKELL DEFINITION ® (xSansLastDigit, d0) = x “divMod" 10

HASKELL DEFINITION * (xSansLast2Digits, d1) = xSansLastDigit ‘divMod™ 10
HASKELL DEFINITION ® (xSansLast3Digits, d2) = xSansLast2Digits "divMod" 10

All of the definitions in the where-clause perform the
same operation on fi#rent data, and the datavile
from one definition to the mé That is, information | To iterate is to do the same thingaay
generated in the first definition is used in the second?"d 2@in. In softvare, this amounts to
and information generated in the second definition|is* succfesspn of appllcatlonshof the |
used in the third. It is as if a function were applied z?mz ;rgfggg’;:;?ggg? Itn itf:rut
some data, then.the same funct.lon.appllexlrag) the words, to form a composition withse
result produced in the first application, and finally the, ;| applications of the same function:
same function applied a third time to the result pro
duced in the second application. This illustrates a
common programming method kmo as iteration.

iteration

o

(f.f)x — 2iterations of f
(f.f.f.f.f)x —5iterationsof f

Technically in software, iteration requires composing a function with itself. First, you apply
function to an ayument. Thag one iteration. Then, you apply the functioaiagthis time to the
result of the first iteration. Thatanother iteration. And so on.

The where-clause in the definition of the functimmdredsDigit almost meets this technical d
inition of iteration, loit not quite. The missing technicality is that, while data generated in or
ation is used in the ®E it is not used inxactly the form in which it \&s delered.

The first iteration deliers the tupléxSansLastDigit, d0), and the second iteration uses only
first component of this tuple to detir the n&t tuple(xSansLast2Digits, d1). The third iteratior
follow the same practice: it uses on the first component of the tuple to compute the third
With a little thought, one can iron out this wrinkle and definedredsDigit in the form of true
iteration in the technical sense.

The trick is to define a function that generates tix¢ tugle from the préous one. This functio
will ignore some of the information in itsgament:

HaskeLL Derinmion e nextDigit(xShifted, d) = xShifted “divMod™ 10
HaskeLL Commanp e nextDigit(151, 7)

¢ HASKELL RESPONSE ?
ThenextDigit function can be used to defihendredsDigit in a nev way, using true iteration:
¢ HaskerL Derivmon 2 hundredsDigit x = d2
¢ HASKELL DEFINITION ? where
¢ HASKELL DEFINITION ?

13 lIteration and the Common Patterns of Repetition 61Q

This scheme leads to asimple formula for extracting any particular digit from a number: put
together an n-stage composition of nextDigit to extract digit n of a decimal numeral, where n rep-
resents the power of ten for which that digit is the coefficient:

HaskeLL Coumanp e X ‘divMod* 10 — extracts digitO

HaskeLL Comvanp e nextDigit (x ‘divMod* 10)— etracts digitl

HaskeLL Coumanp e (nextDigit . nextDigit) (x ‘divMod* 10)— extracts digit2

HaskeLL Coumanp e (nextDigit . nextDigit . nextDigit) (x ‘divMod* 10)— etracts digit3

The above formulas are iterations based on the function nextDigit. Each formula delivers a two-
tuple whose second component is the extracted digit. Thisformulation of digit extraction suggests
away to derive a complete decimal numeral from a number: just build the sequence of digits
through successively longer iterations of the function nextDigit:

[0, d1, d2, d3, ...] = [d | (s, d) <- [ x ‘divMod" 10,

nextDigit (x ‘divMod* 10),
tuple-patterns can be
used in gneators, too

(nextDigit . nextDigit) (x ‘divMod* 10),
]

(nextDigit . nextDigit . nextDigit) (x ‘divMod* 10),
o]
The Haskell language provides an intrinsic function to build the sequence of iterations described
in the above equation. The function is called iterate, and its two arguments are a (1) afunction to
be repeated in the iterations and (2) an argument for that function to provide a starting point for
theiterations.

For example, if iterate were applied to the func- Hint
tionthat adds onetoitsargument andto astarting | jtarate add1 0 =
point of zero, what sequence would it generate? [0, add1 0, (addl . add1) O

Hasket Dermimione  addln=n+1 (addl . addl . add1l) 0,
HaskeLL Coumanp e iterate addl O (addl . addl . addl . addl) O,
R

In asimilar way, an invocation of iterate can gen-
erate the powers of two. In this case, instead of
adding one, the iterated function doublesits argument.

HaskeLL Derinimion e double p = 2[p
HaskeLL Coumanp »  iterate double 1

Combining these two ideas leads to aformula for the sequence of tuples in which the first compo-
nent is the power to which the base (2) israised and the second component is the corresponding
power of two.

HaskeLL Derinmion e add1Double (n, p) = (n + 1, 2(p)
HaskeLL Coumanp e iterate add1Double (O, 1)
HASKELL RESPONSE *

13 Iteration and the Common Patterns of Repetition 62Q



In general, the function iterateilds a sequence that reflects the cuméagifects of applying ¢
given function, repeatedlyo an agument supplied as a starting point.

iterate :: (@a->a) ->a->[a]

iterate f x = [dg, dy, dp, dg, ... ]
where
[do, dp, do, D3, ... 1= %, fx, (F.H)x, (F.f.fx..]

e iterate generates a sequence with an infinite number of elements
« calculations that uséerate will truncate the sequence it generates when the
elements needed in the computation areseedd

The abwe definition of iteate is intended to describe thesult thatiterate delivers.
The definition uses some Hallsyntax, ht is not written pugly in Haslell. The fol-
lowing equation definagerate formally in Haskll. Don't try to puzzle out its mean-
ing at this point — you donhave all the necessary information yet.

HaskeLL Derivimion e iterate f x = [x] ++ iterate f (f X) 6

Now take another look at the formulas for the digits of the decimal numexal of

[ x ‘divMod" 10,
nextDigit (x ‘divMod‘ 10),
(nextDigit . nextDigit) (x ‘divMod"‘ 10),
(nextDigit . nextDigit . nextDigit) (x ‘divMod" 10), ... ]

Try to use the functioiterate to write a Hasgll function that deliers the sequence of digits ir
the decimal numeral of avgin integer. Don't worry, at this point, about the sequence being il
nite.

¢ HaskeLL Dervimion 2 allDigitsinNumeralStartingFromUnitsPlace x =
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

HaskeLL Commanp » — allDigitsinNumeralStartingFromUnitsPlace 1863
HaskeLL Resronsee (3, 6, 8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
o,00,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,00,000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0, 0, 0, 0,"C{Interrupted!}

o
o
o
o
o

interrupted by pessing contl-
— otherwisgit keeps on going lik
the Enegizer Bunny

13 lIteration and the Common Patterns of Repetition 63Q

ing characteristic.

non-terminating computations and embedded saftes

Iteration is one of the mechanisms that makes it possible for programmers to describe
non-terminating computationsin Haskell. Such computations are needed in some types of
software. For example, the software that controls an ATM (automatic teller machine)
describes a non-terminating computation: serving a customer amounts to one session of
an unlimited number of sessions that occur as customers, one after another, use the
machine. Most software embedded in devices for control purposes has this non-terminat-

Device control is an area that has been truly liberated by the advent of small, cheap com-
puter chips. In the days of mechanical controls, most devices sensed external conditions
with the same components that actuated controls. There was little opportunity for translat-
ing conditions detected by sensors into complex control sequences. Electronic controls
have made it possible to do a great deal of analysis of conditions and to take different
actions based on those conditions. Fuel injection systems, anti-lock braking systems,
sophisticated stereo equipment, music synthesizers, electronic thermostats, and multi-
function wrist watches are examples of the benefits of this technology.

zipWith :: (a->b ->¢) -> [a] -> [b] -> [c]
ZipWith op [ x, %2, %, -] [ya, 2, V3, .1 =

[0P X1 Y1, OP X2 Y2, OP Xg¥3, .- ]
Note: zipWith delivers a sequence whose length
matches that of the shorter of the sequences supplied
asitslast two arguments. Zipping stops when one of
those arguments runs out of elements.

filter :: (a -> Bool) -> [a] -> [a]
filter keep xs = [x | x <- xs, keep X]
filtering as folding:
filter keep = foldr op []
where result if keep x is True
opxys

| keep x : if not

| otherwise =ys q4¢— ——

map :: (a ->b) -> [a] -> [b]
map fxs = [f x | x <- xs]

mapping as 6lding:
map f = foldr op []
where
opxys=[fx] ++ys
mapping as zipping:
map f = zipWith op (repeat(error "ignored"))
where
op ignored x = f x

13 Iteration and the Common Patterns of Repetition

Iteration consists of repeating the same compu-
tation over and over. You have seen two other
forms of repeated computation, mapping and
folding, for which Haskell providesintrinsic
operators. You have also used list comprehen-
sion to express the idea of filtering — that is,
selecting certain elements from a given
sequence to form anew one.

Thereisan intrinsic function filter for this tran-
sormation, which can be defined as afolding
process. Most computations calling for repeti-
tion fall into one of these patterns or into a pat-
tern called zipping, which is a generalized form
of mapping.

When you are trying to describe a computation
that involves repetition, try to view it as one of
common patterns: mapping, folding, filtering,
iteration, and zipping. The operators map, foldr,
filter, iterate, and zipWith make up akind of
linguistic shorthand that covers probably over
90% of the computations involving repetition
that you will encounter in practice.

It paysto try to view repeated computationsin
one of the common patterns because you will
acquire afacility for quickly understanding

64Q



computations specified in thesays, and this will makit more lilely that your programs will d

what you &pect. And, other people will find it easier to understand your programs when 'y ﬁ‘uncating Sequences and Lazy Evaluation 14
write them in this ay.*

Review Questions Sometimes a computation will need to work with part of a sequence. To accommodate situations
like these, Haskell provides intrinsic functions that accept a sequence as an argument and deliver
part of the sequence as a result. Four such functions are take, drop, takeWhile, and dropWhile.

1 Theiterate function
a delivers an infinite sequence as itsue . The function take delivers an initial segment of a sequence. Its first argument says how many ele-
ch ggﬁ\':rss i;“s”e"ctg’: dt;r}m*e‘:‘teatsh?;g;g:"e’:‘es?e‘ﬁiséf“;e;:;jeﬁi; mentsto include in theinitial segment to be defivered, and its second argument i's the sequence

whose initial segment isto be extracted. The function drop delivers the other part of the sequence

d all of the abwe . - o . i
— that is, the sequence without a specified number of its beginning elements.
2 What alue do the follwing Haslell commands deter?

HASKELL DEFINITION e add2 n =n + 2 take, drop :: Int-> [a] -> [g]
HASKELL COMMAND »  iterate add2 O
HASKELL COMMAND »  iterate add2 1 take n[xg, %, s % X1 -1 = (X X o X

a the biggest number that Haskcan compute drop n[Xq, X, «ovs % X1 -4 = DX Xt -4

b nothing — thg arent proper commands
¢ the number that is twmore than the starting point ,
d one delvers the sequence ofen numbers, the other the odds HASKELL COMMAND take 3[1,2,3,4,5,6,7]

; ?
3 Use theiterate function to generate the sequencg X, X, X3, ...] Wherexg = 1 andx,+; = 11x, mod 127. ¢ HASKELL RESPONSE !

a nextx=x/127 011 HaskeLL Coumanp e drop 3 [1, 2, 3,4, 5, 6, 7]
iterate next 1 ) _ pseudorandom numbers H A ”
b nextx= (110X) ‘mod 127 Sequences i [Xg, X3, X, X3, -..] (in which each successi ele- ¢ HASKELL RESPONSE
iterate next (1/11 ‘div* 127) mlent istthe fewazﬁdﬁsing f;d finISV:§O;, whenfthe pr:{?)yis HaskewL Commanp e (take 3 . drop 2) [1, 2, 3, 4, 5, 6, 7]
= ‘mod" element is multiplied by a fed multiplier) sometimesxibi
¢ ir::,)f;t)é né)l(tl 1D( ) mod 127 mary of the statiZtical groperties ofprandom sequences. This ¢ HASKELL RESPONSE 7
d none of the abe the usual \ay of generating “random” numbers on computerg HaskeLL Commanp e take 3 [1, 2]
HaskeLL Response e [1, 2] — takes as many as aravailable
HaskeLL Coumanps  drop 3 [1, 2]
HAsKELL Response e [ ] — drops as many as it can; deligeempty list

Try to define afunction that delivers a sequence of the thousands digit through the units digit of
the decimal numeral denoting a given number. Use the function take and the function allDigitsIn-
NumeralStartingFromUnitsPlace (defined in the previous chapter) in your definition.
¢ HaskeLL Derivimion 2 lastFourDecimalDigits x = -- you define it
¢ HASKELL DEFINITION ?

HaskeLL Coumanp »  lastFourDecimalDigits 1937
HaskeLL Responses  [1, 9, 3, 7]
HaskeLL Coumanp »  lastFourDecimalDigits 486

¢ HASKELL RESPONSE ?
HaskeLL Coumann e lastFourDecimalDigits 68009
¢ HaskeLL Response 2 [8, 0, 0, 9]
1. There is another reason for using standard operators to specify repefiitien®f People who delop The functions takeWhile and dropWhile are similar to take and drop, except that instead of

systems that carry out Haskprograms realize that most repeating computations will be described in truncating sequences based on counting off a particular number of elements, takeWhile and

standard ay, so thg invest a great deal offeft to ensure that their systems will use computing ; . . e )
resources étiently when performing one of the common repetition operations. dropWhile look for elements meeting a condition specified in the first argument.

13 lIteration and the Common Patterns of Repetition 65Q 14 Truncating Sequences and Lazy Evauation 66Q

~N o o hOWON R



The first argument of takeWhile and drop-
While isafunction that delivers Boolean val-
ues (True/False). Thisfunctioniscalled a
predicate. Aslong as elementsin the
sequence pass the test specified by the predi-
cate (that is, as long as the predicate delivers
True when applied to an element from the ini-
tia part of thelist), takeWhile continuesto
incorporate these elementsinto the sequence it
delivers. When takeWhile encounters an ele-
ment that fails to pass the test, that element
and dl that follow it in the sequence are trun-
cated (actualy, they are never generated in the
first place — see box on lazy evaluation).

lazy evaluation
The Haskell system always waits until the last minute to
do computations. Nothing is computed that is not
needed to deliver the next character of the result
demanded by the command that initiated the computa-
tionin thefirst place.
So, when takeWhile is applied to a sequence, the only
elements of the sequence that will ever be generated are
those up to and including the first one that fails to pass
takeWhile’stest of acceptance (that is, its predicate).
Thisisknown aslazy evaluation, and it has many conse-
quences of great value in software design.

The function dropWhile delivers the elements from the trailing portion of the list that takeWhile
would truncate: take and takeWhile truncate atrailing segment of a sequence, and drop and
dropWhile truncate an initial segment of a sequence..

takeWhile p [xq, Xp, ..] = [Xg, Xp, - X1 ]
dropWhile p [Xq, Xo, ..] = X Xiea1s -+

¢ HASKELL RESPONSE ?

¢ HASKELL RESPONSE ?

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]

where X isthefirst element such that p x is False
HaskeLL Commanp  takeWhile odd [3,1,4,1,5,9, 2, 6]

HaskeLL Commanp e dropWhile odd [3, 1,4, 1,5, 9, 2, 6]

odd isanintrinsic function
that delivers True if its argu-

ment is not divisible by two

operator section
« curried form of the less-than function (<)
e (<5)x isequivalentto x <5

HaskeLL Responsee [3, 1, 4, 1]

HaskeLL Responsee 5, 9, 2, 6]

HaskeLL Commanp s takeWhile (<5) [3, 1,4, 1,5, 9, 2, 6]

HaskeLL Comvanp e dropWhile (<5) [3,1,4,1,5,9, 2, 6]

The takeWhile function provides the means to the goal of writing a function to build the decimal
numeral of agiven integer. The function allDigitsinNumeralStartingFromUnitsPlace, devel-
oped in the previous chapter, almost does the trick. But, it delivers too many digits (an infinite
number) and it delivers them backwards (the units digit first, then tens digit, etc.). The function
contains essentially the right ideas, but needs to incorporate some sort of truncation.

14 Truncating Sequences and Lazy Evaluation

67Q

With takeWhile as the truncation mechanism, the criterion for deciding where to truncate
requires some trigkanalysis.

Reconsider the functiosdPairs that was defined for the benefit afiDigitsinNumeralStarting-
FromUnitsPlace:

HaskerL Derivmion e sdPairs x = iterate nextDigit (x “divMod™ 10) 8

ThesdPairs function huilds the sequence of tuples th#iDigitsinNumeralStartingFro-
muUnitsPlace extracts the digits of the decimal numeral from.
HaskeLL Coumanp e sdPairs 1954 9
HaskeLL Response » - [(195,4), (19,5), (1,9), (0,1), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0),
(0,0), (0,0, (0,0). (0,0), (0,0), (0,0), (0,0). (0,0), (0,0), (0,0), (0,0),
(0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0). (0,0), (0,0), (0,0), (0,0),
(0,"C{Interrupted!}
The digits in the numeral for the igierx are the second-components of the tuples in the sequence
sdPairs x. That is, thal-components of the folleing sequence are the digits of the numeral.

sdPairs x = [(Sg, dg), (S1, dy), (Sp, d), ...]
wheres,,1 =5 ‘div* 10 anddy,; =, ‘mod* 10 for all k= 0

The abwee formulas imply that i§ is zero, then both,, andd,, are zero, which means that as
soon as, becomes zero, no subsequent elements of the sequence will contain non-zero digits for

the numeral. So, tadild the numeral, all elements of the sequenceeiedd bysdPairs x beyond
the first one where thecomponent is zero can be truncated.

On the other hand, the numeral contains all non-zerg operator ions
digits that occur in thd-component, so no such compo- )
nents can be truncated from the sequence if the num@?fo“ knav, an operator with twoperands

is to be constructed from what is left comes a functions with aguments
) when its operatesymbol is enclosed in

The upshot of these twobserations is this: to con-  |parentheses. _

struct the numeral, all the sequence elements will bgWhen one operand of the operator is suppl

needed up to,ut not including, the first element whergside the parentheses, the resulting functi
'has only one gument. The other gument is

both thes-component and th&ecomponent are zero. S0, \aiue specified as an operand:

the truncation function should ®lelementsg d) from

==0) X x==0
the sequence as long asd) # (0,0), but it can truncate (< 0)3( X< 0

all elements starting from the first one that eq(@[B). (‘div* 10) x x ‘div* 10
Obviously, lazy evaluation is going to beery important ET));( Cl+§

in this computation. If the Haek system weret’lazy,
it might go on foreer generating more and mog )-
pairs that wuld never be needed.

Exception!(-c) is not an operator section
It is a number — the gative ofc

The predicate to test for this conditiomwid be the operator secti¢fr (0,0)), so the truncation
formula would be

takewhile (/= (0,0)) (sdPairs x)

14 Truncating Sequences and Lazy Evaluation 68Q



Imbed this truncation in the formula defining the function allDigitsiInNumeralStartingFro- HASKELL DEFINITION *~ first = k (4-1) O

mUnitsPlace, then apply reverse to get the digits in the conventional order (units digit last) to HASKELL DEFINITION * S‘%COfld =k (1f2_)‘ “three”
construct afunction that builds a sequence containing the digits of the decimal numeral represent- aHAii'iLtL DEFNTON®  third = k 3 (1 'div'0)
ing agiven number: b second
¢ HaskerL Derivmion ? - decimalNumeralFrominteger x = -- you define it ¢ third
d all of the above

¢ HASKELL DEFINITION ?

. 7  Consider the following function.
HaskeLL Commanp »  decimalNumeralFrominteger 1975 9

HASKELL DEFINITION ® {32 String -> [String]

HaskeLL Response s [1, 9, 7, 5] HaskeLL Derinimion e f w = [take 2 w, drop 2 w]
What does the formula iterate f "cs1323" deliver?
Review Questions a ["cs',"1323"[],[], ...

b ["cs',"13","23", [L.[], ..
¢ [['cs,["1323'],[]1,[], .-
d error ... type mismatch

1 What isthevalue of w?

HASKELL DEFINITION ©
HASKELL DEFINITION ©

HASKELL DEFINITION ®
HASKELL DEFINITION *
a "Four"
b vier"
c “cuatro"
d ‘"cinco"

u, v, w :: String

u = "Four vier cuatro"
v=drop5u
w=drop5v

Wheat string does the following command deliver?

HASKELL COMMAND ©

takeWhile (/= blank) "Four score and seven"

a "score and seven"
b " score and seven"
c "Four "

d "Four"

3 What string does the following command deliver?
HASKELL CommanD »  dropWhile (/= blank) "Four score and seven"
a "score and seven"
b " score and seven"
¢ "Four "
d "Four"

4 What value does the following command deliver?
HASKeLL DEFIniTIoN e dozen =11, 2,3,4,5,6,7,8,9, 10,11, 12]
HaskeLL CoMMAND » [ take 2 Xs | xs <- iterate (drop 2) dozen ]
[1,2,3,4,5,6]
[[1,2][3,4][5, 6] [7, 8], 9, 10], [11, 12], [, [ [1. [ 1. [ 1. --- ]
[2, 4,6, 8, 10, 12]
[[1,2,3,4,5,6]1[7,8,9,10, 11, 12] ]

o0 oW

5  Which of the following formulas delivers the product of the numbersin the sequence xs?
a dropWhile (/= 0) (iterate (O xs)
b takeWhile (/= 0) (iterate () xs)
c foldr (D O xs
d foldr (D 1xs

6  Given the following definition, which of the formulas delivers the number 3?
HASKELL DEFINITION ® K Xy = X
HASKELL DEFINITION »  first, second, third :: Integer

14 Truncating Sequences and Lazy Evaluation 69Q 14 Truncating Sequences and Lazy Evauation 70Q



Encapsulation — modules 15

The where-clause provides one way to hide the internal details of one software component from
another. Entities defined in a where-clause are accessible only within the definition that contains
the where-clause. So, the where-clause provides a way to encapsulate information within alim-
ited context. This keepsit from affecting other definitions. But, the most important reason for
using awhere-clause is to record the results of a computation that depends on other variables
whose scopeis limited to a particular context (formal parameters of functions, for example), for
use in multiple places within the definition containing the where-clause. It is best to keep where-
clauses as short as possible. When they get long, they mix up the scopes of many variables, which
can lead to confusion.

Access to entities can also be controlled by defining them in software units known as modul es.
Entities defined in modules may be public (accessible from outside the module) or private (acces-
sible only inside the module). This makes it possible to define software units that are independent
of each other, except with regard to the ways in which their public entities are referred to. This, in
turn, makes it possible to improve internal details in modules without affecting other parts of the
software. Private entities within amodule are said to be encapsulated in the module. .

HaskeLL Derivimion e module DecimalNumerals
HASKELL DEFINITION * (integerFromDecimalNumeral, --export list i
HASKELL DEFINITION * decimalNumeralFrominteger)
HASKELL DEFINITION where -
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION *
HASKELL DEFINITION * decimalNumeralFrominteger x =

HASKELL DEFINITION ® reverse [d | (s,d) <- takeWhile (/= (0,0)) (sdPairs x)]

HASKELL DEFINITION ® 1
HASKELL DEFINITION * horner10 ds = foldr multAdd O ds
HASKELL DEFINITION * ‘
HASKELL DEFINITION * multAdd d s=d + 10*s
HASKELL DEFINITION *
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ®

integerFromDecimalNumeral ds = (horner10 . reverse) ds

sdPairs x = iterate nextDigit (x “divMod" 10)

nextDigit(xShifted, d) = xShifted ‘divMod" 10

Modern programming languages® provide good facilities for handling this sort of encapsulation
— that is, for sharing information among a particular collection of functions, but hiding it from
the outside world. Haskell provides this facility through modul es.

1. Haskell, ML, Java, Fortran 90, and Ada, for example — but not C and not Pascal

15 Encapsulation — modules 71Q

A moduleisascript that designates some of the entities it defines as exportable to other scripts,
but keeps all of its other definitionsto itself. Other scripts using the module may use its exportable
definitions, but they have no access to its other definitions.

The module DecimalNumerals contains definitions for functions to convert between decimal
numerals and integers. The module makes the definitions of the functions integerFromDecimal-
Numeral and decimalNumeralFrominteger available to the outside world by designating them
in the export list after the module name at the beginning of the module. The other functions
defined in the module are private.

A module script begins with the keyword module, which is followed by a name for the module.
The module name must start with a capital |etter. After the module name comes alist of the enti-
tiesthat will be available to scripts using the module. Thisisknown asthe export list. Entities not
specified in the export list remain private to the module and unavailable to other scripts.

Following the export list is awhere clause in which the functions of the module are defined. The
module DecimalNumerals defines the functions integerFromDecimalNumeral, decimalNu-
meralFrominteger, horner10, multAdd, and nextDigit, al but two of which are private to the
module.

A script can import the public definitions from amodule, then use them in its own definitions. The
script does this by designating the module in an import specification prior to the script’s own def-
initions. If ascript has no definitions of its own, it may consist entirely of import specifications.
Each import specification in a script gives the script access to some of the public entities defined
in the module that the import specification designates, namely those public entities designated in
the import list of the import specification.

The following script imports the two public functions of the DecimalNumerals module. When
this script is loaded, the Haskell system responds to commands using either of the two public
functions of DecimalNumerals designated in the import list of the import specification. But the
Haskell system will not be able to carry out commands using any of the private functionsin Dec-
imalNumerals. They cannot be imported.

HaskeLL Derivimion e import DecimalNumerals
HASKELL DEFINITION * (integerFromDecimalNumeral, decimalNumeralFrominteger)
HaskeLL Coumanp e integerFromDecimalNumeral [1, 9, 9, 3]

¢ HASKELL RESPONSE ?

HaskeLL Coumanp »  decimalNumeralFrominteger 1993
¢ HASKELL RESPONSE ?

HaskeLL Coumanp»  (integerFromDecimalNumeral . decimalNumeralFrominteger) 1993
¢ HASKELL RESPONSE ?

HaskeLL Coumanp e nextDigit(199, 3)
Haskee Response e ERROR: Undefined variable "nextDigit"

15 Encapsulation — modules 72Q

2



From this point on, most of the Hagksoftware module files
discussed in this x¢ will have a main module By corvention, each module is defined in a file — g
that acts as the basis for entering commands. ThiGdule to a file — with a filename that is identical
main module will import functions from other |the module name plus.las extension. ier example,
modulesy and the |mp0rted functions’ together the DecimalNumerals.hs fileauld contain théeci-
with ary functions defined in the main module malNumerals module. Exception: the file containi
. . . . . '[the main module should bevgh a name indicaté of
will b_e the only functlo_ns (other than instrinsic the softvares purpose. Otherwise, there will be to
functions) that can bevoked in commands. The mayy files called Main.hs.
preceding script, which imports the public func=
tions of theDecimalNumerals module, is anxample of a “main module” of this kind.

The followving rederelopment of the numeral ceersion functions prades some practice in
encapsulation and abstraction.

As you knav, decimal numerals are not the onlgiyof representing numbers. Not by a long s
There are lots of completely unrelated notations (Roman numeralgafopke), lnt the decima
notation is one of a collection of schemes in which each digit of a numeral representisiartc
of a paver of aradix

In the decimal notation, the radix is tent BrY  radix — the base of a number system
radix will do. Most computers use a radixotw dde 1 did

representation to perform numeric calculations. pre Lo
People use radix sixty representations in deal-
ing with time and angular measure.

is a radixb numeral for the number
dyxb" +dxb™L +IT dyxb! +dgxb®

. eachd; is a radixb digit.
The functions defined in the modWecimal- . radix b digits come from the set {0, 1, b:1}
Numerals can be generalized to handlgzan
radix by replacing the references to the radhy a parametefFor example, the function
horner10 would be replaced by awefunction with an additional parameter indicating what
radix to use in thex@onentiations. The folleing module for polynomialvaluation eports the
new horner function. The module also definegnaltAdd function that &ctors in the radix (its
first agument), It this function is priate to the module.

¢ HaskerL Derivmion ? - module PolynomialEvaluation -- you write the export list
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? where
¢ HASKELL DEFINITION ? horner b ds = foldr (multAdd b) O ds
¢ HASKELL DEFINITION ? multAdd b d s= -- you write multAdd

¢ HASKELL DEFINITION ?

ThePolynomialEvaluation module can be used to helpild the folloving module to handle
numerals of apradix. Some of the details are omitted, teegyou a chance to practice.

The moduleNumerals imports the modul@olynomialEvaluation. This males it possible to us
the functionhorner in within theNumerals script (kut not the functiomultAdd, which is pri-
vate to théPolynomialEvaluation module).

TheNumerals module &ports the functionsitegerFromNumeral andnumeralFrominteger,
which are analogous to the more specialized functions th&tetienalNumerals module

15 Encapsulation — modules 73Q

exported. The module does not export any other functions, however. So, a script would not get
access to the function horner by importing the module Numerals.

The difference between the functions in Numerals and those in DecimalNumerals is that the
onesin Numerals have parameterized the radix. That meansthat the functionsin Numerals have
an additional argument, which specifies the radix as a particular value when the functions are
invoked. You can construct the functions in Numerals by using the radix parameter in the same
ways the number 10 was used in the DecimalNumerals module.

¢ HaskeLL Derivimion 2 module Numerals
(integerFromNumeral,
numeralFrominteger)

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? where
¢ HASKELL DEFINITION ? import PolynomialEvaluation(horner)
¢ HASKELL DEFINITION ? integerFromNumeral b x = -- your turn to define a function

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? numeralFrominteger b x = -- you write this one, too

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? sdPairs b x = -- still your turn

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? nextDigit b (xShifted, d) = xShifted "divMod™ b
Once the module Numerals is defined, the functions in the module DecimalNumerals can rede-
fined in terms of the functions with a parameterized radix, simply by specifying aradix of 10 in
curried invocations of the functions that Numerals exports.

HaskeLL Derivmion e module DecimalNumerals
HASKELL DEFINITION * (integerFromDecimalNumeral,
HASKELL DEFINITION * decimalNumeralFromlInteger)

HASKELL DEFINITION ® where

HASKELL DEFINITION * import Numerals(integerFromNumeral, numeralFrominteger)
HASKELL DEFINITION * integerFromDecimalNumeral ds = integerFromNumeral 10 ds
HASKELL DEFINITION * decimalNumeralFromInteger x = numeralFrominteger 10 x

A main module could now import functions from either the Numerals module or the Decimal-
Numerals module (or both) and be able to use those functions in commands:

Haskew Dervimion » — import Numerals(integerFromNumeral, numeralFrominteger )
HaskeLL Derinmion e import DecimalNumerals(decimalNumeralFrominteger)
HaskerL Comvanp e decimalNumeralFrominteger 2001
HaskeLL Responsee [2, 0, 0, 1]

HaskeLL Coumanp e numeralFrominteger 2 2001
HaskeLL Responsee [1,1,1,1,1,0,1,0,0,0, 1]

HaskeLL Coumanp e numeralFrominteger 60 138
HasKeLL Response s [2, 18]

—a hundred thirty-eight minutesis
two hours, eighteen minutes

15 Encapsulation — modules 74Q



HaskeLL Commanp e numeralFrominteger 60 11697 —awhole bunch of secondsis
HaskeLL Response s [3, 14, 57] three hours, fourteen minutes and fifty-seven seconds
HaskeLL Commanp » - numeralFrominteger 12 68 —sixty-eight inchesis
HasKeLL ResPonse e [5, 8] five feet eight inches
HaskeLL Commanp »  integerFromNumeral 5280 [6, 1000] — sixmilesand a thousand feet is
HaskeLL ResponsE e 32680 a cruising altitude of thirty-two thousand six hundred eighty feet

Now you need to kne how to communicate modules to Hugs, the Hdistystem you hae beer
using. Put each module in a separate file with a name identical to the name of the raouditle
a “.hs” extension (or a .lhsxtension if you are using the literate form in your script). When t
loads a Hasl script that imports a module, it finds the script defining the module by using
modules name to construct the name of the file containing the definition. So, the loading
ule scripts occurs automaticalls needed.

The way in which a program is ganized in terms of modules is an important aspect of/ésad
structure. Export lists in module specifications and import lists in import specificatieas tiee
details of this structureubin a form that is scattered across files and hard to picture all at
Another representation of the modular structure of the program, a documentation vaol(kn:
this tet, at least) as program organization chart, does a better job of communicating the t
picture.

A program oganization chart consists ofals linked by arravs. Each wal names a module of tt
program, and an anofrom one moduleal to another indicates that the module at the hea
the arrov imports entities from the module at the tail. The imported entities appear on the «
labels on the arm?!

integerFromNumeral

DecimalNumerals |
numeralFrominteger

PolynomialEvaluation
Program Organization Chart

1. Since the program ganization chart contains no information that is not also specified in the modules,
would be best to ha program aganization charts dven automatically from the definitions of the mod-
ules. This wuld ensure their correctness.ywer, the charts seevalso as a good planning tool eBth-
ing the program @anization chart before writing the program, therisieg it as the progranmvelves
helps leep the werall structure of the program in mind, which can lead to irgments in design.

15 Encapsulation — modules 75Q

Review Questions

a
b
c
d

a
b
c
d

a
b
c
d

a
b
c
d

A Haskell module provides away to

share variables and functions between scripts

hide some of the variables and functions that a script defines

package collections of variables and functions to be used in other scripts
all of the above

The export list in amodul e designates variables and functions that

are defined in the module and redefined in other modules

are defined in the module and will be accessible to other scripts
are defined in other scripts and needed in the module

are defined in other scripts and redefined in the module

An import specification in a script

makes al the definitionsin amodule available in the script

designates certain variables and functions in the script to be private

makes some public definitions from another module available for use in the script
specifies the importation parameters that apply in the script

In anumeric representation scheme based on radix b,

numbers are denoted by sequences whose elements come from a set of b digits
numbers are written backwards

letters cannot be used to represent digits

numbers larger than b cannot be represented

5 Horner'sformula

a

b
c
d

computes the reverse of a sequence of digits

takes too long to compute when n is bigger than 10

expresses a sum of multiples of powers of a certain base as a nest of products and sums
istoo complicated to usein ordinary circumstances

15 Encapsulation — modules

76Q



Definitions with Alternatives 16

Julius Caesar wrote messages in a secret code. His scheme was to replace each letter in amessage
with thethird letter following it in the a phabet. In a coded message, he would have written URPH
for ROME, for example. The following script provides functions to encode and decode messages
using Caesar’s cipher.

HaskeLL Derinmion s cipherdulius :: String -> String

HaskerL Derinimion + — cipherJulius = map(shiftAZ 3)

HASKELL DEFINITION ®

HaskerL Derinmion e decipherJulius :: String -> String

HaskeL Derinmion e decipherJulius = map(shiftAZ (-3))

HASKELL DEFINITION ®

HaskeLL Derinimion e ShiftAZ n ¢ = ItrFromInt((intFromLtr ¢ + n) ‘mod” 26)
HASKELL DEFINITION *

HaskeLL Derinmion s intFromLtr :: Char -> Int

HaskeLL Derinmion s intFromLtr ¢ = fromEnum ¢ - fromEnum 'A’
HASKELL DEFINITION ®

HaskeLL Derinmion s ItrFromint :: Int -> Char

HaskeLL Derinmion s ItrFromint n = toEnum(n + fromEnum 'A")

HaskeLL Commanp cipherJulius "VENIVIDIVICI"
HaskeLL Response e "YHQLYLGLYLFL"

HaskeLL Commano e decipherJulius "YHQLYLGLYLFL"
HaskeLL Response e "VENIVIDIVICI"

You are probably wondering what the formula defining cipherJulius means. What is that map
thing anyway? Thisis an intrinsic function that duplicates one of the uses of list comprehensions:

map f xs =[f X | x <- xs]

It's as simple as that. So, why use map? Mainly because it makes some formulas a bit more con-
cise. An equivalent formulafor cipherJulius would be

cipherdulius plaintext = [shiftAZ 3 ¢ | ¢ <- plaintext]

Taking f to be the curried form shiftAZ 3 in the definition of map, this formulafor
cipherJulius msg equivalent to the following:

cipherJulius plaintext = map (shiftAZ 3) plaintext

This definition of cipherJulius is amost the same asthe original. The only differenceis, this one
names an explicit argument, and the original uses a curried invocation of map, leaving the argu-
ment implicit. But, the definitions are equivalent because of the following observation:

fx=gxforadlx means f=g

Thisiswhat it means for two functions to be the same: they deliver the same values when sup-
plied with the same arguments. Because Haskell allows curried function invocations, the mathe-

16 Definitions with Alternatives 77Q

matical idea of function equality carriegen to the syntax of HasK. The follaving two Haslell
definitions are equalent, no matter ve complicated thenyFormula part is:

f x = anyFormula x is equialent to f =anyFormula

The same trick wrks if thef part is a curried form:

g y z x =anyFormula x is equialent to g y z =anyFormula

So, cipherJulius msg = map (shiftAZ 3) msg
cipherJulius = map (shiftAZ 3)

From nav on, youll see this form of @pression in lots of definitions. When definitions omit some
of the parameters of the function being defined, subtle ambiduitiesarise. &r this reason, it is
necessary to includexglicit type specifications for such functions. Generadylicit type speci-
fications are good practiceyamay, since thg force the person making the definition to think
clearly about types. So, most definitions from this point on will inclugéait type specifica-
tions.

is equvalent to

Now, back to the script for computing Caesar ciphers.
The functionshiftAZ 3 in this script does theavk of encoding a letter:
shiftAZ 3 ¢ = ItrFromInt((intFromLtr ¢ + 3) ‘'mod" 26)

The function first translates the character supplied agjitereant to an inger between zero and
twenty-five (ntFromLtr c), then it adds three, computes the remainder imisiai by twenty-six
(to loop around to the ening if the letter happened to be near the end of the alphabet), and
finally converts the shifted number back to a lettegF(omint(all that stuff)).

The functions that do the ceersions between
lt.etterst algd Im@erjfuse éome I?ﬁn?i‘lc func- A standard knen as 1SO8859-1 specifying represen
ans, 0 _num andirom _num’ atdo a tations of a collection of 128 characters has been ¢
slightly different comersion between letters | jished by the International Standardgi@nization.

ASCI| character set

[

and intgers. The functiotoEnum will trans-
late aly agument of typeChar into a \alue of
typelnt between zero and 255 (inclus) 2 For
ary charactec in the standard electronic
alphabet, the Hagk formulafromEnum(c)
denotes its ASCII code, which is a number
between zero and 127. The functioEnum
corverts back to typ€har. That is, for ap
ASCII charactertoEnum(fromEnum(c))=c.

The designers of the ASCII character set arranged it so that the capital letters A to Z are repre-

These are usually called the ASCII characters—the
American Standard Code for Information Interchang
ASCII, an older standard essentially consistent with
1SO8859-1 it less inclusie of non-English alphabets,
represents 128 characters (94 printable ones, plus|t
space-charactea delete-characteand 32 control-
characters such aswline, tab, backspace, escape,
bell, etc.) as intgers between zero and 127

sented by a contiguous set of ges, and the functiomstFromLtr andltrFromint use thisdct to

their adantage: Br ary letter c,

fromEnum(’A’) < fromEnum(c) < fromEnum('Z’)

1. Explained in the Hastl Report (see “monomorphism restriction”).
2. Haslell uses typént instead ofinteger for these functions becauk# is adequate for the range 0 to 255.

16 Definitions with Alternatives

78Q



Therefore,
fromEnum(’A’) - fromEnum(’A’) <
fromEnum(c) - fromEnum(’A’) <
fromEnum(’Z’) - fromEnum(’A’)

And, since the codes are contiguduostnEnum(’Z’) - fromEnum(’A’) must be 25, which mea
0 < fromEnum(c) - fromEnum(’A’) < 25

Because of these relationships, you can see that
intFromLtr will always deler an intger between )
zero and 25 when supplied with a capital letter ag if&'® ¢lassnum includesChar, Bool, Int, and

. . ) several other types. The functidromEnum con-|
argument, andtrFromint just inverts this process tg

. N verts from ag of these types tmt, andtoEnum
get back to the capital letter that the geecode goes in the other direction. Since there averss
came from.

target types fotoEnum to choose fromexplicit
ﬁ){ge declarations are often needed.

fromEnum and toEnum

The deciphering process is basically the same a
process of creating a ciphetteexcept that instead
of shifting by three letters foravd GhiftAZ 3), you shift by three letters back in the alphabet
(shiftAZ (-3)). So, the formula for théecipherJulius function is similar to the one faipherJu-
lius:

HaskeLL Derinmion e cipherdulius = map (shiftAZ 3)
HaskeLL Derinimion e decipherJulius = map (shiftAZ (-3))

The script, as formulated, ta&k some chances. It assumes that the supptiechant will be a
sequence of capital letters — nevker case, no digits, etc. If someone tries to erakiphertet
from the plaintgt “Veni vidi vici,” it will not decipher properly:

HaskeLL Commano »  cipherJulius "Veni vidi vici."

HaskeLL Responsee - YNWRWERMRWERLRK

HaskeiL Commann . decipherdulius "YNWRWERMRWERLRK"
HaskeLL Response e VKTOTBOJOTBOIOH

This is not good. This is not right. My feet stick out of ... oh ... sorry ... lapsed into some
Dr Seuss rimes ... let me start afn ...

This is not good. I8 ok for a program to lra some restrictions on the kinds of data it can ha
but it's not ok for it to pretend thatstdelvering correct results when, iadt, its delering non-
sense — especially if what yoe'expecting from the program is a ciphedtewhich is suppose:
to look like nonsense, so you cateéll when the program is outside its domain.

One vay to fix the program is to check faalid letters (that is, capital letters) when making t
conversions between letters and gees. D do this, you need someawto praide alternaties in
definitions, so that the@tFromLtr function can apply the cearsion formula when its gament is
a capital letter and can signal an ehibits agument is something else.

Definitions present alterngé results by prefcing each alternat with a guard. The guard is
formula denoting a Boolearalue. If the @alue isTrue, the result it guards is dedired as thealue

1. Any function can signal an error by dedring as its &lue the result of applying the functierror to a
string. The dkct of delvering this alue will be for the Hasdl system to stop running the program and
send the string as a message to the screen.

16 Definitions with Alternatives 79Q

of the function. If not, the Haskell system proceeds to the next guard. The first guard to deliver
True selectsits associated formula as the value of the function. The last guard is always the key-
word otherwise: if the Haskell system getsthat far, it selects the alternative guarded by other-
wise as the value of the function. One way to look at thisis that each formulathat provides an
alternative value for the function is guarded by a Boolean value: they are a collection of guarded
formulas.

A guard appearsin adefinition as a Boolean formulafollowing a vertical bar (|, like the one used
in list comprehensions). After aguard comes an equal sign (=), and then the formula that the
guard, if True, is supposed to select as the value of the function. Here's afunction that delivers 1
if its argument exceeds zero and -1 otherwise:

HaskeLL Derinimion s T X
HASKELL DEFINITION [ x>0 =1
HASKELL DEFINITION | otherwise = -1

Try to apply thisideain the following script defining a safer version of the Caesar cipher system.
In case the conversion functions intFromLtr and ItrFromInt encounter anything other than capital
letters, use the error function to deliver their values. To test for capital letters, you can use the

intrinsic function isUpper Char -> Bool, which delivers the value True if its argument is a capi-

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

HASKELL COMMAND ©
HASKELL RESPONSE ©

tal letter, and False otherwise.

import Char(isUpper)

cipherJulius :: String -> String

cipherJulius = map(shiftAzZ 3)

shiftAZ :: Int -> Char -> Char

shiftAZ n ¢ = ltrFromint((intFromLtr ¢ + n) ‘'mod” 26)
decipherJulius :: String -> String

decipherJulius = map(shiftAZ (-3))

intFromLtr :: Char -> Int

intFromLtr c -- you fill in the two-alternative definition

[trFromint :: Int -> Char
ltrFromInt n -- again, you fill in the definition

cipherJulius "VENIVIDIVICI"
"YHQLYLGLYLFL"

16 Definitions with Alternatives

80Q



HaskeLL Commanp »  cipherJdulius "Veni vidi vici."
HaskeLL Responsee Y
HaskeLL Response e Program error: intFromLtr(non-letter) not allowed

Another problem with the Caesar cipher system isthat it uses a modern a phabet. The Roman
aphabet in Caesar’s time had twenty-three letters, not twenty-six. The letters J, U, and W from
the modern alphabet were not in the ancient one.! This, too, can be fixed by putting some addi-
tional aternativesin the conversion functions to squeeze out the gapsin that the omission of J, U,
and W leave in the integer codes.

Theideaisto check to see what range the letter isin A-I, K-T, V, or X-Z, then adjust by zero, one,

two, or three, respectively. (Of course the clock arithmetic has to be done mod 23 rather than mod
26, too.) Checking for arange like A-I takes two tests: ¢ >="A’ and ¢ <'J. For compound formu-
las like this, Haskell provides the and-operator (&&). It takes two Boolean operands and delivers

the value True if both operands are True and False otherwise. (Haskell also provides an or-oper-
ator (||) and a not-function (not), but they won't be needed in this case.)

Try to work out the gapsin the following script, which encodes using the ancient Roman al phabet.
¢ HaskeLL Dervimon 2 cipherdulius :: String -> String
¢ HaskerL Dervmon 2 cipherJulius = map(shiftRomanLetter 3)
¢ HaskeLL Derivmion 2 shiftRomanLetter :: Int -> Char -> Char
¢ HaskerL Dervimion 2 shiftRomanLetter n ¢ = romFromint((intfromRom ¢ + n) ‘mod’ 23)
¢ HaskeL Derivmion 2 intFromRom :: Char -> Int
¢ HaskerL Dervmon 2 intFromRom ¢ -- you fill in the definition (5 alternatives)
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? where
¢ HASKELL DEFINITION ? cint = fromEnum c - fromEnum 'A'
¢ HASKELL DEFINITION ?
¢ HaskeLL Derinmon 2 romFromint :: Int -> Char
¢ HASKELL DEFniTIoN 2 romFromint n -- again, you fill in the definition
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

1. A problem the cipher system doesn’t have that it might seem to have isthat it can’t deal with spaces and
punctuation. Asit happens, the Romans didn’t use spaces and punctuation in their writing. | don’t know if
they used lower case letters or not, but the all-upper-case messages |ook really Roman to me.

16 Definitions with Alternatives 81Q

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

HASKELL COMMAND ©
HASKELL RESPONSE *
HASKELL COMMAND *
HASKELL RESPONSE ©

where
fromASCII code = toEnum(code + fromEnum 'A’)

decipherJulius :: String -> String
decipherJulius = map(shiftRomanLetter (-3))
cipherJulius "VENIVIDIVICI"
"ZHQMZMGMZMFM"

decipherJulius "ZHQMZMGMZMFM"
"VENIVIDIVICI"

The Caesar cipher is not ary good one. du can look atwen a short cipherté, such as
“ZHQMZMGMZMFM” and guess that M probably stands forawel. Ciphers lile Caesas are
easy to break.

Review Questions

1 Guards in function definitions
a hide the internal details of the function from other safexcomponents
b remove some of the elements from the sequence
¢ select the formula that deéirs the alue of the function
d protect the function from damage by cosmic rays

2 The formula map reverse ["able", "was", "I'] delivers the alue
a ['I" "saw", "elba"]
b ['elba", "saw", "I]
c ['I" "was", "able"]

d ['able", "was", "I", "not"]
3  The formula map f xs delvers the alue
a fx
b [fx]|x<-xs]
c fxs
d [fxs]

4 Which of the follaving formulas is equalent to the formuldg xy | y <-ys] ?
a (map.gx)ys
b (mapgx)ys
¢ map(gxy)ys
d map(g x)ys

1. The article “Contemporary Cryptology: An Introductibby James L. Massewhich appears i€on-
temporary Cryptology, The Science of Information Integrity, edited by Gustais J. Simmons (IEEE Press,
1992), discusses methods of constructing good ciphers.

16 Definitions with Alternatives 82Q



5 Thefollowing function delivers
HASKELL DEFINITION ® ~ h XS
HASKELL DEFINITION © | xs ==reverse xs =
HASKELL DEFINITION ® | otherwise =
a "yes",unlessxs isreversed
b "yes"if itsargument is a palindrome, "no" if it's not
c
d

"yes"
"no"

"no" if xs is not reversed
"yes" if its argument is written backwards, "no" if it's not

6 Thefollowing function
HASKELL DEFINITION® S X
HASKELL DEFINITION |x<0 =-1
HASKELL DEFINITION © |x==0 = 0
HASKELL DEFINITION x>0 =1
the value of its argument
the negative of its argument
acode indicating whether its argument is a number or not
acode indicating whether its argument is positive, negative, or zero

Q0 oo

7 Assuming the following definitions, which of the following functions putsin
sequence of x’sin place of al occurrences of agiven word in agiven

sequence of words?

length :: [a] -> Int

length[xq, Xp, ..., Xg] =N

HASKELL DEFINITION®  rep n x = [x]|k<-[1..n]]
HASKELL DEFINITION » - replaceWord badWord word
HASKELL DEFINITION ® | badWord == word = rep (length badWord) 'x’
HASKELL DEFINITION © | otherwise = word
censor badWord = map (replaceWord badWord)
censor badWord = map . replaceWord badWord
censor badWord = replaceWord badWord . map
censor badWord = map badWord . replaceWord

[o RN TN « ]

16 Definitions with Alternatives

83Q

Modules as Libraries 17

Encryption is an important application of computational power. It isalso an interesting problemin
information representation, and in that way is related to the question of representing numbers by

numerals, which you have already studied. In fact, the numeral/number conversion software you

studied earlier can be used to implement some reasonably sophisticated ciphers. So, constructing
encryption software provides an opportunity to reuse some previously developed software.

Reusing existing software in new applications reduces the development effort required. For this
reason, software reuse is an important idea in software engineering. Programming languages pro-
vide a collection of intrinsic functions and operations. Whenever you use one of these, you are
reusing existing software. Similarly, when you package functions in amodule, then import them
for usein an application, you are reusing software. Modules and intrinsic functions provide repos-
itories or libraries of software intended to be used in other applications.

This chapter presents some software for encryption, that is for encoding messages so that they
will be difficult for people other than the intended receivers to decode. Encoding methods for this
purpose are known as ciphers.

Substitution ciphers, in which thereis afixed replacement for each letter of the alphabet, are easy
to break because the distribution of letters that occur in ordinary English discourse (or any other
language) are known. For example, the letter E occurs most frequently in English sentences, fol-
lowed by the letter T, etc. If you have afew sentences of ciphertext, you can compute the distribu-
tion of occurrence of each letter. Then you can guess that the most frequently occurring letter is
the letter E, or maybe T, or one of the top few of the most frequently occurring letters. After
guessing a few of the letter-substitutions by this method, you can break the code easily.t

The statistics on pairs of letters are also known. So, even if the cipher is designed to substitute a

fixed new pair of |ettersfor each pair that occur in the original message (maybe XQ for ST, RY for
PO, and so on for all possible two-letter combinations), the cipher will not be hard to break. The
code breaker will need access to alonger ciphertext, however, because the statistical differences

among occurrences of different letter combinations are more subtle than for individua letters.

The same goes for substitution ciphers that use three-letter combinations, and so on. But, the
longer the blocks of letters for which the cipher has a fixed replacement, the harder it isto break
the code. Ciphers of thiskind (that is, multi-letter substitution ciphers) make up aclass known as
block ciphers. The Data Encryption Standard (DES), which was designed and standardized in the
1970s, is a substitution cipher based on blocks of eight to ten letters, depending on how the mes-
sage s represented. The method of computing the replacement combination, given the block of
characters for which anew block is to be substituted, has sixteen stages of successive changes. It
scrambl es the message very successfully, but in principle, it is a multi-letter, substitution cipher.

To encode a message with the DES cipher, the correspondents agree on a key. The DES cipher
then uses this key to compute the substitutions it will make to encrypt and decrypt messages. As

1. Edgar Allan Poe's story, The Gold Bug, contains an account of the breaking of a substitution cipher.

17 Modulesas Libraries 84Q



long asthe key is kept secret, people other than the correspondents will have a very tough time
decoding encrypted messages.

A block cipher islike the Caesar cipher, but on alarger aphabet. For example, if the message-

a phabet consisted of capital |etters and blanks, 27 symbolsin al, and the block cipher substituted
new three-letter combinations for the three-letter combinationsin the message, then this would be
asubstitution cipher on an aphabet with 27x27x27 |etters — that’s 19,683 lettersin al.

The following module, Encryption, contains

DES Efficiency|

software that implements ablock cipher of this
kind. Itisnot limited to three-letter combinations.
Instead, it is parameterized with respect to the
number of lettersin the substitution-blocks. They
can be of any length.

The encryption software developed in this lesson
scrambles messages successfully, but requires
much more computation than the DES procedure,
which is carefully engineered for both security
and efficient use of computational resources.

The overall structure of the program to be constructed isillustrated in the accompanying program
organization chart. The Encryption module will import a function from the SequenceUltilities
module (in the Appendix) to package messages into blocks. Each block will then be encrypted,

The cipher works like this. Given a fixed block size, it partitions the message into blocks of that
length (say, for example, 20 characters per block). If the number of charactersin the messageis
not an exact multiple of the block size, then the last block is padded with blanks to make it come
out even.

Each block is then converted to anumeral (see page 74) by trandating its block of charactersinto
ablock of integers. To do this, each letter in the alphabet that the message is written in is associ-
ated with an integer code (first letter coded as zero, second letter as on, etc.). The resulting
numeral then denotes a number in standard, positional notation with aradix equal to the number
of lettersin the aphabet. The function integerFromNumeral (from the Numerals module), the
numeral is converted into an integer, and it isthisinteger that is viewed as acharacter in the cipher
aphabet.

The number of charactersin the cipher aphabet varies with the chosen block size:
cipher-alphabet size = aP,

where o = message-alphabet size
B =bhlock size

with the help of some entities imported from an EncryptionUtilities module, which, itself, gets
some help from the Numerals module devel oped previously. The Numerals module imported a
function from the PolynomialEvaluation module. The program organization chart displays all
these relationships. You can useit to help you keep track of what is going on as you work your
way through this lesson.

Main

blocksRigid

SequenceUtilities

Encryption

KFrO
ock, ploc
s\}m\:"o“‘B\ Base

n\.\\’\’\e‘a\

integerFromNumeral

EncryptionUtilities Numerals

numeralFrominteger

Message Encryption Program

R PolynomialEvaluation
Organization Chart v

The encipher and decipher functions in the Encryption module are aso parameterized with
respect to the key. The correspondents can agree on any sequence of charactersthey like as a key
for the software to use to encipher and decipher messages.

17 Modulesas Libraries 85Q

The message alphabet consists of the printable
characters of the ASCI| character set (see “ASCII
character set” page 78) plus the space, tab, and
newline characters, for atotal of 97 characters

(a = 97). If the correspondents were to choose a
block size of one (3 = 1) then the cipher a phabet
would contain the same number of symbols asthe
message alphabet (97), which would produced a
simple substitution cipher similar to the Caesar
cipher. But, with ablock size of five (B = 5), the
number of symbolsin the cipher alphabet goes up

character-blocks as numerals

The encryption software essentially interprets each
block of characters as a base-97 numera. The
“digits” in the numera are ASCI| characters.
Example, block-length 3, numeral “AbX”:

AbX

denotes the cipher-al phabet symbol

code(A)x972 + code(b)x97* + code(X)x97°

where code(A), code(b), and code(X) are numbers

between zero and 96 computed from the ASCI|
codes for those characters.

to several hillion (97° = 8,587,340,257), and with a
block size of twenty (3 = 20) up to huge number with forty digitsin its decimal numeral (enter the
Haskell command (97::Integer)*20 if you want to see the exact number).

After converting ablock of charactersin the original message to an integer (denoting a symbol in
the cipher alphabet), an integer version of the key is added. (The integer version of the key is got-
ten by interpreting the key as a base-97 numeral, just as with blocks of characters from ames-
sage.) This sum denotes another symbol in the cipher aphabet, shifted from the origina symbol
by the amount denoted by the key (just as with the Caesar cipher, but on alarger scale: the remain-

der is computed modulo the number of charactersin the cipher alphabet — that is 978, where Bis
the block size). And, finally, the shifted integer is converted back to a block of characters by
reversing the process used to convert the block of charactersin the original message to an integer.

17 Modulesas Libraries 86Q



HaskeLL Derivition e module Encryption

HASKELL DEFINITION ® (encipher, decipher)

HASKELL DEFINITION ® where

HASKELL DEFINITION

HASKELL DEFINITION * import EncryptionUtilities

HASKELL DEFINITION import SequenceUltilities

HASKELL DEFINITION

HASKELL DEFINITION ® encipher, decipher :: Int -> String -> String -> String
HASKELL DEFINITION encipher blockSize key =

HASKELL DEFINITION ® cipher blockSize (symFromBlock key)

HASKELL DEFINITION decipher blockSize key =

HASKELL DEFINITION ®
HASKELL DEFINITION ©

cipher blockSize (- symFromBlock key)

HASKELL DEFINITION cipher :: Int -> Integer -> String -> String
HASKELL DEFINITION * cipher blockSize keyAsinteger =
HASKELL DEFINITION concat . -- de-bloc}t

HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ®

map blockFromSym . -- back to blocks (from symbols

map shiftSym . -- encipher symbols
map symFromBlock . -- convert to cipher-alphabet symbo
blocksRigid blockSize "' --form blocks
where

shiftSym n = (n + keyAslInteger) "‘mod" alphabetSize
alphabetSize = numeralBase”blockSize

In thisway, encoding a message is a five-step process:

1 group charactersin original message into blocks

2 convert each block to a symbol in the cipher a phabet

3 shift the cipher-alphabet symbol by the amount denoted by the key

4 convert each (shifted) cipher-al phabet symbol into a block of characters

5 string the blocks together into one string, which is the encoded message (ciphertext)

The function cipher in the Encryption module is defined as five-step composition of functions,
one function for each step in the encoding process. The functions encipher and decipher both
use the function cipher, one with aforward version of the key and the other with a backward ver-
sion (just asin the Caesar cipher, where the forward key advanced three lettersin the alphabet to
find the substitute | etter, and the backward key shifted three letter back in the al phabet). The struc-
ture of these functions matches their counterparts in the Caesar cipher software, except for the
addition of the blocking and de-blocking concepts.

The Encryption module imports functions from a module called EncryptionUstilities to convert
between blocks of ASCII characters (type String) and cipher-al phabet symbols (type Integer). It
maps the block-to-symbol function (called symFromBlock) onto the sequence of blocks of the
original message, then maps the symbol-shifter function (shiftSym) onto the sequence of sym-
bols, and then maps the symbol-to-block function (blockFromSym) onto the sequence of shifted
symbols to get back to blocks again.

17 Modulesas Libraries 87Q

append operator (++)| TheEncryption module also usesthe variable numeralBase from
glues two sequences together the EncryptionUtilities module, which provides the size of the
“Thelma® ++ "Loise" means cipher aphabet (alphabetSize). The Encryption module needs
"ThamaLouise' | tHi'S value to do the shifting modulo the size of the alphabet, so that
symbols that would shift off the end of the cipher-al phabet are recir-

(1.2.3,4]++[5.6,7] means | o qed to the front.

[1,2,3,4,56,7]

The Encryption module also uses afunction called blocksRigid
from the module SequenceUtilities to build blocks of characters from the original message
string. It uses an intrisic function, concat, to paste the blocks of the encoded message back into a
single string.

The SequenceUtilities module appearsin the Appendix. It isalibrary of severa functions useful
for building or converting sequencesin various ways. The blocksRigid function takes three argu-
ments: ablock size, a pad, and a sequence to group into blocks. It groups the sequence into as
many blocks asit takes to contain al of its elements. The last block will be padded at the end, if
necessary, to make it the same size as the others (the second argument says what pad-character to
use). For now, it's best to accept that this function works as advertised, but when you have some
free time, you can take alook at the Appendix and try to understand it. The definition uses some
intrinsic functions that you haven’t studied. You can look them up in the Haskell Report.

The intrinsic function, concat, which converts the
blocks back into one long string works as if you had put
an append operator (++) between each pair of blocksin | concat [[1,2,3], [4,5], [6,7,8,9]] =
the sequence. In fact, it could be defined in exactly that [1,2,3,4,5,6,7,8,9]
manner using afold operator. concat = foldr (++) []

concat :: [[a]] -> [a]

The Encryption module defines two functions for
export: encipher and decipher. It also defines a private function, cipher, which describes the
bulk of the computation (that’s where the five-link chain of function compositionsis). It imports
two functions (symFromBlock and blockFromSym) and a variable (numeralBase) from the
EncryptionUtilities module. These entities are not exported from the Encryption module, so a
script importing the Encryption module would not have access to symFromBlock, blockFrom-
Sym, or numeralBase. Thisis by design: presumably a script importing the Encryption module
would do so to be able to encipher and decipher messages; it would not import the Encryption
module to get access to the utility functions needed to encipher and decipher messages. The addi-
tional functions would just clutter up the name space.

Now, take alook at the EncryptionUtilities module (see page 90). It defines four functions: sym-
FromBlock, blockFromSym, integerCodeFromChar, and charFromintegerCode.

The purpose of the functionsintegerCodeFromChar, and charFromIntegerCode isto convert
between values of type Integer and blocks with elements of type Char. These functions makethis
conversion for individual elements, and then they are mapped onto blocks to make the desired
conversion. The functions are defined in amanner similar to intFromLtr and ltrFromint in cipher-
Julius (see page 80), except that the new functions are simpler because thereis only one gap in
the ASCII codes for the characters involved (the ancient Roman character set had three gaps).

The ASCII codes for the space character and the 94 printable characters are contiguous, running
from 32 for space (fromEnum(’ ")=32) up to 126 for tilde (fromEnum(’~")=126). Theonly gap is

17 Modulesas Libraries 88Q



between those characters and the other two in the character set the software uses for encoding
messages, hamely tab (ASCII code 9 — fromEnum('/t'")=9) and newline (ASCII code 10 —
fromEnum(’/n’)=10). Given thisinformation, try to write the definitions of these functions that
convert between integers and code-characters.

Try to write the other two functions, too. Their definitions can be constructed as a composition of
one of the integer/numeral conversion-functionsin the Numerals module (see page 74) and a
mapped version of one of the integer/code-character conversion-functions. It might take you a
while to puzzle out these definitions — the three-minute rule is a bit short here. But, if you can
work these out, or even get close, you should feel like you're really getting the hang of this.

¢ HaskeLL Derimion ? - module EncryptionUtilities

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

(symFromBlock, blockFromSym, numeralBase)
where
import Numerals

¢ HASKELL DEFINITION ? symFromBlock :: String -> Integer -- you write the function
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? blockFromSym :: Integer -> String -- again, you write it
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
-- write this one, too

¢ HASKELL DEFINITION ? integerCodeFromChar :: Char -> Integer

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? numeralBase :: Integer
numeralBase =

fromintegral(maxCode - minCode + 1 + numExtraCodes)

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

Asyou can see, the EncryptionUtilities moduleisrather fastidious about the differences between
type Int and type Integer. The reason the issue arisesiis that the functions fromEnum and toE-
num, which are used to convert between characters and ASCI| codes, deal with type Int. They
may as well, after al, because al the integers involved are between zero and 255, so thereis no
need to make use of the unbounded capacity of type Integer. Type Int is more than adequate with

its range limit of 22° - 1, positive or negative (see page 58).

However, Int is definitely not adequate for representing the integers that will occur in the cipher
alphabet. These numbers run out of the range of Int as soon as the block size exceeds four.! So,
the computations specified by the integer/numeral conversion functions of the Numerals module
must be carried out using type Integer. For this reason, the functions integerCodeFromChar
and charFromintegerCode use type Integer on the integer side of the conversion and type Int on
the character side. To do thisit is necessary to convert between Int and Integer, and an intrinsic
function is available to do this: fromIntegral. The function fromintegral, given an argument in
theclass Integral (that is, an argument of type Int or Integer), delivers anumber of the appropri-
ate type for the context of the invocation.

The following script encrypts a maxim from Professor Dijkstra, which appeared in an open letter
in 1975 and later in an anthology of hiswritings.2 It imports the Encryption module and uses its
exported functions. As the commands demonstrate, enciphering the message, then deciphering it
gets back to the original (plus afew blanks at the end, depending on how the blocking goes).

HaskeLL Derinmion e import Encryption
HASKELL DEFINITION ®
HaskeLL Derinmion e maximDijkstra, ciphertext, plaintext :: String

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

17 Modules as Libraries

| fromEnum ¢ >= minCode =

charFromintegerCode :: Integer -> Char -- and this one

| intCode >=

maxCode, minCode, numExtraCodes :: Int

maxCode = 126 -- set of code-characters =
minCode = 32 -- {tab, newline, toEnum 32 ... toEnum 126}
numExtraCodes = 2

89Q

HaskeLL Derivmion e maximDijkstra =

HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ©

"Besides a mathematical inclination, an exceptionally\n" ++
"good mastery of one's native tongue is the most vital\n" ++
"asset of a competent programmer.\n"

ciphertext = encipher blockSize key maximDijkstra

plaintext = decipher blockSize key ciphertext

key :: String

key = "computing science"
blockSize :: Int

blockSize = 10

Using this program involves displaying messages that may be several lineslong. If these mes-
sages are displayed directly as strings, they will be represented in the form that strings are denoted
in Haskell programs. In particular, newline characters will appear in the form “\n”, and, of course
the string will be enclosed in quotation marks.

1.97°>2%.1
2. Selected Writings on Computing: A Personal Perspective, Edsger W. Dijkstra (Springer-Verlag, 1982).

17 Modulesas Libraries 90Q

2



The putStr directive makes it possible to display the con- Str directi 6 Professor Dijkstra thinks that in the soétvwe deelopment profession
tents of a string, rather than the Haskell notation for the PUt _tr Irective a matherr_matical ability is the or_]ly really important as§et that programmers need
string. Thisleaves off the surrounding quotation marks and putStr :: String -> 10( ) the ability to epress oneself in a natural language is a great asset to programmers

b
. . . L. . Causes the contents of the strin ified ¢ mathematical ability doesnhavze much influence on a programnseefectiveness
g?ggj&‘;@ﬂi gﬁﬁﬁ:rgg%{gﬁ;ﬂ;g%;ﬁm asits argument to be displ ayedgo?tehce d it's avaste of time to pne, mathematicallythe correctness of program components

. . . screen with each character interpreted in
new line and displaying subsequent characters from that the normal way (e.g., newline characters

point. The following commands, making use of the above | gart new lines, tabs cause spacing, etc.).
program, use putStr to improve the display in this way.

HaskELL Commanp »  putStr maximDijkstra — display contents of string
HaskeLL Response» Besides a mathematical inclination, an exceptionally

HaskeLL Response e good mastery of one's native tongue is the most vital

HaskeLL Response e asset of a competent programmer.

HASKELL CommanD »  pUtStr ciphertext — display contents of encrypted string
HaskeLL Response e 2MVAIPYEQ]IW]IXHANIQT# ... and a bunch more gobbledygook ...
HaskeLL Commanp s pUtStr plaintext — display contents of deciphered string

HaskeLL Response e Besides a mathematical inclination, an ... etc. (as above) ...

Review Questions

1 Softwarelibraries
a contain functions encapsulated in modules
b  provide away to package reusable software
¢ both of the above
d none of the above

2 A module that supplies reusable software should
a export al of thefunctionsit defines
b import al of the functionsit defines
¢ export reusable functions, but prevent outside access to functions of limited use
d import reusable functions, but avoid exporting them

3 Theformula concat ['The", "Gold", "Bug"] delivers
a "The Gold Bug"
b ["The", "Gold", "Bug’]
¢ "TheGoldBug"
d [['The], ['Gold"], ['Bug"]]

4 Encryption isagood example to study in a computer science course because
a itisanimportant use of computers
b itinvolvesthe concept of representing information in different ways
¢ both of the above
d well ... redly ... it'sapretty dumb thing to study

5 The DEScipher isablock cipher. A block cipher is
a asubstitution cipher on alarge aphabet
b arotation cipher with scrambled internal cycles
¢ lesssecure than a substitution cipher
d  more secure than a substitution cipher

17 Modulesas Libraries 91Q 17 Modules as Libraries 92Q



Interactive Keyboard Input and Screen Output 18

Input and output are managed by the operating system. Haskell communicates with the operating
system to get these things done. Through a collection of intrinsic functions that deliver values of
10 type, Haskell scripts specify requests for services from the operating system. The Haskell sys-
tem interprets |0 type values and, as part of thisinterpretation process, asks the operating system
to perform input and output.

For example, the following script uses the intrinsic function putStr to display the string “Hello
World” on the screen:

HaskeLL DErinmion s main = putStr "Hello World"

By convention, Haskell scripts that perform input and/or output define a variable named main in
the main module. Entering the command main then causes Haskell system to compute the value
of the variable main. That value, itself, is of no consequence. But, in computing the value,
Haskell uses the operating system to perform the input/output specified in the script.

HASKELL COMMAND Main
Op Sys Response»  Hello World

When the value delivered by a Haskell command is of 10 type (e.g., main) the Haskell system
does not respond by printing the value. Instead it responds by sending appropriate signals to the
operating system. In this case, those signal's cause the operating system to display the string
"Hello World" on the screen. Thisis an output directive performed by the operating system.

Input directives are another possibility. For example, Haskell can associate strings entered from
the keyboard with variables in a Haskell program.

Any useful program that reads input from the keyboard will also contain output directives. So, a
script containing an input directive will contain one or more output directives, and these directives
will need to occur in a certain sequence. In Haskell, such sequences of input/output directives are
specified in a do-expression.

HASKELL DEFINITION ®  Main =
HASKELL DEFINITION © do
HASKELL DEFINITION ©
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION

putStr "Please enter your name.\n"

name <- getLine

putStr("Thank you, " ++ name ++ ".\n" ++
"Have a nice day (:--)\n" )

HASKELL CoMMAND Main Haskell-induced output
-

OP Sys RESPONSE * P!eas_e enter_your name. echo by operating system

OpSysEcHoe  Fielding Mellish € ¢f keyboard entry

Op Sys Resronse»  Thank you, Fielding Mellish.

OpSysResronsee  Have a nice day () <@—— ——

18 Interactive Keyboard Input and Screen Output 93Q

A do-expression consists of the keyword do followed by a sequence of input/output directives.
The example presented here contains a sequence of three such directives:

1 putStr "Please enter your name.\n"-e— causes operating systemto display a line on the screen

2 name<-getline -w——  causesoperating systemto read aline entered
3 putStr("Thank you, " ++ name ++ "\n" ++ at the keyboard —the string entered becomes
"Have a nice day (-)\n" ) the value of the variable name

DN causes operating system to display two lines on screen

Thefirst directive sends the string " Please enter your name.\n" to the screen. Since the string ends
in anewline character, the string "Please enter your name." appears on the screen, and the cursor
moves to the beginning of the next line. The second directive (name <- getLine) readsaline
entered from the keyboard and associates the sequence of characters entered on the line® with the
variable specified on the | eft side of the arrow (<-), which in this exampleisthe variable called
name. Any subsequent directive in the do-expression can refer to that variable, but the variableis
not accessi ble outside the do-expression. And finally, the third directive sends a string constructed
from name (the string retrieved from the keyboard) and some other strings (“"Thank you, ", a
string containing only the newline character, and "Have anice day (:-)\n").

When the name is entered, the Haskell system builds echo
astring from the characters entered and associates Operating systems normally send characters to
that string with the variable called name. Whileitis |the screen asthey are entered at the keyboard.
doing this, the operating system is sending the char- | Thisis known as echoing the characters, and it
acters entered to the screen. Thisisknown as echoing | 1 usualy the desired form of operation. Most
the input, and it is the normal mode of operation; operating systems have away to turn off the

. i echo when that is more desirable, such as for
without echoing, people could not see what they were | asuord entry. Haskell provides adirective to

typing. control echoing. See the Haskell Report.

When the string is complete, the person at the key-

board enters a newline character. This terminates the getLine directive (anewlineis what it was
looking for). And, since the operating system echoes the characters as they come in, the newline
entry causes the cursor on the screen to move to the beginning of the line following the name-
entry line.

The third directive sends a string to the screen containing two newline characters. In response to
this signal, two new lines appear on the screen. You can see by looking at the script that the first
one ends with a period, and the second one ends with a smiley-face.

What happens to the rest of the characters? The ones entered at the keyboard after the newline?
Well, this particular script ignores them. But, if the sequence of input/output directivesin the do-
expression had contained other getLine directives, the script would have associated the strings
entered on those lines with the variables specified in the getLine directives.

The sequence of input/output directivesin the do-expression could, of course, include more steps.
The following script retrieves two entries from the keyboard, then incorporates the entriesinto a
screen display, and finally retrieves a sign-off line from the keyboard.

1. Thatis, all the characters entered up to, but not including, the newline character. The newline character is
discarded

18 Interactive Keyboard Input and Screen Output 94Q



HASKELL DEFINITION e~ Main =
HASKELL DEFINITION © do
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ®

putStr "Please enter your name: "
name <- getLine
putStr "And your email address, please: "
address <- getLine
putStr(unlines[
"Thank you, " ++ name ++ ".",
"I'll send your email to " ++ address,
HASKELL DEFINITION * "Press Enter to sign off."])
HASKELL DEFINITION signOff <- getLine
HASKELL DEFINITION ® return()
HASKELL CoMMAND +  Main
HaskeLL Resp/OS Ecvo»  Please enter your name: Captain Ahab
HaskeLL Resp/0S EcHos  And your email address, please: cap@mobydick.org
HaskerL Response e Thank you, Captain Ahab.

___— underline shows OSecho
e

HaskeiL Response » 1'll send your email to cap@mobydick.org
HaskeLL Response e Press Enter to sign off.
OP SYS ECHO * ~@— €cho of Enter-key from keyboard

There are afew subtleties going on with newline characters. The string sent to the screen by the
first directive does not end with anewline. For that reason, the cursor on the screen remains at the
end of the string "Please enter your name: " while waiting for the name to be entered.

After completing the name entry, the person at the keyboard presses the Enter key (that is, the
newline character). The operating system echoes the newline to the screen, which moves the cur-
sor to the beginning of the next line, and the Haskell system completes its performance of the get-
Line directive. Then, asimilar sequence occurs again with the request for an email address.

Next, the putStr directive sends a three-line
display to the screen. This string is constructed
with an intrinsic function called unlines. The
unlines function takes a sequence of strings as ; . "
its argument and constructs a single string con- line\nline2\nline3in’]
taining al of the strings in the argument unlines takes a sequence of strings and deliversa
sequence, but with anewline character inserted | Siring that appends together the stringsin the

at the end of each them. In this case, there are | 591éNc8 €ach followed by a newdine character.

three strings in the argument, so theresult isa

string containing three newline characters. This string, displayed on the screen, appears as three
lines.

unlines :: [String] -> String
unlines = concat . map (++ "\n")
unlines ["linel", "line2", "line3"] =

Thelast input/output directive in the do-expression is another getlLine. This one simply waits for
the entry of anewline character. Because the variable that gets the value entered (signOff) is not
used elsewherein the script, al characters entered up to and including the expected newline are,

effectively, discarded.

18 Interactive Keyboard Input and Screen Output 95Q

Review Questions

1 Vauesof 10 type

a areintheequality classEq

b specify requests for operating system services
c represent tuplesin aunique way

d  describe Jovian satellites

2 Which of the following intrinsic functions in Haskell causes output to appear on the screen?

a concat : [[any]] -> [any]

b putStr:: String -> 10 ()

c printString :: Message -> Screen
d getLine :: 10 String

3 What will be the effect of the command main, given the following script?

HASKELL DEFINITION ®  main =
HASKELL DEFINITION © do  putStr"Good "
HASKELL DEFINITION © putStr "Vibrations\n"
HASKELL DEFINITION © putStr" by the Beach Boys\n"
one line displayed on screen
two lines displayed on screen
three lines displayed on screen
audio effects through the speaker

Q0T

4 What will be the effect of the command main, given the following script?

HASKELL DEFINITION ®  main =
HASKELL DEFINITION © do  putStr "Please enter your first and last name (e.g., John Doe): "
HASKELL DEFINITION ® firstLast <- getLine
HASKELL DEFINITION © putStr (reverse firstLast)
a display of name entered, but with the last name first
b display of last name only, first name ignored
¢ display of last name only, spelled backwards

5 display of name spelled backwards How should the last input/output directive in the preceding question be

changed to display the first name only?

a putStr(take 1 firstLast)

b putStr(drop 1 firstLast)

c putStr(takeWhile (/="") firstLast)
d putStr(dropWhile (/="") firstLast)

18 Interactive Keyboard Input and Screen Output 96Q



Interactive Programs with File Input/Output 19

Software can interact with people through the keyboard and the screen, and you have learned how
to construct software that does this (see “Interactive Keyboard Input and Screen Output” on
page 93). Since the screen isahighly volatile device, information displayed on it doesn’t last long
— it is soon overwritten with other information. The computer system provides a facility known
as the file system for recording information to be retained over a period of time and retrieved as
needed. By interacting with the file system, software can retrieve information from files that were
created at an earlier time, possibly by other pieces of software, and can create files containing
information for processing at alater time.

Suppose, for example, you wanted to write a Haskell script that would record, in afile that could
be accessed at alater time, aline of text entered at the keyboard. The script would begin by dis-
playing amessage on the screen asking the person at the keyboard to enter the line of text. Then it
would write afile consisting of that line.

HASKELL DEFINITION e Main =
HASKELL DEFINITION ® do
HASKELL DEFINITION *
HASKELL DEFINITION ©

putStr(unlines["Enter one line."])

lineFromKeyboard <- getLine

HASKELL DEFINITION ® writeFile filename lineFromKeyboard

HASKELL DEFINITION putStr("Entered line written to file \"" ++ filename ++ "\"")
HASKELL DEFINITION ® where

HASKELL DEFINITION ® filename = "oneLiner.txt"

Writing the file is accomplished through an output writeFile :: String -> String -> 10()
directive called writeFile. The first argument of write- o
File is astring containing the name of thefileto be writeFile filename contents
created, and the second argument is the string to be name of file

written to thefile. In this case, the string contains only tobecreated  entirecontentsof
oneline, but it could contain any number of lines. For file to be created
example, the following script writes afile containing

threelines.
HASKELL DEFINITION e Main =
HASKELL DEFINITION ® writeFile "restaurant.dat" (unlines pepes)
HASKELL DEFINITION © where

HASKELL DEFINITION ® pepes = ["Pepe Delgados", "752 Asp", "321-6232"]

readFile :: String -> 10 String| S0: the writeFile directive creates afile of text. The
readFile directive does the reverse: it retrieves the

contents <- readFile filename contents of an existing file. In ascript, the readFile
_ _ ndfme of file to _di rectiveis us_ed much as getITine is used, except that
entirecontentsof file, instead of retrieving a single line from the screen,

retrieved as needed

readFile retrieves the entire contents of afile.

19 Interactive Programs with File Input/Output 97Q

The contents are retrieved on an as-needed basis, following the usual Haskell strategy of lazy
evaluation. But, the script accesses the file contents through the variable named on the | eft of the
arrow (<-) preceding the readFile directive, and any input/output command following the read-
File command in the do-expression containing it can refer to that variable.

Toillustrate the use of file input/output, consider the problem of encrypting the text containedin a
file. That is, suppose you want to retrieve atext from afile, encrypt it, then create a new file con-
taining an encrypted version of the file contents.

The following script solves this problem by first asking for the name of afile from the keyboard,
confirming it, then asking for a sequence of characters to use as an encryption key. When the key
is entered, the script reads the contents of the file (that is, the plaintext), enciphersit using afunc-
tion from the Encryption module developed earlier (page 87), and writes the encrypted message
in afile with the same name as the one containing the plaintext, but with an extended name
(“.ctx”, for ciphertext, is added to the filename).

HaskeLL Derinmion e import Encryption(encipher)

HASKELL DEFINITION ®

HASKELL DEFINITION®  M@in =

HASKELL DEFINITION ® do

HASKELL DEFINITION * filename <- getFilename

HASKELL DEFINITION confirmFilename filename

HASKELL DEFINITION * key <- getKey

HASKELL DEFINITION confirmKey

HASKELL DEFINITION * putStr(msgReading filename)

HASKELL DEFINITION * plaintext <- readFile filename

HASKELL DEFINITION putStr msgComputing

HASKELL DEFINITION * writeFile (outFile filename) (encipher blockSize key plaintext)
HASKELL DEFINITION * putStr (msgSignOff(outFile filename))

HASKELL DEFINITION ®

HaskeLL Derivimion s getFilename =

HASKELL DEFINITION ® do
HASKELL DEFINITION *
HASKELL DEFINITION *
HASKELL DEFINITION *
HASKELL DEFINITION *
HaskeLL Derinmion e confirmFilename filename = putStr (msgThxForFilename filename)
HASKELL DEFINITION *

HaskeLL Derinmion s getKey =

HASKELL DEFINITION * do

HASKELL DEFINITION putStr msgEnterKey

HASKELL DEFINITION * key <- getLine

HASKELL DEFINITION * return key

HASKELL DEFINITION ®

HaskeLL Derinmion e confirmKey = putStr msgThxForKey

HASKELL DEFINITION *

HaskeLL Derinmion e msgEnterFilename = "Enter name of file containing plaintext: "
HASKELL DEFINITION *

putStr msgEnterFilename
filename <- getLine
return filename

19 Interactive Programs with File Input/Output 98Q



HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ®
HASKELL DEFINITION o
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ®
HASKELL DEFINITION o
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ©

msgThxForFilename filename =
unlines[
"Thank you",
" ... will read plaintext from " ++ filename,
" ... and write ciphertext to " ++ outFile filename]

msgEnterKey = "Enter key: "
msgThxForKey =
unlines[
"Thank you ...",
" ... will use key, then throw into bit-bucket"]

msgReading filename =
unlines["Reading plaintext from " ++ filename]

msgComputing = unlines[" ... computing ciphertext"]

msgSignOff filename =
unlines[" ... ciphertext written to " ++ filename]

outFile filename = filename ++ ".ctx"

blockSize :: Int
blockSize = 10

The following interactive session illustrates the use of the preceding script. Its effects, other than
the interaction you seen on the screen, are the file reading and writing shown in the diagram.

HASKELL CoMmAND +  MaiN

HaskeLL Resp/OS EcHo«  Enter name of file containing plaintext: sussman.txt

HaskeLL Response e Thank you

HaskeL Response e Reading plaintext from sussman.txt
HaskeLL Response » - Writing ciphertext to sussman.txt.ctx

underline indicates OS echo

HaskeLL Resp/OS EcHoe  Enter key (best if 10 or more characters): functional programming

HaskeLL Response . Thank you ...

HASKELL RESPONSE * ... will use key, then throw into bit-bucket

file: sussman.txt

The ultimate value generated by computer scientistsis
the invention of languages for describing processes ...
What computer science delivers, has delivered, and is
continuing to and will be developing in the future, are
methods of describing complicated processes such that
what used to take hundreds of pages of English text

to describe will take afew linesin aformal language.
Formal isimportant, because it is possible for usto
understand it, and to communicate it quickly, and for
it not to be ambiguous and perhaps for usto runit.

Gerald Sussman (Comm ACM, Nov 1991)

-«— readsthisfile

writesthisfile

Some of the functionsin this script retrieve input from the keyboard (getLine or readFile) and
need to deliver the input astheir 10 String vaues. This can be accomplished from a do-expres-
sion by using the return directive. When the return directive at the end of a do-expression con-
taining input/output directives is supplied with an argument that is a String, then the do-
expression delivers avalue that can be used in the same way as avalue delivered by getLine or
readFile. In thisway, you can write functions that do specialized sorts of input directives, such
prompting for and retrieving the filename (getFilename) and the key (getKey) in the above
script.

19 Interactive Programs with File Input/Output 29Q

newline characters

not shown accurately

file: sussman.txt.ctx

HYMuX{[cT]1hUjjD[dOgOY _NfDcTNgJIrLcP_d_UZudL]
H]cTc\frRfccWOgQbgNbWXAXgqWY ruuQVvVdLWMfrOc
TpSPcKfZK]QUp[bWWV\gHaoy~wtHQUV pRZ] XieNedb
RTUVWUjXH[XaUZf}j\DapOUT]gNfHR{ IQVWIRfcR"
Y dQbfRblpcY glbTjkL[ZIRMUuUNjH["[Y VZrRadcWOQqNi
eMG{ pLbMt*"NhK~S|qWY rMY VRaTRQbWjWR\_WY K
UeNWd_aZSMgdNfdbdNWihY JgcfWLciidNWdc]ldI_Uj\
X]SJULfrXYd_PRU[U'NU(VWY[r]Y [bo_"NXVIWUXQ
Oq_]]TUWPZOgluWN;jd[XY U[uZVuCpUZbUU\'D]V'Q
oYy
i:RalL[i]cj]P_"dIbduuETRLe[XrRgdXa " WgdRvVOSpQ _Z

.. etc. ...

19 Interactive Programs with File Input/Output

100Q



Fractional Numbers 20

All of the software developed so far in this textbook has dealt primarily with strings or, in some
casesintegral numbers, but even then with some sort of string processing as an ultimate goa . This
chapter discusses a computing application that makes use of non-integral numbers — that is,
numbersin the Haskell class Fractional. This class encompasses the intrinsic types in Haskell
that represent numbers with fractional parts.

Thereare six intrinsic typesin this class. Two of them, the Complex types, are used to build mod-
els of many phenomena studied in mathematics, physics, and engineering. You can learn about
Complex types on your own, using the Haskell Report as a reference, if you decide to build soft-
ware that requires them. The types used in the examplesin this chapter fall into the subclass Real-
Frac.

The term “real number,” in mathematics, refers to the kinds of numbers used to count things and
measure things. They can be whole numbers, which Haskell represents by the class Integral, or
numbers with fractional parts, which Haskell represents by the class RealFrac. The most com-
monly used typesin this class are Float and Double.

Numbers of type Float and Double have two parts: amantissa and an exponent. The mantissa
can be viewed as a whole number with a fixed number of digits (maybe decimal digits, but proba-
bly binary digits — the Haskell system uses aradix compatible with the computer system’s
instruction set), and the exponent as another whole number that specifies a scaling factor for the

The Class of Numbers

Classes
& Num

Fractional
RealFrac

Floating

20 Fractional Numbers 101Q

mantissa. The scalingdtor will be a paer of the radix of the number system used to represent
the mantissa. In &fct, the @ponent mwes the decimal point in the mantissa (or binary point ...

or whateer) to the right or left. The decimal point wes to the right when theqgonent is posi-

tive and to the left when it is gative. This is called #oating point representation. It is the basis

of most numerical computations in scientific computing. All computers intended for use in study-
ing models of scientific phenomena include, in their basic instruction sets, operators to do arith-
metic with floating point numbers at speeds ranging from thousands of floating point operations
per second on ixpensve systems to billions per second on computers intended der-$aale
scientific computation.

floating point numbers and scientific notation

Because the numbers that occur in measuriygiphl phenomena range frorary small to ery lage, and
because the precision with which yhean be measured runs from w féecimal digits to man but usually not
more than ten or twenty decimal digits of precision, measurements arexgftessed as numbers that specify
guantities in the form of a mantissa times we@oof ten. In gect, the paver of ten shifts the decimal point to
scale the measured quantity appropriafElys scheme for denoting numbers, knaas scientific notation, is g
form of floating point representation.

1.89533 x 102 1.05522 x 10724

\
ponent mantissa exponent
mantissa
n?m?rbzgnﬁlzulaévr:’a 1.05522e-24 ouncesin a typical mol-
P . 1.89533e+25 ecule of beer writtenin

written in scientific notation A )
scientific notation

in Haskell notation (Float or Double)

T SN ——

bonafides: Avogadro’s number = 6.0221367e23, molecular weight of H,O = 18.01528, grams per ounce = 28.24952

The diference between tygdoat and typeDouble is that numbers of typBouble carry about
twice the precision of numbers of typkat (that is, their mantissas contain twice as yndig-
its). Both types are denoted in HaBlscripts by a decimal numeral specifying thantissa and
another decimal numeral specifying thgpenent. The mantissa portion is separated from the
exponent portion by the letter.

Theexponent portion is optional. It may be eithegaiéve (indicated by a minus signdiening

the ponent) or positie (indicated by a plus signdianing the gponent or by the absence of a
sign on the xponent). If the eponent part is present, then the mantissa must contain a decimal
point, and that decimal point must be imbedded betweenmligits. Ngative numbers hee a

minus sign at the lggnning of the mantissa.

This chapter illustrates the use of fractional numbers througkaanpde that bilds a graphical
representation of a numeric function. That igggia function that, when supplied with a frac-
tional numberdelivers a ne fractional numberthe softvare will delver a string that represents
the cune the function describes. When printed, this string will look fikgraph of the functich.

1. Not a \ery good picture of the graph, reallywill be printed as ordinary x& so the resolution (distance
between discrete points on the displayide) will be poorBut, in principle, the ideas deloped in the
chapter could be applied to a graphical displayagecapable of gnlevel of resolution.

20 Fractional Numbers 102Q



A key step in the computation of a graphical representation of a numeric function is the conver-
sion of analog valuesto digital values. The plotting device is a printer or screen, which has a cer-
tain number of positions along the horizontal axisin which it can display marks, and, likewise, a
discrete resolution in the vertical direction. A printer is, in this sense, adigital display device.

Analog display devices are not limited to certain fixed display points. In principle, an analog dis-
play device would be able to display a point anywhere within a given range.> The numeric func-
tion whose graph will be plotted has an analog character. It's input will be a fractional number,
and its output will be afractional number. Both numberswill be of high enough precision that it is
reasonable to view them as analog measurements. The software will have to convert each analog
measurement into adigital level that represents a position in which a printer can make a mark.

analog to digital conversion

n —digital levels={0, 1, ... n-1}
X — analog measurement
x=0.84 b=1.9 a<x<bh —analog range
a=0.3 . -
. / dx —stepsize, analog domain
L | L | L L J
03 o7 | 1T 15 19 n=s8
digital level 0 digital level 4 digital level 7=n-1 dx=2=2 =02

digital level of x=floor((x - @) / dx) = 2

Suppose the analog measurements x fall in the range a < x < b, for some fractional numbers a and
b, and the available digital levelsare{0, 1, 2, ..., n-1} for some integral number n. Theideaisto
divide the analog range into n segments, label the segments from smallest to largest, 0, 1, ... n-1,
and figure out which segment x fallsin. The label of that segment will be the digital level of the
analog measurement X.

Thereis an arithmetic formulathat producesthe digital  [figor -

level from the analog measurement x, giventheandog | (RealFrac x, Integral n) => x -> n
range (a, b) and the number of digital levels n. It works floor x = largest integer not exceeding x
like this: divide x - a, which is the distance between x
and the low end of the analog range, by dx = (b - &) / n, which isthe length of the segmentsin the
analog range corresponding to the digital levels (dx is called the step size in the analog domain),
then convert the quotient to a whole number by dropping down to the next smaller integer (if by
chance the quotient falls on an integral boundary, just use that integer as the converted quotient —
this next-lower-integer, or, more precisely, the largest integer not exceeding X, is known as the
floor of x). The whole number delivered by this processis the digital level of the analog measure-
ment X.

digital level of x = floor((x - a) / dx)

This formula always works properly when the computations are exact. Floating point numbers,
however, involve approximate arithmetic because the precision of the mantissais limited. Impre-

1. In practice, thiswill not be so. Any physical deviceis capable of a certain amount of precision. The rea
difference between digital devices and analogue devicesis that digital representations are exactly repro-
ducible. You can make an exact copy of adigital picture. Analog representations, on the other hand, are
only approximately reproducible. A copy will be aimost the same, but not exactly.

20 Fractional Numbers 103Q

cise arithmetic causes no problems for most of the range of values of the anal og measurement x.

Atworgt, thedigital level is off by one when x isvery close to asegment boundary — no big deal .
No big deal, that is, unless off by one can put the digital level outside the set of n possible digital
levels{0, 1,2, ...,n-1}.

If that happens, it's a disaster, because the software will need to use the digital level to control a
digital devicethat cannot operate with digital levels outside its expectations. So, it is best to make
aspecia casein the calculation when x is near the low end of the range, a, or near the high end of
therange, b.

These ideas are put together in the following definition of the function digitize. It selects a specia
formulato avoid the out-of-range disaster when the analog value iswithin a half-step of either end
of the analog range and uses the standard formula otherwise.

The definition has two other notable features. One, it signals an error if invoked with zero or a
negative number of digital levels— no way to make sense out of such arequest. Two, it usesthe
function fromintegral to make the divisor compeatible with the dividend in the computation of the
step size. Thefunction is packaged with some other utilities for numeric computation in amodule
called NumericUstilities, (provided in the Appendix).

¢ HaskeLL Derinmion 2 -- n-way analog-to-digital converter fora<=x<b

¢ HASKELL DEFINITION ? digitize:: RealFrac num => Int -> num -> num -> num -> Int

¢ HASKELL DEFINITION ? digitize na b x -- you write this function
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? where
¢ HASKELL DEFINITION ? xDist=x-a
dx = analogRangeSize/(fromintegral nSafe)
halfStep = dx/2
¢ HASKELL DEFINITION ? nSafe |[n>0 =n

| otherwise = error "digitize: zero or negative levels"

analogRangeSize =b - a

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

The function digitize is polymorphic: it can deal with any representation of analog valuesin the
class RealFrac. Thisincludes not only floating point numbers, but also rational numbers. Ratio-
nal numbers are constructed from a numerator and denominator, both of which are integral num-
bers. If the numerator and denominator have type Integer, then the rational number has type
Rational (short for Ratio Integer). If they have type Int, then the rational number has type
Ratio Int. Rational numbers are written as a pair of Haskell integral numbers with a percent sign
between them. The graph-plotting function, showGraph, will make use of arational number
denoted in this way.

With the digitizing function understood, the next step is to construct the graph-plotting function.
Thiswill be donein steps, from aversion that isrelatively easy to design, but not very desirableto
use, to aversion that has more complex formulas, but is more convenient to use.

20 Fractional Numbers 104Q



Haskell notations for numbersin class RealFrac
numbers of type Float or Double numbers of type Rational or Ratio Int
3.14159 >< 3%5 —three fifths
0.31415926e+01 dang“ngg; mal point| | 5%3 —five thirds
31415926356.0e-10 ot allowed -279%365 — negative two hundred sev-
) enty-nine three hundred
3.1415926 @9@ e
-0.31416e+01

The graph-plotting function will deliver astring that, when displayed on the screen, will appear as
lines containing asterisks to form the curve that represents the graph of the function being plotted.
The arguments supplied to the graph-plotting function will include the function to be plotted, the
extent of the domain over which to plot the function, and the desired number of digitizing levelsto
break the range into.

graph-plotting function — showGraph
arguments
w — number of digitizing levels for the abscissa (a value of type Int)
f — function to plot (type num->num, where num isatype in the class RealFrac)
a — left-hand endpoint of the domain over which to plot the function
b — right-hand endpoint of the domain over which to plot the function
result delivered
string that will display a curve representing the function-graph {f x| a< x< b}

The function will first build a sequence of strings, unlines :: [String] - String
each to become one line in the result, then apply the L
intrinsic function unlines to convert this sequence | concatenates all the stringsin the argu-

of stringsin to one string with newline characters | Ment together and inserts newline charac-
separating the strings in the original sequence. ter at the end of each

The string will display the curve with the abscissa  |unlines ["IEEE", "Computer] =
running down the screen for w linesin all (oneline "IEEE\nComputer\n”
for each segment in the digitized version of the unlines = concat . map(++"\n")
abscissa). The function will need to choose some
appropriate level of digitization for the ordinate. Initially, thiswill be 20, corresponding to 20
character positions across aline, but it could be any number, aslong the printed characters will fit
on aline of the printing device. (If they wereto wrap around or get lopped off, the graph wouldn’t
look right.)

The step size in the direction of the abscissawill be dx = (b - a) / w, so digital level k corresponds
to the segment a + k[tix < x < a + (k+1)Cdx. The function’s value at the centers of these segments
will be plotted. This means that the function values must be computed at the set of points

{a+dx/2+kdx | nO{0,1,...,w-1} }

1. Thisisnot very desirable. The abscissais normally plotted along the horizontal axis. Thisis one of the
things to be improved in subsequent versions of the showGraph function.

20 Fractional Numbers 105Q

The maximum and minimum of the function values at maximum, minimum ::

these points (call them yMaxand yMin) determine the

digitized into 20 levels by applying digitize to each of the
function values.

Real num =>[num] -> num
range of values on the ordinate scale. This scale will be computing the largest or smallest

number in a sequence

maximum([5, 9, 2] =9
The sketch of the function showGraph outlines this plan. minimum[4.7, -1.3, 3.14] =-1.3

Try tofill in the details yourself, to make sure you under-
stand how to apply the concepts and formulas presented so far.

¢ HASKELL DEFINITION ? showGraph:: RealFrac num =>

¢ HASKELL DEFINITION ? Int -> (num->num) -> num -> num -> String

¢ HASKELL DEFINITION ? showGraph w f a b = unlines graph

¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ? graph = [spaces y ++ "*" | y <- ysDigitized]

¢ HASKELL DEFINITION ? ysDigitized = -- use the digitize function for this
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? ys = [f x| x<-xs] -- ordinates
¢ HASKELL DEFINITION ? XS = -- centered abscissas (you define xs)
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? dx = -- step size for abscissa (you define dx)

; ?
¢ HASKELL DEFINITION ? 94— fromintegral corvertsw to
¢ HASKELL DEFINITION ? yMax = maximum ys the type ofb-a)

¢ HASKELL DEFINITION ? yMin = minimum ys

HaskeLL CommanD »  putStr(showGraph 20 sin (-2*pi) (2*pi))
HASKELL RESPONSE * *

HASKELL RESPONSE ¢ *
HASKELL RESPONSE * *
HASKELL RESPONSE ¢ *
HASKELL RESPONSE ¢ *

HASKELL RESPONSE * *

HASKELL RESPONSE ¢ *

HASKELL RESPONSE ®  *

HASKELL RESPONSE ¢ *

HASKELL RESPONSE * *

HASKELL RESPONSE ¢ *

HASKELL RESPONSE * *
HASKELL RESPONSE ¢ *
HASKELL RESPONSE * *
HASKELL RESPONSE ¢ *
HASKELL RESPONSE * *

HASKELL RESPONSE * *

HASKELL RESPONSE ® ~ *

HASKELL RESPONSE * *

HASKELL RESPONSE * *

20 Fractional Numbers

sin :: Floating num =>

num->num
sin is an intrinsic function

that delives the (appoxi-

mate) trigonometric sine of a

floating point agument

pi :: Floating num =>num

pi is an intrinsic variable

whose value appximates the

ratio of the cicumfeence
circle to its diameter

of g

106Q



In the definition of showGraph, the variable graph is a sequence of strings, one string for each
line that will appear in the display. Each of these linesis a sequence of spaces (delivered by a
function, spaces — see SequenceUstilities (Appendix) followed by an asterisk. The spaces shift
the asterisk further to the right for larger function values, and the overall effect is a curve showing
the behavior of the function, as shown in the following Haskell command and response.

It'salittle disorienting to see the curve running down the page. Normally the abscissais plotted in
the horizontal direction. The next version of showGraph corrects this situation.

Think of the display of the graph as atable of rows and columns of characters. The rows go across
the page and the columns go up and down. Each row has 20 characters, since that is the number of
digitized levelsin the ordinate, and each column hasw characters, since w specifies the number of
digitized levels in the abscissa.

To display the graph in the usual orientation (horizontal axis for the abscissa), the last column of
the table (that is, the right-most column) needs to become the top row, the next-to-last column the
second row, and so on. Thisisknown as atransposition of rows and columnsin the table. A func-
tion called transpose in the SequenceUtilities module (Appendix) that does this operation.

WEell ... not quite. The function transpose actually makes the left-most column the top row and
the right-most column the bottom row, rather than the other way around.® This can be fixed by
reversing the order of the strings that plot the abscissas before feeding this sequence of strings to
the unlines function.

However, there is a slight complication that needs to addressed before the transpose function
will work properly in this application. The complication isthat the stringsin the graph variable
arenot full rows. They don’t have all 20 charactersin them. Instead, they have just enough spaces,
followed by an asterisk, to plot a point on the graph in the right position.

For transpose to work as intended, the rows must be full, 20-column units. So, the formulafor a
row must append enough spaces on the end to fill it out to 20 columns. Try to put the proper row-
formulain the following version of showGraph.

¢ HASKELL DEFINITION ? showGraph:: RealFrac num =>

¢ HASKELL DEFINITION ? Int -> (num->num) -> num -> num -> String

¢ HASKELL DEFINITION ? showGraph w fa b = (unlines . reverse . transpose) graph

¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ? graph -- you fill in the formula for graph

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? ysDigitized = [digitize 20 yMin yMax y| y<-ys]
ys = [f x| x<-xs]

xs = [a + dx/2 + fromIntegral(k)*dx| k<-[0..w-1]]

dx = (b-a)/fromIntegral(w)

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

1. The function transpose is designed to work on matrices. According to the usual conventionsin mathe-
matics, the transpose of amatrix makes the left-most column into the top row, the second column (from
the left) into the second row, and so on.

20 Fractional Numbers 107Q

¢ HASKELL DEFINITION ? yMax = maximum ys

¢ HASKELL DEFINITION ? yMin = minimum ys

With this change, the showGraph function displays the graph in the usual orientation (abscissa
running horizontally).

HaskeLL Coumanp e putStr(showGraph 20 sin (-2*pi) (2*pi))
HASKELL RESPONSE ¢ * *

HASKELL RESPONSE * * o * o

HASKELL RESPONSE *

HASKELL RESPONSE *

HASKELL RESPONSE ©

HASKELL RESPONSE *

HASKELL RESPONSE® ~ * * * *

HASKELL RESPONSE *

HASKELL RESPONSE *

HASKELL RESPONSE *

HASKELL RESPONSE *

HASKELL RESPONSE ©

HASKELL RESPONSE *

HASKELL RESPONSE * * * * *

HASKELL RESPONSE *
HASKELL RESPONSE *
HASKELL RESPONSE ©
HASKELL RESPONSE *
HASKELL RESPONSE ©
HASKELL RESPONSE * * *

*  * *  *

Wait aminute! Why isthe graph all squeezed up?

There are two factors involved in this phenomenon. One is that the program exercises no discre-
tion about how many levelsto usein digitizing the ordinate. It just picks 20 levels, no matter what.
So, some graphs will look sgueezed up, some spread out, depending on scale.

This can be fixed by scaling the ordinate to match the abscissa, so that aunit moved in the vertical
direction on the plotting device will correspond to about the same range of numbers as a unit
moved in the horizontal direction. Another way to look at thisis to choose the scaling factor so
that a segment in the range of the abscissa that corresponds to one digitization level has the same
length as a digitization segment in the range of the ordinate. In arithmetic terms, the following
proportions need to be approximated:

height / w = (yMax - yMin) / (b - a)
where height is the number of digitizing levelsin the vertical (ordinate) direction.

The other factor isthat the resolution of the printer in the vertical direction is not the same as the
resolution in the horizontal direction. Typically amovement on the printer in the vertical direction
isabout twice as far as a movement in the horizontal direction. The exact ratio depends on the
printer, but aratio of about five to threeistypical. So, to get the proportions right, horizontal units
need to be adjusted by a factor of three-fifths to make them comparable to vertical units.

20 Fractional Numbers 108Q



Combining this aspect ratio of the horizontal and vertical resolutions of the printer with the main-
tenance of the above scaling proportions leads to the following formula for the number of digitiz-
ing levelsin the vertical direction:

height = nearest integer to w* 2*(yMax - yMin) / (b - a)

Thefinal version of showGraph is packaged in amodule for usein other scripts. The module
assumes that the function digitize can be imported from a module called NumericUtilities and
that the functions spaces and transpose can be imported from a module called SequenceUtili-
ties.

Try to use the above formulas to fill in the details of the function showGraph. To compute the

nearest integer to afractional number, apply theintrinsic function round. Note that the transpose
function has been packaged in the SequenceUstilities module, and the digitize function has been
packaged in the NumericUtilities module. Both of these modules are contained in the Appendix.

HASKELL DEFINITION ®
HASKELL COMMAND ©
HASKELL RESPONSE ©
HASKELL RESPONSE ©

HASKELL COMMAND ©
HASKELL RESPONSE ¢
HASKELL RESPONSE ©
HASKELL RESPONSE ©
HASKELL RESPONSE ©

The following command applies showGraph in the usua way.

import PlotUtilities(showGraph)
putStr(showGraph 20 sin (-2*pi) (2*pi))

* k k%% * k k k%

* kk kK * kk kK

Whoops! Poor resolution in the vertica direction. Doubling the resolution gives a better picture.

putStr(showGraph 40 sin (-2*pi) (2*pi))
*kkkkk *kkkkk
* % * % * % * %
* % * % * % * %

*kkkk*k *kkkk*k

Graph-plotting Program

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

20 Fractional Numbers

module PlotUtilities
(showGraph)
where
import SequenceUtilities(transpose)
import NumericUTtilities(digitize)

showGraph:: RealFrac num =>
Int -> (num->num) -> num -> num -> String

showGraph w f a b = (unlines . reverse . transpose) graph
where
graph = --you define graph

ysDigitized = [digitize height yMin yMax y| y<-ys]
height = -- you define height

ys = [f X| x<-xs]

xs = [a + dx/2 + fromIntegral(k)*dx| k<-[0..w-1]]
dx = (b-a)/fromIntegral(w)

yMax = maximum ys

yMin = minimum ys

aspect = fromRational(3%5)

109Q

Main Organization Chart

PlotUtilities

NumericUtilities

SequenceUtilities

Review Questions

1 TheHaskell class Fractional includes
a integral, real, and complex numbers
b numbers between zero and one, but not numbers bigger than one
¢ both floating point and rational numbers
d theMandelbrot set

2 Themantissaof afloating point number determines
a wherethe decimal point goes
b therange of the number and its sign
¢ themagnitude and precision of the number
d thesign of the number and the digitsin its decimal numeral

20 Fractional Numbers 110Q



3 The exponent of afloating point number determines
a wherethe decimal point goes
b  therange of the number and itssign
¢ themagnitude and precision of the number
d thesign of the number and the digitsin its decimal numeral

4 Thefollowing denote floating point numbers as the should appear in a Haskell script
a 1.89533e+25, 18.01528974, 1.05522e-24, +27.0

b  1.89533 x 10%5, 18.01528974, 1.05522 x 10°%4, -27.0
c 1.89533et+25, 18.01528974, 1.05522e-24, -27.0
d all of the above

5 Analog to digital conversion converts a number
a from aset containing agreat many numbers to anumber from amuch smaller set
b  tozeroor one
c toapattern of zeros and ones
d by adigital analogy process

6 Which of the following formulas would useful for analog to digital conversion?
floor((x - a)/dx)

floor(nOx - a)/(b - a))

floor . (/ dx) . (+(- @)

d all of theabove

O T o

7 Numbers of type Rational in Haskell scripts are
a compatible with floating point numbers in arithmetic operations
b constructed from two integers by putting a percent-sign between them
c especialy useful when precision is not the most important factor
d adll of the above

20 Fractional Numbers

111Q

Patterns as Formal Parameters 21

When you know something about the structure of an argument that may be supplied to afunction,
you can take advantage of that knowledge to make the definition more concise and easier to
understand. For example, suppose you are writing a function whose argument will be atwo-tuple
of numbers, and the function is supposed to deliver the sum of those numbers. You could write the
definition as follows.

HaskeLL Dervimion » - sumPair :: Num num => (num, num) -> num
HaskeLL Derinmion e sumPair (X, y) = x +y

The formal parameter in this case is atwo-tuple pattern. When the function isused in aformula, it
will be supplied with atwo-tuple of numbers as an argument. At that point, the first component of
the tuple argument gets associated with the first component of the tuple-pattern in the definition
(that is, x), and the second component of the tuple argument gets associated with the second com-
ponent of the tuple-pattern (that is, y).

HaskeLL Coumanp e sumPair(12, 25) — matches x in definition with 12, y with 25
HASKELL Response e 37 —delivers 12 + 25

Thisideacan a so be used with arguments that are sequences. For example, the following function
expects its argument to be a sequence of two strings, and it returns a string containing the first
character in the first string and the last character in the second string.

Haskew Derivimion - firstAndLast :: [String] -> String
HaskeLL Derinmion e firstAndLast [xs, ys] = [head xs] ++ [last ys]

This function could be generalized to handle arguments with other sequence-patterns. Valuesto
be delivered for other patterns are simply written in separate equations. The following definition
would cover three cases. (1) an argument with two elements, as above, (2) an argument with one
element, and (3) an argument with no elements.

Haskew Derivimion - firstAndLast :: [String] -> String

HaskeLL Derinmion e firstAndLast [xs, ys] = [head xs] ++ [last ys]
HaskerL Derivmion e firstAndLast [xs] = [head xs] ++ [last xs]
HaskeLL Derinmion e firstAndLast [] =[]

This amounts to a function with three separate cases in its definition. The appropriate caseis
selected by matching the supplied argument against the patterns in the defining equations and
choosing the defining equation that matches. If no pattern matches the supplied argument, the
function is not defined for that argument. The preceding definition of firstAndLast does not
define the function on sequences with three or more elements.

To define firstAndLast on sequences with any number of elements, a pattern involving the
sequence constructor can be used. The sequence constructor isan operator denoted by the colon
(:) that inserts anew element at the beginning of an existing sequence.

X:XS = [X] ++ xs

21 Patterns as Formal Parameters 112Q



Of course, you aready know how to insert an element at the beginning of an existing sequence by
using the append operator (++). Unfortunately, however, the append operator is not included in
the class of operators that can be used to form patternsin formal parameters. Operatorsin this
class are known as constructors, and it just happens that the colon operator is one of those, but the
plus-plus operator isn't.

Using the sequence constructor, the definition of firstAndLast can be extended to deal with all
finite sequences:

HaskeLL Derinmion e firstAndLast :: [String] -> String
HaskerL Derinmion s firstAndLast (xs : yss) = [head xs] ++ [last(last(xs : yss))]
HaskerL Derinmion e firstAndLast [] =]

In this definition, the first equation will be selected to deliver the value if the supplied argument
has one or more elements because the pattern (xs : yss) denotes a sequences that contains at least
the element xs. If the supplied argument has no elements, then the second equation will be
selected.

HaskeLL Commanp »  firstAndLast ["A", "few", "words"] — selectsfirst equation
HASKELL RESPONSE* ~ AS
HaskeLL Commanp »  firstAndLast["Only", "two"] —selectsfirst equation
HaskeLL Response e OO
HaskeLL Commann »  firstAndLast["one"] —selects first equation
HASKELL RESPONSE* ~ O€
HaskeLL Commanp e firstAndLast [ ] — selects second equation

HASKELL ResPonsE s [ ]

Many definitions use patterns involving the sequence constructor (:) because it often happens that
adifferent formula applies when an argument is non-empty than when the argument is empty.t Of
course, you could always write the definition using guards:

HaskeLL Derinmion e firstAndLast :: [String] -> String

HaskeLL Derinimion e firstAndLast xss

HASKELL DEFINITION ® |null xss =[]

HASKELL DEFINITION ® | otherwise =[head(head xss)] ++ [last(last xss)]

But, the pattern-matching form of the definition
has the advantage of attaching names to the com-
ponents of the sequence that can be used directly
in the definition, rather than having to apply
head or tail to extract them. For example, in the
pattern-matching form of the definition of fir-
stAndLast, the first component of the argument sequence in the non-empty case as associated
with the name xs. So, it can be used in the definition: head xs, rather than the more complicated
head(head xss) required in the definition that does not rely on pattern-matching.

head, last :: [a] ->a  —intrinsic functions

tail :: [a] -> [a]

head([x] ++ xs) =x tail([X] ++ xs) = xs
last = head . reverse

1. InthefirstAndLast function, for example, the an empty argument presents a special case because there
are no strings from which to extract first and last elements.

21 Patterns as Formal Parameters 113Q

Review Questions

1 Theformula (x : xs) isequivalent to
a X++xs
b [X] ++ xs
¢ [x]++[xs]
d al of theabove
2 Thedefinition
HaskeLL Derinmion e f(X : XS) = g X XS
HaskeLL Derinmone - f[]=h
definesh intermsof g
defines f for arguments that are either empty or non-empty sequences
will not work if xs isthe empty sequence
all of the above

o0 oo

3 Thedefinition

HaskeLL Derinmion e f(X : XS) = g X XS
is equivalent to
a fxs |nullxs =gxxs
b fxs=gxxs |l h
¢ f xs |not(null xs) =g (head x) (tail xs)
d fxxs = g(x:xs)

4 Which of the following defines afunction of type ([Char], Char) -> [Char] ?

a f((x:xs),x") =[x] ++ reverse xs ++ ['X]
b f(x,y:ys) =[] ++reverseys ++[x]

¢ f((xs:'x), x) =[x] ++ reverse xs ++ ['X]
d all of the above

5 Which of thefollowing formulas delivers every third element of the sequence xs?

a foldr drop [] xs

b [foldr drop [] suffix | suffix <- iterate (drop 3) xs ]

¢ [x](x: suffix) <- takeWhile (/= []) (iterate (drop 3) (drop 2 xs)) ]
d takeWhile (/=[]) (iterate (take 3) xs)

21 Patterns as Formal Parameters 114Q



Recursion 22

You have learned to use several patterns of computation that involve repetition of one sort or
another: mapping (applying the same function to each element in a sequence), folding (collapsing
all the elements of a sequence into one by inserting a binary operation between each adjacent
pair), iterating (applying a function to its own output, repeatedly), filtering (forming a new
sequence from the elements of an existing one that pass a certain criterion), and extracting a prefix
or suffix of asequence. Most important computations can be described using just these patterns of
repetition. But not al.

Some computations reguire other patterns of repetition. In fact, there is no finite collection of pat-
ternsthat cover all of the possibilities. For this reason, general purpose programming languages
must provide facilities to permit the specification of arbitrary patterns of repetition. In Haskell,
recursion provides this capability.

A definition that contains aformulathat refers to the term being defined is called arecur sive for-
mula. All of the patterns of repetition that you have seen can be described with such formulas.

Take iteration, for example. The iterate function constructs a sequence in which each successive
element is the value delivered by applying a given function to the previous element. It isan intrin-
sic function, of course, but if it weren't, the following equation would defineiit.

HaskeLL Derinmion e iterate f x = [ x ] ++iterate f (f X)

What does this mean? It means that the value iterate delivers will be a sequence whose first ele-
ment is the same as the second argument supplied to iterate and whose subsequent elements can
be computed by applying iterate to different arguments. Well ... not completely different. The
first argument is the same as the first argument originally supplied to iterate. The second argu-
ment is different, however. What was x beforeis now (f x).

Therefore, the first element of the value delivered by the subformulaiterate f (f x) will be (f x).
This value becomes the second element in the sequence delivered by iterate f x. What about the
third element? The third element will be the second element delivered by the subformula
iterate f (f x).

To see what thisvalueis, just re-apply the definition of iterate:
iterate f (f x) =[(f x)] ++ iterate f (f (f X))

The second element in this sequence is the first element in the sequence delivered by the subfor-
mulaiterate f (f (f x)), and that valueis (f (f x)), asyou can see from the definition of iterate.

And so on. Thisis how recursion works.
Look at another example: the function foldr, defined via recursion:

HaskeL Derinmion e foldr op z (x:xs) = op x (foldr op z xs)
HaskeLL Derinmion e foldr op z [] = z

You can see the pattern of repetition that this definition leads to by applying the definition to the
formulafoldr (+) 0 [1, 2, 3].

22 Recursion 115Q

foldr (+) 0 [1, 2, 3] (+) 1 (foldr (+) 0 [2, 3]) — according to the definition of foldr
1+ (foldr (+) 012, 3]) — switching to operator notation for (+)
1+ ((+)2 (foldr (+) 0 [3]) — applying the definition of foldr again
1+ (2 + (foldr (+) 0 [3])) — switching to operator notation for (+)
1 +@2+((+)3(foldr (+)O[D])) — applying the definition again
1 +(2+(3+(foldr (+) 0[]))) — switching to operator notation for (+)
1 +(2+(3+0)) — applying the definition again (empty-case this time)

Thisisthe operational view of recursion — how it works. Generally, it's not agood ideato worry
about how recursion works when you are using it to specify computations. What you should con-
cern yourself with is making sure the equations you write establish correct relationships among
the terms you are defining.

Try to use recursion to define the take function. Thetrick isto make the defining formula push the
computation one step further along (and to make sure your equations specify correct relation-
ships).

¢ HaskeLL Derivimion 2 take n - (X @ XS) —you take a stab at the definition

¢ HASKELL DEFINITION ? [n>0 =
¢ HASKELL DEFINITION ? [n== =
¢ HASKELL DEFINITION ? otherwise = error("take (" ++ show n ++") not allowed")

¢ HaskeLL Dervimion 2 take n []= —don't forget this case

So much for using recursion to define what you already understand. Now comesthe timeto try it
on anew problem.

Suppose you have a sequence of strings that occur in more-or-less random order and you want to
build a sequence containing the same elements, but arranged al phabetical order. Thisisknown as
sorting. The need for sorting occurs so frequently that it accounts for a significant percentage of
the total computation that takes place in businesses worldwide, every day. It is one of the most
heavily studied computations in computing.

There are lots of ways to approach the sorting problem. If you know something about the way the
elements of the sequence are likely to be arranged (that is, if the arrangement is not uniformly ran-
dom, but tends to follow certain patterns), then you may be able to find specialized methods that
do thejob very quickly. Similarly if you know something about the elements themselves, such as
that they are all three-letter strings, then you may be able to do something clever. Usually, how-
ever, you won't have any specialized information. The sorting method discussed in this chapter is,
on the average, the fastest known way? to sort sequences of elements when you don’t know any-
thing about them except how to compare pairs of elements to see which order they should go in.

Fortunately, it is not only the fastest known method, it is also one of the easiest to understand. It
was originally discovered by C. A. R. Hoare in the early days of computing. He called it quick-
sort, and it goes like this: Compare each element in the sequence to the first element. Pile up the
elementsthat should precedeit in one pile and pile up the elementsthat should follow it in another
pile. Then apply the sorting method to both piles (thisis where the recursion comesin). When you

1. Thereareall sorts of tricks that can be applied to tweak the details and get the job done faster, but all of
these tricks leave the basic method, the one discussed in this chapter, in place.

22 Recursion 116Q



are finished with that, build a sequence that (1) begins with the elements from first pile (now that
they have been sorted), (2) then includes the first element of the original sequence, and (3) ends
with the elements from the second pile (which have also been sorted at this point).

Try your hand at expressing the quick-sort computation in Haskell.

¢ HaskeLL Dermvimon 2 quicksort (firstx @ xs) = —you try to define quicksort

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HaskeLL Dervimion 2 quicksort []1=1]

HaskeLL Commanp s quicksort["Billy", "Sue", "Tom", "Rita"]
HaskewL Response» — ['Billy", "Rita", "Sue", "Tom"]

HaskeLL Commanp quicksort[32, 5280, 12, 8]

HaskeLL Response e [8, 12, 32, 5280]

HaskeLL Commanp e quicksort[129.92, -12.47, 59.99, 19.95]
HaskeLL Response e [-12.47, 19.95, 59.99, 129.92]

HaskeLL Commanp e quicksort['Poe”, "cummings”, "Whitman", "Seuss", "Dylan"]

HaskeLL Response e ["Dylan”, "Poe", "Seuss", "Whitman", "cummings"] — whoops!

— works on strings

—works on numbers, too

Aswritten, quicksort puts numbersin increasing order and puts stringsin alphabetical order. But,
it seems to have some sort of lapsein the last of the preceding examples. It puts "cummings” last,
when it should be first, going in alphabetical order.

The problem hereisthat quicksort is using the intrinsic comparison operation (<), and this oper-
ation arranges strings in the order determined by the ord function, applied individually to charac-
tersin the strings. The ord function places capital letters prior to lower case letters, so
"cummings" islast because it starts with alower case |etter.

Thiskind of problem appliesto many kinds of things you might want to sort. For example, if you
had a sequence of tuples containing names, addresses, and phone numbers of a group of people,
you might want to sort them by name, or by phone number, or by city. The built in comparison
operation (<), no matter how it might be defined on tuples, could not handle all of these cases.
What the quicksort function needs is another argument. It needs to be parameterized with respect
to the comparison operation. Then, an invocation could supply a comparison operation that is
appropriate for the desired ordering.

A version of quicksort revised in thisway is easy to construct from the preceding definition. Try
to do it on your own.

¢ HaskerL Dervimion ? - quicksortWith precedes (firstx : xs) —you define quicksortWith
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?

¢ HaskeLL Derivmion ? - quicksortWith precedes []1 =11

Now, if the intrinsic comparison operation (<) is supplied as the first argument of quicksortWith,
it will work as quicksort did before.

HaskeLL Commanp e quicksortWith (<) ["Poe”, "cummings"”, "Whitman", "Seuss", "Dylan"]
HaskeLL Response — ["Dylan”, "Poe", "Seuss", "Whitman", "cummings"]

22 Recursion 117Q

However, if aspecial operation is provided to do a better job of alphabetic comparison, then
quicksort can deliver an alphabetical arrangement that is not subject to the whims of ord.

HaskeLL Derivimion » — import Char -- get access to toLower function
HaskeLL Derinmion e precedesAlphabetically x y

HASKELL DEFINITION ® | xLower ==yLower = x<y

HASKELL DEFINITION * | otherwise = xLower < ylLower
HASKELL DEFINITION * where

HASKELL DEFINITION ® XLower = map toLower X

HASKELL DEFINITION yLower = map toLower y

¢ HASKELL COMMAND ? — you write the invocation
¢ HASKELL COMMAND ?
HaskeLL Response s ["'cummings”, "Dylan”, "Poe", "Seuss", "Whitman"]

The new version of quicksort isagenera purpose sorting method for sequences. It can be applied
to any kind of sequence, aslong as a comparison operation is supplied to compare the elements of
the sequence.

Review Questions

1  Which of the following defines a function that delivers the same results as the intrinsic function reverse?
a rev(x:xs)=xs ++ [x]
rev[] =[]
b rev(xs:x)=x:xs
rev[] =[]
Cc rev(x:xs)=revxs ++ [X]
rev[] =[]
d none of the above

2 Which of the following defines a function that would rearrange a sequence of numbersto put it in decreasing
numeric order?
a sortDecreasing = quickSortWith (>)
b sortDecreasing = quickSortWith (>) [18.01528974, 1.89533e+25, 1.05522e-24, 27.0]
¢ sortDecreasing = quickSortWith (>) numbers
d al of theabove

3 Thefollowing function
HASKELL DEFINITION ®  sorta(x : Xs) = insert x (sorta xs)
HASKELL DEFINITION e sorta [ =[]
HASKELL DEFINITION ®  insert a (X : XS)
HASKELL DEFINITION ® |a<=x =[a, X] ++ xs
HASKELL DEFINITION © | otherwise = [x] ++ (insert a xs)
HASKELL DEFINITION ® inserta [] = [a]

delivers the same results as quicksort

delivers the same results as quicksortWith (<)

both of the above

neither of the above

o0 oo

22 Recursion 118Q



Ifs, Lets and Unlimited Interactive Input 23

Theinteractive programs described up to this point have had arigid structure. They al performed
afixed number of input/output directives. In each case, the exact number of input/output direc-
tives had to be known before the script was written. Thisis fine asfar asit goes, but what do you
do when you cannot predict in advance how many input items there might be?

For example, suppose you want to write a script that will ask the person at the keyboard in enter a
sequence of names, any number of them, and finally enter some signal string like “no more
names’, to terminate the input process. Then, the program isto display something based on the
names entered, such as displaying the names in a phabetical order (using the quicksortWith func-
tion, which has been packaged in the SequenceUTtilities module from the Appendix). In acase
like this, you cannot know in advance how many input directives there will be. So, you cannot use
a do-expression made up of asimplelist of input/output directives.

The solution to the problem isto use arecursive formulation of the input function to continue the
process as long as necessary and to select an aternative formulation, without the recursion, when
the special signa (e.g., “no more names’) is entered. The following script does this. It uses two
new kinds of expressions: let expressions and conditional expressions (if-then-else). Take alook
at the script, and try to follow the logic. The new constructs are explained in detail in the text fol-
lowing the script.

HaskeLL Derinmion s import Char(toLower)

HaskeLL Derinimion e import SequenceUtilities(quicksortWith)
HASKELL DEFINITION ®

HASKELL DEFINITION*  Main =

HASKELL DEFINITION ® do

HASKELL DEFINITION © names <- getNames

HASKELL DEFINITION ® do

HASKELL DEFINITION * let sortedNames = quicksortWith namePrecedes names

HASKELL DEFINITION ©
HASKELL DEFINITION ®

putStr(unlines sortedNames)

HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ©
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION
HASKELL DEFINITION ©
HASKELL DEFINITION ®

23 Ifs, Letsand Unlimited Interactive Input

getNames =
do
name <- getName
if name == "no more names"
then return [ ]
else
do
names <- getNames
return([name] ++ names)

getName =
do
putStr "Enter name (or \"no more names\" to terminate): "
name <- getLine

119Q

HASKELL DEFINITION ® return name

HASKELL DEFINITION *

HaskeLL Derinmion e namePrecedes namel name?2 = precedesAlphabetically Infl Inf2
HASKELL DEFINITION * where

HASKELL DEFINITION ® Infl = lastNameFirst namel

HASKELL DEFINITION * Inf2 = lastNameFirst name2

HASKELL DEFINITION *

HaskeLL Derinmion e lastNameFirst name =

HASKELL DEFINITION * dropWhile (=="") separatorThenLastName ++
HASKELL DEFINITION * where

HASKELL DEFINITION * (firstName, separatorThenLastName) = break (=="") name
HASKELL DEFINITION *

HaskeLL Derinmion e precedesAlphabetically :: String -> String -> Bool

HaskeLL Derivmion e precedesAlphabetically x y

nn

++ firstName

HASKELL DEFINITION | xLower ==yLower = x<y

HASKELL DEFINITION * | otherwise = xLower < yLower
HASKELL DEFINITION ® where

HASKELL DEFINITION ¢ xLower = map toLower x

HASKELL DEFINITION yLower = map toLower y

Directives in ado-expression have a different nature from operations in ordinary formulas. One
differenceis that the do-expression imposes a sequence on the directives. Another is that vari-
ables used to stand for dataretrieved from input directives are accessible only in subsequent direc-
tives within the do-expression. For these reasons, the where clauses and guarded formulas that
you have been using to define functions do not fit into the realm of do-expressions.

Instead, two other notations are used for this purpose: the let expression serves the role of the
where clause and the conditional expression (if-then-else) provides away to select aternative
routes through the sequence of input/output directives, much like guarded formulas provided a
way to select dternative values for ordinary functions.

A let expression may appear at the beginning of a do-expression to give namesto values to be
used later in the do-expression. The let expression may contain any number of definitions, each of
which associates a name with avalue. These appear as equations following the let keyword, one
equation per line and indented properly to observe the offsides rule for grouping. Variables
defined in let expressions can be used at any subsequent point in the do-expression containing
them, but they are not accessible outside that do-expression.

A conditional expression provides away to select between two alternative sequences of input/out-
put commands. It begins with the keyword if, which is followed by aformulathat deliversaBool-
ean value (True or False). Following the Boolean formulais the keyword then and a sequence of
input/output directives. Fnally, the keyword else followed by an alternative sequence of
input/outpout directives compl etes the conditional expression. When the Boolean formula deliv-
ersthe value True, the computation proceeds with the input/output commands in the then-branch
of the conditional expression; otherwise, it proceeds with those in the else-branch.

Take another look at the function getNames in the script. Thisisthe function that has uses recur-
sion to allow the sequence of input/output directives to continue until the termination signal is
entered, no matter how many names are entered before that point. The key step occursin the con-

23 Ifs, Letsand Unlimited Interactive Input 120Q



ditional expression. After retrieving aname from the keyboard, getNames testsit in the Boolean
formulafollowing the if keyword in the conditional expression. If the termination string “no more
names’ was entered, then getNames returns the empty list. Otherwise it returns a sequence
beginning with the name retrieved and followed by all the rest of the names entered (as retrieved
by the recursive invocation of getNames). In thisway, getNames builds a sequence of names
from the lines entered at the keyboard.

Therest of the script is composed from bitsand pieces ™ hreak ™ (a > Bool) > [a] -> ((a],[a])
that you've seen before. The only other new element is
the break function. Thisis an intrinsic function that
splits a given sequence into two parts, breaking it at
thefirst point in the sequence where an element occurs
that passes a given test. The sequenceis supplied as the second argument of break, and thetest is
supplied as thefirst argument of break in the form of afunction that delivers a Boolean value
when applied to an element of the sequence.

break breakTest xs =
(takeWhile (not . breakTest) xs,
dropWhile (not . breakTest) xs)

23 Ifs, Letsand Unlimited Interactive Input 121Q

Algebraic Types 24

Up to thispoint, all of the Haskell formulas you have seen or written have dealt with typesthat are
intrinsic in the language: characters, Boolean values, and numbers of various kinds, plus
sequences and tuples built from these types, and functions with arguments and values in these
domains, etc. This system of types provides a great many ways to represent information.

Some classes of computing problems, however, deal with information that isclumsy to describein
terms of Haskell’sintrinsic types. For such problems, it is more effective to be able to design your
own types, then write functions making use of those types. Haskell provides away to do this.

In addition to making it more convenient to describe some computations, types defined by soft-
ware designers also provide an important measure of safety. The type checking mechanismsin
Haskell systems are put to work checking for consistent usage of these newly defined types. Since
they cannot mix in unanticipated ways with other types, these consistency checks often prevent
subtle and hard-to-find defects from slipping into your definitions.

Suppose, for example, you were creating some software that needed to deal with the primary col-
orsred, yellow, and blue. You could define a data type to represent these colors and use it wher-
ever your program needed to record a color:

HaskeLL Derinmion e data Color = Red | Yellow | Blue

This definition of the type Color names the three values the Color can take: Red, Yellow, and
Blue. These values are known as the constructors of thetype, and they arelisted in the definition,
one after another, separated by vertical bars.! Constructor names, like data types, must begin with
capital letters.

To take the example abit further, suppose your software needed to deal with two kinds of geomet-
ric figures: circles and rectangles. In particular, the software needs to record the dimensions for
each such figure and its color. The following definition would provide an appropriate type for this
application:

HaskeLL Derinmion e data Figure =

HASKELL DEFINITION Circle Color Double | Rectangle Color Double Double

This data type specifies two fields for the value that Circle constructs (afield of type Color, to
record the color of the Circle, and afield of type Double, to record its radius) and three fields for
Rectangle (for color, length, and width). The script could use the Figure data type to define vari-
ables.

HaskeLL Derivimion e circle = Circle Red 1
HaskeLL Derinmion e rectangle = Rectangle Blue 5 2.5
HaskeLL Derivimion e otherCircle = Circle Yellow pi

The above definitions define three variables of type Figure: two circles (ared one with unit radius
and ayellow one with radius 1) and a blue rectangle twice aslong asit iswide.

1. Thisvertical bar isthe same one used in list comprehensions, but in the context of data definitions, you
should read it as“or.” A value of type Color, for example, is either Red or Yellow or Blue.

24 Algebraic Types 122Q



When you define data types, you will normally want them to inherit certain intrinsic operations,
such as equality tests (==, /=) and the show operator, which converts values to strings, so that
they can be displayed on the screen or written to files. To accomplish this, attach aderiving clause
to the definition that names the classes whose operators the type is to inherit.

HaskeLL Derinimion e data Color =

HASKELL DEFINITION * Red | Yellow | Blue

HASKELL DEFINITION ® deriving (Eq, Ord, Enum, Show)

HASKELL DEFINITION *

HaskeLL Derinmion e data Figure =

HASKELL DEFINITION ® Circle Color Double | Rectangle Color Double Double
HASKELL DEFINITION * deriving (Eq, Show)

With the above inheritance characteristics, equality and
show operators can be applied to values of either Color
or Figure type. In addition, order operators (<, >, etc.)
can be applied to Color data, and sequences can be con-
structed over ranges of Color values.

show :: Text a =>a -> String
show 2 ="2"
show (3+7) = "10"
show "xyz" =" \"xyz\" "
show 'x’ =""x""

HaskeLL Commanp e Red < Yellow « show deliversastring that would denote,

in a script, the value of its argument
« useful primarily in putting together

strings for output to the screen or files

¢ HASKELL RESPONSE ?
HaskeLL Commanp e [Red .. Blue]

¢ HASKELL RESPONSE ?
HaskerL Comwanp e Circle Red 1 == Circle Red 2
¢ HASKELL RESPONSE ?

HaskeLL Commanp e show(Rectangle Blue 5 2.5)

HaskeLL Response e "Rectangle Blue 5.0 2.5"

HaskeL Commanp e [Circle Red 1 .. Circle Blue 2]

HaskeLL Response « - ERROR: Figure is not an instance of class "Enum"

The last command makes no sense because the type Figure isnot in the Enum class. The deriving
clause for Figure could not include the Enum class because only enumeration types (that is,
types whose constructors have no fields) can bein that class.

Thefieldsin type Figure have specific types (Color, Double). But, this need not always be the
case. A field can polymorphic. For example, a script might want to use different kinds of numbers
to represent the dimensions of circles and rectangles— Doublein one part of the script, Integer in
another, and perhaps Rational in athird part of the script.

To define polymorphic types, atype parameter (or several type parameters) can be included in the
definition:

HaskerL Derinmion e data (Real realNumber) =>

HASKELL DEFINITION ® Figure realNumber =

HASKELL DEFINITION ® Circle Color realNumber |

HASKELL DEFINITION ® Rectangle Color realNumber realNumber

HASKELL DEFINITION ® deriving (Eq, Show)

24 Algebraic Types 123Q

This polymorphic version of the Figure type defines several different types:
e Figure Double — measurements recorded as double-precision, floating point numbers
e Figure Int — measurements recorded as integers
e Figure Rational — measurements recorded as rational numbers

Toillustrate the use of defined typesin an important area of computing science, consider the prob-
lem of analyzing sequences of playsin certain kinds of two-player games. Such gamesfall into a
general pattern that could be called minimax tree-games. Tic-tac-toe, chess, and gin rummy are a
few examples. At each stage, one player or the other is obliged to take an action. The rules specify
the allowable actions, and each action by one player presents a new stage of the game to the other
player. That player is then obliged to select one of the actions permitted by the rules.

The opponents have opposite goals: what is good for oneis bad for the other. The softwarein this
lesson will represent these goal's as numeric scores. One player will seek to conclude the game
with the highest possible score, and the other try to force as low a score as possible.

e Two-move Tree-game
Game startsin position S.
Player A chooses position A, or A,
\® If Player A chooses A,
then Player B may choose a position with

ascore of 1 or aposition with ascore of 5
If Player A chooses A,
E : then Player B may has a choice of three

positions, one with score 2, another with
score 3, and athird with score 4.
Player A moves  Player B moves

Goals
Player A — highest possible score
Player B — lowest possible score

To get afeeling for this model, study the diagram of the two-move tree-game. In this game, Player
A, to maximize his score, will choose position A,. From position A, the worst score Player A can

get is 2, while from position A he could get ascore aslow as 1. In fact Player A will definitely
get ascore of 1 of he movesto position A; unless Player B makes a mistake.

When Player A chooses position A,, he is using what is known as a minimax strategy. He
chooses the position that maximizes, over the range of options available, the smallest possible
score he could get. Player B uses the same strategy, but inverted. She chooses the position that
minimizes, over her range of options, the largest possible score that she might obtain (because her
goal isto force the game to end with the lowest score possible).

These games are artificial ones, described directly in terms of diagrams showing possible moves
and eventual scores, but the same sort of structure can be used to describe many two-player

24 Algebraic Types 124Q



Test your understanding of minimax principles by analyzing thise game.

It requires either tvo or three mees, depending on whiitmove is dosen first.

Tree-game wit
@ two or three mees

e @ Game startsin position S
Goals

Player A — highest possible score
Player B — lowest possible score

Player A moves Player B moves Player A moves
—— —— —

games. If you have following three pieces of information about a game, you can draw diagram for
the game similar to these tree-game charts:

1. moves— arulethat specifies what moves can take place from a given position,
2 score— afunction that can compute the score from a position that ends a game, and
3 player — arulethat, given agame position, can determine which player isto play next.

Diagrams of this form occur frequently in computer science. They are called tree diagrams, or,
more commonly, just trees. In general, atree consists of an entity known as its root, plus a collec-
tion of subtrees. A subtreeis, itself, atree.

In these terms, the two-move game in the diagram is a tree with root S and two subtrees. One of
the subtreesis atree with root A1 and two subtrees (each of which has aroot and an empty collec-
tion of subtrees). The other subtree isatree with root A2 and three subtrees (each of which, again,
has aroot and an empty collection of subtrees).

The goal of this chapter will be to write afunction that, given the three necessary pieces of infor-
mation (in the form of other functions. moves, score, and player) and a starting position for a
game will build a representation of atree-diagram, use it to carry out a game played perfectly by
both players, and report the position at the end of the game.

One piece of information the software will need to deal with from time to timeis the identity of
the player whose turn it isto proceed. Thisinformation could be represented in terms of intrinsic
typesin many ways. A player’sidentity could be known by a character for example, perhaps’'A’
for Player A and 'B’ for Player B. Or, integers could be chosen to designate the players, perhaps 1
for Player A and 2 for Player B.

24 Algebraic Types 125Q

Instead of using one of these aternatives, the identity of the player will be represented by a newly
defined data type called Player. Thiswill take advantage of the Haskell system’s type checking
facility to keep from mixing up aplayer’sidentity with acharacter or number used for some other
purpose. The functions that need the player’sidentity will get avalue of the newly defined type
and will not be ableto useit asif it were a character or integer or some other type of value. This
reduces the number of ways that the program can bein error.

This definition establishes the Player type with two constructors, PlayerA and PlayerB:
HaskeLL Derivmion e data Player = PlayerA | PlayerB

A type need not have more than one constructor. For example, the following type will be used to
represent game trees.

HaskeLL Derinmion e data Game position = Plays position [Game position]

The type Game is polymorphic. The parameter that makes it polymorphic (denoted by the name
position in the definition), can be any type. Therefore, Game is really afamily types, one for
each possible type that position might be (Int, String, [Int], or whatever).

Any value of type Game will be built by the constructor Plays and will take the form of the con-
structor name Plays followed by a value of type position, followed in turn by a sequence of val-
ues of type Game. The definition is recursive, as you might expect it to be, since agameisatree
and atreeisaroot and a collection of subtrees.

The name position in the definition of Game is simply a placeholder. A variable of type Game
will actually have type Game Int if the placeholder isthe type Int. On the other hand, the variable
will have type Game [Int] if the placeholder is the type [Int]. The polymorphic nature of the type
Game is necessary because the function to be written is supposed to work regardless of the
details of the game itself. Different games, of course, would need to record different information
to represent a position in the game. One representation of position would not fit all games.

The function to carry out a game from a given position, afunction called perfectGameFromPo-
sition, will be packaged in amodule called Minimax. Since all computations requiring an under-
standing of the details of avalue of type position will be performed by functions supplied as
arguments to perfectGameFromPosition, the module Minimax can treat position in an entirely
abstract way. It matters not at all to functions in the module Minimax how the type position is
represented.

There are two components of the computation that perfectGameFromPosition carries out: one
to generate the game tree and the other to use the minimax strategy to find the final position of a
game played perfectly from the point of view of both players.

Consider first the problem of building the game tree. This can be done in stages. Starting from a
given position, compute al of the positions attainable in one move from that position. (One of the
functions supplied as an argument to perfectGameFromPosition is responsible for delivering
this collection of positions — this function isreferred to as moves in the module Minimax.)

The positions computed from the initial position become the starting positions of the subtrees of
theroot in the game tree Their game trees can, of course, be computed in the same way. The com-
putation is recursive in the same way that the type representing game trees is recursive.

24 Algebraic Types 126Q



HaskeLL Derinmion s gameTree:: (position -> [position]) -> position -> Game position
HaskeLL Derinmion e gameTree moves p = Plays p (map (gameTree moves) (moves p))

Depending on the game, this tree could be infinite, in which case the minimax strategy won't
work. To use the minimax strategy, potentially infinite games, such as checkers, must be arbi-
trarily cut off at some stage by the moves function. (Thisiswhat people do, in asense, when they
try to plan ahead afew moves in games like checkers. They analyze the situation as far ahead as
they can manage, then guess that the final score will be related to the quality of their position at
that point.) However, the game tree will befiniteif every route down through the subtrees eventu-
aly comes to atree containing an empty sequence of subtrees.

Now consider the problem of choosing a move from a collection of aternativesin the game tree.
If itisPlayer A’sturn to move, he will need to look at the scores Player B could get by making her
best move from each of the positions Player A can move to. Once thisis computed, al Player A
has to do is choose the move that maximizes his score. The following definition of the function
play follows this strategy, but only for the case when it is Player A’s turn to play. (The function
score in this definition is the function supplied to perfectGameFromPosition, which can com-
pute the score in the game, given a game-ending position.)

HaskeLL Derinmion e play PlayerA score (Plays p gs)

HASKELL DEFINITION ® |nullgs =p

HASKELL DEFINITION ® | otherwise = foldrl (maxPosition score)

HASKELL DEFINITION (map (play PlayerB score) gs)

HaskeLL Derinimion e maxPosition score p g

HASKELL DEFINITION ® | score p>scoreq =p

HASKELL DEFINITION ® | otherwise =q

HaskerL Derinmion e Player B would, of course, follow the same strategy, but looking for
a minimal rather than a maximal score:

HaskeLL Derinmion e play PlayerB score (Plays p gs)

HASKELL DEFINITION ® |nullgs =p

HASKELL DEFINITION ® | otherwise = foldrl (minPosition score)

HASKELL DEFINITION * (map (play PlayerA score) gs)

HaskeLL Derinmion s minPosition score p q

HASKELL DEFINITION * | score p<scoreq =p

HASKELL DEFINITION | otherwise =q

All that is left to do to put together the function perfectGameFromPosition is to apply the play
function to the game tree generated from the initial position supplied as an argument. Try tofill in
the definition of perfectGameFromPosition yourself, as part of the module Minimax, which
pulls together the functions defined so far in this chapter.

¢ HaskeLL Derivmon 2 module Minimax

¢ HASKELL DEFINITION ? (Player(PlayerA, PlayerB),
perfectGameFromPosition)
¢ HASKELL DEFINITION ? where

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? data Player = PlayerA | PlayerB

24 Algebraic Types 127Q

¢ HASKELL DEFINITION ? data Game position = Plays position [Game position]
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? perfectGameFromPosition :: Real num =>

¢ HASKELL DEFINITION ? (position->[position]) -> (position->num) -> (position->Player)
-> position -> position
¢ HASKELL DEFINITION ? perfectGameFromPosition moves score player p =

--you define this function

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ? gameTree:: (position -> [position]) -> position -> Game position
¢ HASKELL DEFINITION ? gameTree moves p =

¢ HASKELL DEFINITION ? Plays p (map (gameTree moves) (moves p))

¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? play :: Real num =>

¢ HASKELL DEFINITION ? Player -> (position -> num) -> Game position -> position
¢ HASKELL DEFINITION ? play PlayerA score (Plays p gs)

¢ HASKELL DEFINITION ? |nullgs =p

¢ HASKELL DEFINITION ? | otherwise = foldrl (maxPosition score)

¢ HASKELL DEFINITION ? (map (play PlayerB score) gs)
¢ HASKELL DEFINITION ? play PlayerB score (Plays p gs)

¢ HASKELL DEFINITION ? |nullgs =p

| otherwise = foldrl (minPosition score)

(map (play PlayerA score) gs)

¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?
¢ HASKELL DEFINITION ?

¢ HASKELL DEFINITION ? minPosition, maxPosition:: Real num =>

¢ HASKELL DEFINITION ? (position -> num) -> position -> position -> position
¢ HASKELL DEFINITION ? minPosition score p q

¢ HASKELL DEFINITION ? | score p<scoreq =p

¢ HASKELL DEFINITION ? | otherwise =q

¢ HASKELL DEFINITION ? maxPosition score p q

¢ HASKELL DEFINITION ? | score p>scoreq =p

¢ HASKELL DEFINITION ? | otherwise =q

A notable feature of the module Minimax is that it exports not only the function that carries out
the minimax strategy, but also the type Player and its constructors. Thisis necessary because any
other module using the facilities of Minimax will have to define afunction that delivers the iden-
tity of the player whose turn it isto play, given a particular position in the game. To supply this
function, the module will require access to the type used in module Minimax to represent players.

24 Algebraic Types 128Q



The other type defined in the module Minimax, that is the type Game position, does not need to
be visible outside the module. So, Game position is not exported. The module Minimax does not
import the facilities of any other module, but it will inherit the type position from any module that
uses Minimax to carry out a game computation. In this sense, the type position, is abstract with
respect to the module Minimax, while the type Player is concrete in Minimax and will also be
concrete in any module using Minimax.

To see how the module Minimax can be used, consider the game of tic-tac-toe. Players take turns
marking squares on athree-by-three grid. If one player marksthree squaresin aline (horizontally,
vertically, or diagonally), that player wins. The game is sometimes called noughts and crosses
because thefirst player to mark the grid normally marks with an X, the other an O.

One way to represe_nt a_position in tic_—tac-toe isto position and game history
use.a. squence of nineintegers. The first three The minimax computation delivers the final posi-
postl onsinthe sequence I’epresent the tOp row of tion of a game played perfectly from a supplied
the grid, the next three the middle row, and the last | starting position. Normally, one would like to see
three the bottom row. If an integer in the sequence | the sequence of moves leading to thefinal position.
iszero, it indicates that the corresponding squarein | Oneway to get that information is to design the
the grid is unmarked. If the integer isanon-zero | "ePrésentation of positions so that each position

o . contains the entire sequence of moves|eading up to
valuen, it indicates that the corresponding square it. The encoding chosen for TicTacToePosition
was marked in the i move of the game. follows this strategy.

From this representation, you can figure out which player marked each square: if the integer is
odd, the X player marked it, and if it is even the O player marked it. You can aso figure out which
player'sturnitisto play (the largest integer in the grid indicates which player played last — the
other player is next to play). This provides away to write the necessary player function:

HaskeLL Derinmion e ticTacToePlayer(Grid g)

HASKELL DEFINITION ® | even(maximum g) = PlayerA
HASKELL DEFINITION * | otherwise = PlayerB

You can aso determine from a position represented in odd :: Integral num => num -> Bool
this form whether or not the gameis over and, if itis even :: Integral num => num -> Bool
over, which player won. To do this, just extract from  |intrinsic functions

the grid each of thetriples of integers correspondingto | odd = True iff argument is an odd integer
eight straight lines through the grid (top row, middle even = not . odd

row, bottom row, left column, middle column, right

column, diagonal, and back diagonal).! Then check to see of any of these triples contains three
X's (odd integers) or three O’s (even integers other than zero).

If there are three X'sin arow, then X wins; score that as 1. If there are three O'sin arow, then O
wins; score that a-1 (since the Minimax moduleis set up so that PlayerB, the name it usesfor the
O player, triesto force the game to a minimum score). If the grid is entirely marked with X’s and
O's and there is no place left to mark, then the game is over, and it is adraw; score that as zero.

1. These elements of the grid could be extracted using combinations of head and tail, but it is more concise
to use the indexing operator (!!). If xs isasequence and n is an integer, the xs!!n is element n of xs. Ele-
ments are numbered starting from zero, so xs!!0 is head(xs), xs!'1 is head(tail(xs)), and so on. Of
course, xs!In is not defined if xs has no element n.

24 Algebraic Types 129Q

HaskeLL Derinmion e ticTacToeScore p

HASKELL DEFINITION * | win PlayerAp =1
HASKELL DEFINITION * | win PlayerBp =-1
HASKELL DEFINITION * | otherwise = 0

The win function used in the definition of ticTacToeScore isabit awkward because it hasto
extract al the lines from the grid and deal with other technicalities. Nevertheless, it follows the
above outline in astraightforward way. You can work out the details for yourself more easily than
you can read an explanation of them.

The other function that the Minimax module uses to carry out the minimax calculation isthe func-
tion that generates the possible moves for a player from a given position. Since a player can make
amark in any open square, this computation amounts to locating the unmarked squares, that is the
squares with zeros in them. Given an existing position and the location of an open square, you can
build a new position by copying the grid representing the old one, except that in the open square,

you put an integer that is one greater than the largest integer in the existing grid.

HaskeLL Derinmion e ticTacToeMoves:: TicTacToePosition -> [TicTacToePosition]
HaskeLL Derinmion e ticTacToeMoves p

HASKELL DEFINITION ® | ticTacToeGameOverp =[]

HASKELL DEFINITION * | otherwise = map (makeMark p) (openSquares p)
HASKELL DEFINITION ®

Again, the details (buried in the functions makeMark and openSquares) are more easily under-
stood by working them out for yourself than by reading someone else's explanation..

Tic-Tac-Toe Program
Main Organization Chart

ticTacToe

TicTacToe

Minimax SequenceUtililities

The preceding explanation will help you work your way through the following module. It imports
several functions from the SequenceUtilities module (in the Appendix). And, you will need to
either work out for yourself some way to display the information in agrid, or just accept the

24 Algebraic Types 130Q



showGrid function defined in the module as a suitable display generator. It builds athree-line
sequence containing a picture of the grid marked with X’s and O’s and another picture marked
with integers, so you can follow the progress of the game.

HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ®
HASKELL DEFINITION o
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ®
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ®
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®

24 Algebraic Types

module TicTacToe(ticTacToe)

where
import Minimax

(Player(PlayerA, PlayerB), perfectGameFromPosition)
import SequenceUtilities

(pam, indicesOfOccurence, blocks, packets, transpose)
import Char(toUpper)

ticTacToe =
showGrid .
perfectGameFromPosition
ticTacToeMoves ticTacToeScore ticTacToePlayer .
positionFromString

data TicTacToePosition = Grid [Int]
-- Grid g :: TicTacToePostition means
-- g = [mark-1, mark-2, ..., mark-9] and
--0<=mark-i<=9
-- mark-i = 0 means empty square
-- mark-i = odd means X occupies square
-- mark-i = even, > 0 means O occupies square

data Gridline = Slice [Int]
-- row, column, or diagonal of grid (length 3)
-- Slice [mark-1, mark-2, mark-3] :: Gridline means
--0<=mark-i<=9

positionFromString :: String -> TicTacToePosition
positionFromString =
Grid . map intFromDigit . takeWhile(/=".") .
convert '#' empties .
convert 'O' movesO .
convert 'X' movesX .
(++".") . filterCelem™ "XO#") . map toUpper
where
empties = repeat '0’
movesX = "13579"
movesO = "2468"

intFromDigit :: Char -> Int
intFromDigit digit = fromEnum(digit) - fromEnum('0’)

convert :: Char -> String -> String -> String

131Q

HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ®
HASKELL DEFINITION ©

24 Algebraic Types

convert thisMoveSymbol moveDigits =
concat . zipWith pasteln moveDigits .
packets(== thisMoveSymbol)
where
pasteln moveDigit otherMoveSymbols =
otherMoveSymbols ++ [moveDigit]

ticTacToeMoves:: TicTacToePosition -> [TicTacToePosition]
ticTacToeMoves p

| ticTacToeGameOverp =[]

| otherwise = map (makeMark p) (openSquares p)

ticTacToeScore:: TicTacToePosition -> Int
ticTacToeScore p

| win PlayerAp =1
| win PlayerBp =-1
| otherwise =0

ticTacToeGameOver:: TicTacToePosition -> Bool
ticTacToeGameOver =
or . pam[gridFull, win PlayerA, win PlayerB]

openSquares:: TicTacToePosition -> [Int]
openSquares(Grid g) = indicesOfOccurence 0 g

makeMark:: TicTacToePosition -> Int -> TicTacToePosition
makeMark (Grid g) indexOfSquare =
Grid(take indexOfSquare g ++ [maximum g + 1] ++
drop (indexOfSquare + 1) g)

diag, backdiag, toprow, midrow, botrow, Iftcol, midcol, rgtcol :
TicTacToePosition -> Gridline

diag(Grid g)

backdiag(Grid g)

toprow(Grid g)

= Slice[g!!0, g!!4, g!!8]
Slice[g!!2, g4, g!!6]
Slice[g!0, g!'1, g!'2]

midrow(Grid g) = Slice[g!'3, g!'4, g!!5]
botrow(Grid g) = Slice[g!!6, g!!7, 9!!8]
Iftcol(Grid g) = Slice[g!!0, g!!3, g!!6]

midcol(Grid g)
rgtcol(Grid g)

= Slice[g!'1, g!!4, g!!7]
= Slice[g!!2, g!!5, g!!8]

gridlines:: [TicTacToePosition -> Gridline]
gridlines = [diag, backdiag,
toprow, midrow, botrow, Iftcol, midcol, rgtcol]

gridlineFilledByPlayer :: Player -> Gridline -> Bool

132Q



HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ®
HASKELL DEFINITION o
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ®
HASKELL DEFINITION
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION *
HASKELL DEFINITION ®
HASKELL DEFINITION ©
HASKELL DEFINITION ©
HASKELL DEFINITION ©

gridlineFilledByPlayer PlayerA (Slice s) = (and . map odd) s
gridlineFilledByPlayer PlayerB (Slice s) =

(and . map positiveEven) s

where

positiveEven k =k >0 && even k

win:: Player -> TicTacToePosition -> Bool
win player =
or . map(gridlineFilledByPlayer player) . pam gridlines

gridFull:: TicTacToePosition -> Bool
gridFull(Grid g) = maximum g ==

showGrid:: TicTacToePosition -> String
showGrid(Grid g) =
(unlines . map concat . transpose)

[gridMarkedXO, map (" "++) gridMarkedByMoveNumber]

where

gridMarkedXO = blocks 3 (map markFromMoveNumber g)

gridMarkedByMoveNumber =

blocks 3 (map digitFromMoveNumber g)

markFromMoveNumber m
| m==
| odd m

=

=

| otherwise ='O'

digitFromMoveNumber m
| m==

=

| otherwise = head(show m)

ticTacToePlayer :: TicTacToePosition -> Player
ticTacToePlayer(Grid g)

HASKELL DEFINITION ® XA ++
HASKELL DEFINITION ® "B ++
HASKELL DEFINITION ® "O##"
HASKELL DEFINITION *

HASKELL DEFINITION» ~ cat8 =
HASKELL DEFINITION * "HHE" ++
HASKELL DEFINITION ® "EXH" ++
HASKELL DEFINITION ® "
HASKELL DEFINITION *

HASKELL DEFINITION» ~ cat9 =
HASKELL DEFINITION * "HHH" ++
HASKELL DEFINITION ® "B ++
HASKELL DEFINITION ® "

HASKELL DEFINITION ®

HASKELL COMMAND ©
HASKELL RESPONSE ©
HASKELL RESPONSE ©
HASKELL RESPONSE ©

HASKELL COMMAND ©
HASKELL RESPONSE ©

putStr(ticTacToe advantageO)
XXO 134
##0O ##6
#XO #52

putStr(ticTacToe advantageX)
X#X  1#7

HASKELL REsPONSE e #OX  #65
HaskeLL Responsee  OOX 243
HaskeLL Coumanp e putStr(ticTacToe cat8)
HaSKELL REsponsEe  XOO 948
HaskeLL REsponsEe  OXX 615
HASKELL RESPONSE  XXO 732
HaskeLL Coumanp e putStr(ticTacToe cat9)
HaskeLL REsponsEe  XOX 985
HASKELL REsPoNsEe  XOO 726
HaskeLL REsponsEe  OXX 431

HASKELL DEFINITION * | odd(maximum g) = PlayerB
HASKELL DEFINITION ® | otherwise = PlayerA

The following module imports the tic-tac-toe module and defines afew game setups.The com-
mands then show the results that the minimax strategy produces for these situations. Thefirst two
of the setups begin from a partially played game, played imperfectly, to show that the minimax
strategy will if it has an opportunity.

HaskeLL Derinmion s import TicTacToe(ticTacToe)
HASKELL DEFINITION ®
HaskeLL Derinmion e advantageO =

HASKELL DEFINITION * UXXH" ++
HASKELL DEFINITION ® "HHE" ++
HASKELL DEFINITION ® "H#O"

HASKELL DEFINITION *
HaskeLL Derinimiov » - advantageX =

24 Algebraic Types 133Q

Some of the game sequences generated by minimax analysis may look like one player isinten-
tionally throwing the game. When there are more routes than one to awin for one player or the
other, the minimax computation will select one of those routes, without regard to whether it may
or may not look competitive to an experienced player. The essential fact is this: when one player
isin aposition to win, there is nothing the other player can do to keep that player from winning.
So, the losing player can make arbitrary moves without affecting the result. The minimax strategy
examines all of the relevant possibilities, but the game it selects asits route to the end could be
any of the possible routes. The winning player will never give the losing player an opportunity to
win. But, the player in alosing position may give the other player an opportunity to win easily.

Finally, you may be interested in knowing that most game playing programs, such as chess play-
ers, checkers players, go players, backgammon players, and so on, use the minimax strategy for at
least part of their analysis. However, they use aform of the computation that involves substan-
tially less computation.

24 Algebraic Types 134Q

2a



This more efficient form of the computation is known as the a pha-beta algorithm. It looks ahead
in the game tree and eliminates, without further analysis on the subtree, options that cannot
improve the situation for a given player.! This almost always makesit possible to complete the
computation in something like a small multiple of the square root of the time it would take using
the naive form of the minimax algorithm (the one presented in this chapter). The analysis can then
proceed about twice as far down the game tree as it could have with naive minimax analysis.

Neverthel ess, even with the a pha-beta form of minimax analysis, it isimpractical to analyze very
deeply in game trees for large games like chess because such game trees increase in size so rap-
idly with the number of moves analyzed that even the square root of the minimax time is still
impossibly long. So, practical game playing programs combine minimax analysis (in its a pha-
beta form) with specialized analysis methods designed around particular approaches to playing
the game.

Review Questions

1 A tree, in computer science, is an entity
a with aroot and two subtrees
b with aroot and acollection of subtrees, each of which isalso atree
¢ with acollection of subtrees, each of which has one or more roots
d  described in adiagram with circles, lines, and random connections

2 A sequence, in Haskell, is an entity
a  with one or more elements
b that isempty or has afirst element followed by a sequence of elements
¢  whose elements are also sequences
d  with ahead and one or more tails

3 Thefollowing definition specifies
HASKELL DEFINITION . data WeekDay =
HASKELL DEFINITION © Monday | Tuesday | Wednesday | Thursday | Friday
atype with five constructors
atype with five explicit constructors and two implicit ones
atree with five roots
a sequence with five elements

Q0o

4 Given the definition in the preceding question, what is the type of the following function f?
HASKELL DEFINITION » f Tuesday = "Belgium"
a f:: WeekDay -> String
b f:: Tuesday -> "Belgium"
c f:: Day-> Country
d typeof f cannot be determined

1. You can find out how it does thisin any standard text on artificial intelligence. Also, the text Introduction
to Functional Programming by Bird and Wadler, Prentice-Hall, 1988, contains an elegant derivation of
the al pha-beta al gorithm as a Haskell-like program from aform of the minimax program similar to the
one in this chapter.

24 Algebraic Types 135Q

5 Types defined in Haskell scripts with the data keyword
a must begin with acapital letter
b may beimported from modules
¢ must be used consistently in formulas, just like intrinsic types
d all of the above

6 What kind of structure does the following type represent?
HAskeLL DEFINITION » - data BinaryTree = Branch BinaryTree BinaryTree | Leaf String
atype with four constructors
adigital structure
atree made up of ones and zeros
atree in which each root has either two subtrees or none

o0 oo

7  Given the preceding definition of the type BinaryTree, which of the following defines a function that computes
the total number of Branch constructorsin an entity of type BinaryTree?
a branches binaryTree = 2
b branches (Branch left right) = 2
branches (Leaf x) =0
¢ branches (Branch left right) = 1 + branches left + branches right
branches (Leaf x) =0
d branches (Branch left right) = 2[branches left + 2[branches right
branches (Leaf x) = 1

8 Theformulaxs!!(length xs - 1)
a isrecursive
b hasthe sametype asxs
Cc deliversthe sameresult as last xs
d none of the above

9  Given the definition of the function pam in the module SequenceUltilities, the formula
pam (map (+) [1.. 5]) 10
a deliversthesameresultasmap (1+) [1. . 5]
b deliversthe sameresult aspam [1 .. 5] (map (1+))
c deliverstheresult [11, 12, 13, 14, 15]
d all of the above

10 Giventhe Grid [1,3,0, 0,0,0, 0,0,2] (asin the tic-tac-toe script), what is the status of the game?
a gameover, X wins
b gameover, Owins
¢ O'sturntoplay
d X'sturnto play

11 Which of the following formulas extracts the diagonal of agrid (asin the tic-tac-toe program)?
a (take 3. map head . iterate(drop 4)) grid
b [head grid, head(drop 4 grid), head(drop 8 grid)]
¢ [head grid, grid!!4, last(grid)]
d all of the above

24 Algebraic Types 136Q



Index

A
abstract data types. See types.
abstraction 20, 73
addition. See operators.
aggregates. See structures
algebraic types 122
aphabet. See characters, ASCII.
apha-beta algorithm 135
a phabetizing. See sorting.
also. See commands.
analog/digital conversion 103, 104
apostrophe, backwards 54
apostrophes 17
append. See operators.
applications. See functions.
arguments 7
omitted. See functions, curried
omitted. See functions, curried.
arithmetic. See operators.
arrows
(<-) Seeinput/output operations. 98
(->). Seefunctions, type of.
ASCII. See characters.
aspect ratio 108
assembly lines. See functions, composition.
associative 43

B
backquote 54
backslash. See escape.
bang-bang (). See operators, indexing.
bar (|). See vertical bar.
base of numeral 73
batch mode 15
begin-end bracketing. See offsidesrule.
binary numerals. See numerals.
Bird, Richard 135
Bool 33
Boolean (True, False) 8, 33
brackets (begin-end). See offsides rule.
break. See operators.

Index

C
Caesar cipher 77, 78, 79, 80, 81, 82
Chalmers Haskell-B Compiler 16
character strings. See strings.
characters

ASCII 78

informulas 17

VS, strings 18
choice. See definitions, aternativesin.
ciphers 77, 78, 79, 80, 81, 82, 84, 87

block substitution 84

DES 84
classes 38

Complex 101

Enum 123

equality (Eq) 38, 39, 50

Floating 101

Fractional 101

Integral 48

Num 57

order (Ord) 40, 50

RealFrac 101

Show 123
clock remainder (mod). See operators.
coded message 77, 78, 79, 80, 81, 82, 84, 87
coded, ASCII. See characters.
colon. See operators.
commands

?15

:also 15

-edit 14

‘load 14

:quit 15

Haskell 5

typeinquiry 34
comparing

See also, operators, equality-class.

strings 6, 7, 8
compilers

Chalmers Haskell-B Compiler

Glasgow Haskell Compiler
Complex. See classes.
composition of functions. See functions, com-

position

147

comprehensions, list 17, 77
computation
lazy 98
non-terminating 64
patterns of 25
computer science 100
concat. See operators.
concatenation. See operators.
conditional expressions 119, 120
constructors
sequences. See operators ().
types 122
conversion
letter case. See toLower, toUpper.
operatorg/functions 27, 54

curried invocations. See functions, curried.

D
Data Encryption Standard (DES) 84
data types. See types.
data. See algebraic types.
datatypes. See types.
decima numerals 73, 74

See also, numerals.

See numerals.
decimal numerals. See numerals.
decipher 77, 78, 79, 80, 81, 82, 84, 87
definitions

alternativesin 79, 80

Haskell 10, 11, 12

parameterized 11

private (where) 48, 49
delivering input values. Seereturn.
deriving 123
digital/analog conversion 103, 104
Dijkstra, E. W. 90
display. See operators, unlines.
division

fractional (/). See operators
division. See operators.
divMod. See also: operators, division. 54
do-expression. See input/output.
do-expressions. See input/output.
Double. See numbers.

Index

Dr Seuss 79
drop. See operators.
dropWhile. See operators.

E
echoing, operating system 94
edit. See commands.
embedded software 64
encapsulation 46, 71
encipher 77, 78, 79, 80, 81, 82, 84, 87
encryption 84, 87
enumeration types 123
equality

class. See classes.

operator (==). See operators.
equations. See definitions.
error. See operators.
errors

type mismatch 33
escape (strings) 29, 30
evaluation

lazy 98

polynomial 73
exit. See command (quit).
exponent. See numbers.
exponentiation. See operators.
exporting definitions 72, 74

F
False. See Boolean.
feedback. Seeiteration.
fieldsin algebraic types 122
polymorphic 123
files 97
filter. See operators.
Float. See numbers.
floating point. See numbers.
Floating. See classes.
floor. See operators.
folding 26, 64
See operators (foldr, foldrl).
foldr. See operators.

148



foldrl
pronunciation 26
See operators.
vs. foldr 51
formulas 10, 11, 12
Fractional. See classes.
functions
applications 33
as operators 54
composition (.) 21, 22, 23, 25, 26
curried 23, 42, 43, 78
higher order 43
invocation 11, 22
missing arguments. See functions, curried.
42
polymorphic 37, 38
See also, operators.
type declaration 39
type of 37, 38
VS. operators 7

G
games 124, 135

tree 124, 125
generators (in list comprehension) 17, 29
generic functions. See polymorphism.
getLine. See input/output.
Glasgow Haskell Compiler 16
graphing 105, 106, 107, 108, 109
greater (>, >=). See operators.
guards

inlist comprehension 17

See definitions, alternativesin 80
guards. See definitions, alternativesin.

H
Haskell
commands 5
definitions 10, 11, 12
programs 12
Haskell Report 3
head. See operators.
help. See command.

Index

hexadecimal numerals. See numerals.

hiding information. See encapsulation.

higher order. See functions.
Hoare, C. A. R. 116

Horner formula 47, 48, 49, 51, 73
Hugs 14, 75

if-choice. See definitions, aternativesin.
if-then-else. See conditional expressions.

import. See importing definitions.
importing definitions 72, 73, 74
indentation 18, 48, 49
indexing. See operators
inequality (/=). See operators.
information

hiding. See encapsulation.

representation of 46
inheriting operators. See deriving.
input/output 93

do-expression 93, 94, 119

do-expression 120

getLine 94

putStr 91, 93

readFile 97

return 99

unlimited 119

writeFile 97
integers

from fractional numbers. See floor.

range 58
integers. See numbers.
integral division. See operators.
integral numbers
ambiguous 48
Integer, Int 48
literals 48
interactive mode 15
invocation. See function.
10 type 93
1S08859-1. See characters, ASCII.
iterate. See operators.
iteration 61, 64

149

J
Jones, Mark 14

K
kinds. Seetypes.

L
language definition. See Haskell Report.
last. See operators.
lazy evaluation 98
length. See operators.
less (<, <=). See operators.
let expressions 119, 120
letters
lower case. SeetoLower
libraries, software 84
lines display. See operators, unlines.
lines on screen 95
list comprehensions 17, 77
list constructor. See operators (:).
lists. See sequences.
literals
Booleans 8
characters 18
floating point numbers 102, 105
Integral, See integral numbers.
rationa numbers 105
sequences 34
strings 6, 30
looping. See mapping, folding, zipping, itera-
tion, recursion.
lower case. SeetoLower.

M
main module 93
mantissa. See numbers.
map. See operators.
mapping 28, 64, 77
match error (See also: types, errors) 33
matrix transpose 107
maximum. See operators.
Mellish, Fielding 93
message, coded 77, 78, 79, 80, 81, 82, 84, 87

Index

minimax strategy 124, 134
minimum. See operators.
mod
See operators.
modularity. See encapsulation.
module, main 93
modules 71, 72, 73, 75, 84
See also, program organization charts
monomorphism restriction. See type specifica
tions, explicit required.
multiplication. See operators.

N
names. See variables.
newline characters 95
non 64
non-terminating 64
not-equal-to operation (/=) 17
Num. See classes.
numbers
class Complex. 101
class Fractional. 101
classNum. 57
class RealFrac. 101
Double 101, 105
exponent 101, 102
Float 101, 105
floating point 102
imaginary. See Complex
Int 48
Integer 48
mantissa 101, 102
pi 106
precision 102
Rational 104, 105
numerals 86
arbitrary radix 74
base 73
binary 46
decimal 46, 47, 50, 51, 73, 74
hexadecimal 46
positional notation 46
Roman 46
vs. numbers 46

150



O
offsidesrule 18, 48, 49
operands 7
operating system 93
operating system echo 94
operations
repeated. See repetition.
operators
addition(+) 48
append (++, concat) 88
as arguments 27
as functions 27, 54
break 121
colon 112
comparison 17
composition (.) 21, 22, 23, 25, 26
concatenation (++, concat) 88
division, fractional (/) 104
division, integral (div, mod) 48, 54, 55
drop 66
dropWhile 66, 67
equality (==) 6, 7, 17, 39, 50
error 79, 104
exponentiation, integral (") 48
filter 64
floor 103
foldr 51, 64
foldrl 26, 44
greater(>, >=) 17, 50
head 113
indexing (!!) 129
inequality (/=) 17, 50
input/output, See input/output.
integral remainder (mod) 48
iterate 62, 63, 64
last 113
length 83
less(<, <=) 17,50
map 64, 77
maximum 106
minimum 106
mod 48
multiplication(*) 48
not equal to (/=) 17

Index

order of application 9
plus-plus 88
precedence 9
reverse 5
round 109
section 68
sequence constructor (:) 112
show 123
sin 106
subscripting (!') 129
subtraction (-) 48
tail 113
take 66
takeWhile 66, 67
toLower 28, 37
unlines 95, 105
vs. functions 7
ZipWith 64
order class. See classes.
order of operations. See operators.
ordering. See sorting.
output. See input/output.

P
palindromes 11
parameterization 20
parameterized definitions 11
patterns
as parameters 112
See also, computation patterns.
See also, repetition patterns. 64
sequences 112
tuple 54

period operator. See functions, composition.

persistent data. Seefiles.

Peterson, John 3

pi. See numbers.

pipelines. See functions, composition.
plotting 105, 106, 107, 108, 109
polymorhic fields 123

polymorphism 37, 38

polynomial evaluation 73

positional notation. See numerals.
precedence. See operators.

151

precision. See numbers.

private definitions. See where clause, modules.
program organization charts 75

programming, procedural vs Haskell 4

putStr. See input/output.

Q
qualifiers 17
quick-sort 117, 118
quit. See command.
guotation marks (") 6
guotient. See operators, division.

R
radix 73
range of Int. Seeintegers.
rational numbers. See numbers.
Rational. See numbers.
readFile. Seeinput/output.
reading files. See input/output.
RealFrac. See classes.
rearranging in order. See sorting.
recursion 62, 115, 116

in input/output 120
Reid, Alastair 14
remainder (mod). See operators.
repetition

patterns of 62, 115

See mapping, folding, zipping, iteration, re-

cursion.

report on Haskell. See Haskell Report
representation of information 46
return. See input/output.
reverse. See operators. 5
Roman numerals. See numerals.
round. See operators.

S

scaling factor. See numbers, exponent.
scientific computation 102

scientific notation 102

sections. See operators.

selection. See definitions, aternativesin.

Index

sequences 17, 27, 77
all but first element. See operators, tail.
constructor (:). See operators.
first element. See operators, head.
initial segment. See operators, take
last element. See operators, last.
See also types.
trailing segment. See operators, drop.
truncation. See operators, take, drop
set, notation for 17
Seuss, Dr 79
Show. See classes.
show. See operators.
significand. See numbers, mantissa.
sin. See operators.
software libraries 84
software, embedded 64
sorting 116, 117
strings 6
equality of (==)6, 7, 8
special charactersin 29, 30
vs. characters 18
structures
See program organization charts.
See sequences.
tuples 54, 55
subscripts. See operators.
subtraction. See operators.
Sussman, Gerald 100

T

tail. See operators.

take. See operators.
takeWhile. See operators.
tic-tac-toe 129

toLower. See operators.
transposing a matrix 107
tree games 124, 125

trees 125

trigonometric operators. See operators.
True. See Boolean.

tuple patterns. See patterns.
tuples. See structures.

type inquiry. See commands.

152



type specifications
explict required 78

type variables 34

types 18, 33, 34
abstract vs. concrete 129
agebraic 122
declaration 39
enumeration 123
of functions 38, 43

of functions. See functions.

polymorphic 126
recursive 126
See also: classes.
sequences 34

U
unlines. See operators. 95

Index

\%
variables 46
type 34
vertical bar ()
See constructors, type 122
See definitions, alternativesin.
See list comprehensions.

W
Wadler, Phil 135
where clause 48, 49
writeFile. See input/output.
writing files. See input/output.

Y
YaeHaskell Project 3, 14

4
zipping, See operators (zipWith).

153

Index

154



