SE3E03, 2006 1.28 30

Operational Semantics

Useful for exploraration
Useful to guiddmplementation

Useful to show correctness of implementation

Derived assertions correspondndividual test cases
More general statements need to be shown at the meta-level

Not usefulto prove general propertiesof programs

— termination
— correctness

SE3E03, 2006 1.44 46

Correctness

Correctness is always relative to a specification
A specification is — in general — a logical formula
— many different logics are used!
A program iscorrect iff it satisfiesits specification
Using logical methods to prove correctness is calitethal verification
— Using (normally human-aidedyntacticmethods:proving
— normally necessary for functional requirements
— Using (exhaustive, automatesbmanticmethods:model checking
— most useful for safety & lifeness properties (finite models)
How do you show a specification is correct?
— Validation: Are we building the right product?
— Verification: Are we building the product right?

SE3E03, 2006 1.54 56

Axiomatic Semantics

Derivation of judgements written as “Hoare triples”

{P}S{Q}

whereP andQ are formulae denoting conditions erecution states
« Pistheprecondition

e Sisa program fragment (statement)

* Qisthepostcondition

A Hoare triple{P}S{Q} has two readings:

If Sstarts in a state satisfyirigy
then it terminatesand its terminating state satisfi@s
— “Sistotally correct with respect to P andQ”

Total correctness:

Partial correctness: If Sstartsin a state satisfyifgandterminates
thenits terminating state satisfi€¥

— “Sis partially correct with respect to P andQ’

(“terminates” means “terminates without run-time error”)

SE3E03, 2006 1.60 62

Axiomatic Semantics vs. Operational Semantics

* Operational semantics relat®stesvia statements

* Axiomatic semantics relate®nditions on statewia statements

Therefore:
« Operational semantics facilitates investigation of examplesifhg”)

« Axiomatic semantics facilitates relating a program with its specification
— verification

SE3EO03, 2006 1.66

Relating Axiomatic and Operational Semantics

* Operational semantics relat®sitesvia statements
* Axiomatic semantics relatesnditions on statesvia statements

Relating states with conditions on states:

* “sEP” means “conditiorP holds, oris valid, in states’

For example: «{x+—5y—7} x>0

« Xx—=5y—~T} E Zi%:SS
* X=5y—=T7} ¥ x>y

SE3E03, 2006 1.78

Relating Axiomatic and Operational Semantics

* Operational semantics relat®sitesvia statements
* Axiomatic semantics relatesnditions on statesvia statements

Relating states with conditions on states:
* “sEP” means “conditiorP holds, oris valid, in states’

The two readings of a Hoare trip{@}S{Q}:

Partial correctness: If Sstartsin a state satisfyirigandterminates
thenits terminating state satisfi€®

l.e.: Forall state371andaz,
if o, £ P and o0,(S) = o,theno, Q

Total correctness: If Sstartsin a state satisfyirig)

then it terminatesand its terminating state satisfi@s

l.e.: Forall statesr, if o F P,
then there isa stater,
suchthat 0,(S) = o, ando, F Q

SE3EO03, 2006 1.86 88

Proving Partial and Total Correctness

Total correctnessof {P} S {Q}

is equivalent to

partial correctnessof {P} S {Q} together withthe fact thaSterminates when
started in a state satisfyiriy

= usually, separateermination proof!

« For partial correctness, it is relatively easy to giwdir@ct proof calculus

< Proving partial correctness therefore does not need operational semantics

In the following, we will study and use this calculus

(Termination proofs use different methodswell-orderedsets)

Unless explicitly mentioned, we read{P} S {Q} ” as meaningartial
correctness

SE3E03, 2006 1.91 93

Derivation Rules for Sequencing, Conditionals, Loops

Logical consequence: P=P {P}S{Q} Q@ =0Q
{P}S{Q}

Sequence: {P}Si{R} {R1S{Q}
{P}s; $,{Q}

Conditional: {P A b}S{Q} {P A =b}S,{Q}

{P}if bthen S else S, fi{Q}

while-Loop: {INV A b}S{INV}
{INV }while bdo Sod{INV A =b}

SE3E03, 2006 1.98 100

Axiom Schema for Assignments
{P[x\ g}x := e{P}
Examples:
e {2=2}x:=2{x=2}
e {X+1=2}x:=x+1{x=2}

e {n+1=2}x:=n+1x=2}

Typically,Hoare triples are derived starting from thestcondition
— backward reasoning
Considering this axiom schema as a wagaiculatea precondition from

assignment and postcondition, it calculatestieakest preconditionthat
completes a valid Hoare triple.

SE3E03, 2006 1.107 109

Example Verification

n
{True}k := 0; s := 0; while k#ndo k:=k+1, s:=s+kod{s= Zi}
i=1

[
< {True}k := 0; s:= 0; while K#ndo k:=k+1 s:= s+kod{s:Zi Ak=n}
i=1

< {True}k := 0; s:= 0{s= Ek:i}
i=1

k k
A{s=) i}whie k#ndo k:=k+1 s:=s+kod{s= Y i Ak=n}
A 2

< {Truetk ;= 0{0= zkji}
i-1
o Yk - ofs- Y1)
izl i-1

A{s:ii Ak#n}k:=k+1; s::s+k{s:ii}
i=1 1

SE3E03, 2006 1.113 115

Example Verification (ctd.)

k
<:(True=>0:_20:i) A {ozzo:i}k = 0{0=) i}
A True)))
k k
As=) ink#n}k:=k+1{s+k=) i}
i=1 i=1

X
=

As+k=) i}si=s+k{s=) i}

i=1 i=1

< True
k+1

k
As=Y iAkEn=s+k+1l=) i
i=1 i=1

k+1

As+k+1=) itk:i=k+1s+k=) i}

i=1 i=1

=

A True

<= True

SE3E03, 2006 1.126 128

Finding Proofs of Partial Correctness

« Normally,Backward reasoningdrives the proof:
Start to consider the postcondition and how the last statement achieves it

« Forward reasoningfrom the precondition can be useful for simple assignment
sequences and for exploration

* Forwhile Ioops, the postcondition needs to consist of
— thelnvariant of this loop, and
— the negation of thiop condition

Auxiliary variables used in a loop are usually involved in the invariant!

Given a loop While b do Sod” and a postconditiof, use the consequence
rule to strengthe®@ to Q', such that

— Q' = Q (strengthening)

— Q' involves all auxiliary variables —generalisation!

— Q' is of shapdNV A —b

SE3E03, 2006 1.132 134 SE3EO03, 2006 1.136 138

Simultaneous Assignments Fibonacci
{PIx V&, ..o x \elHXy, ... X)) == (e, ...e){P} {n>0} (v,ab):=(0,11);
while y# ndo (y,a,b) ;== (y+1,b,a+b)od {a=fib}
< ((right consequence))
« {1=20k,n) == (0,){n= 2} {n>0}P{a=fib Ab=fib, Ay=n}
A(@a= fiby/\ b= fiby+l/\y: n=a=fib)

Examples:

c {y2x+2}xy) = (.,){x =y +2}
< ((sequence, logic)

{n>0} (v.a,b) := (0,1 1) {a=fib,Ab=fib,} A

Simultaneous assignments
{a= fiby Ab= fiby+1}while y#ndo Aod{a= fiby Ab= fiby+1 AY=n}

— shorten code

N True
— save auxiliary variables (for example for swapping)
— make proofs easier
— require simultaneous substitution
Example Problems (with Simultaneous Assignments) Fibonacci (ctd.)
{n>0} (v,a,b):=(0,1,1; < ((left consequence while))
while y# ndo (y,a,b) ;== (y+1,b,a+b)od {a=fib} (n>0= 1= fibyA 1=fiby,)
A {1=fiby A 1=fib,,,} (y,a,b) := (0,11 {a= fiby Ab= fiby+1}
Given ann-element C-like arrag, prove partial correctness: Na=fio nb=fib , Ay+#n}(y,ab):=(y+1ba+b)
{True} {a=fib, Ab=fib .}
(i,a) :=(0,0); < ((arithmetic, assignment, left consequenge)
while i #n True A True
do if x = 9i] A(a=fio, Ab=fib Ay #n=Db= fib,,, Aa+b=fib ..
then (i,a) ;= (i+1lLa+1) A{b= fiby+l ANa+b= fib(y+1)+1} (y,a,b) :=(y+1b,a+h)
fi od {a= fiby Ab= fiby+1}

fa=#{j:N [dj]=xA0<]<n}} < ((arithmetic, assignment))

What does this program do? True A True

