SE3EO03, 2006 2.131

Exercise: Positional List Splitting

e take :: Int - [a] - [a]

take, applied to & :: Int and a listxs, returns the longest prefix o of

elements that has no more thiaelements.

e drop :: Int - [a] - [a]

drop k xs returns the suffix remaining afteske k xs.

Laws:

* take k xs + drop k xs = xs

* length (take k xs) <k

Note: splitAt k xs = (take k xs, drop k xs)

SE3E03, 2006 2.143

Guarded Definitions

signx | x> 0
| X ==

| x< O

choose :: Ord a0

choose (x,v) (y,

| x >y

| x <y

| otherwise = error "l cannot decide!”

1
0

-1

)

=E<s™

If no guard succeeds, the next pattern is tried:

take 0 _ = []

take k _ | k < 0 = error "take: negative argument”
take k [] =[]

take k (x : xs) = x : take (k — 1) xs

take 2 [5, 6, 7] =take2 (5:6:7:[])
=5:take (2-1) (6:7:[])
=5:take1(6:7:[])

5:6:take (1-2) (7:[])
5:6:take0 (7 :[])

5:6:[] =[5, 6]

280

SE3E03, 2006 2.148 297

where Clauses

If an auxiliary definition is used only locally, it should be insideeal definition,
e.g..
commaWords :: [String] - String
commaWords [] = []
commaWords (X : xs) = x + commaWordsAux Xs
where
commaWordsAux [] = []
commawWordsAux xs ="," : commaWords xs

where clauses are visiblenly within their enclosing clause, heredmmaWwords
(x :xs) = ...
where clauses are visible within all guards:
fxyly> z =
| y ==z =
ly< z =
where z = X * X

SE3E03, 2006 2.152

let Expressions

Local definitions can also be part of expressions:

fkn=Iletm=Kk ‘mod n
in if m ==
then n
else fnm

hxy= letx2=x?*x
y2 =y *y
in sgrt (x2 + y2)
Definitions can useattern bindings:
g k n=let (dm) = divMod k n
in if d ==
then [m]
else g d n ++ [m]

Guardslet andwhere bindings, andtase cases all ar&ayout sensitive

SE3E03, 2006 2.157

let or where ?

» let bindingsin expression

is anexpression

* fname patterns guardedRHSswhere bindings
is a clause that is part ofdefinition

» (where clauses can also modifase cases)

Frequently, the choice betwelst andwhere is a matter oftyle

« where clauses result in a top-down presentation

« let expressions lend themselves also to bottom-up presentations

SE3E03, 2006 2.161

case Expressions

sign x = case compare x 0 of

GT > 1
EQ > 0
LT > -1

The prelude datatyperdering has three elements and is used mostly as result typ

of the prelude functiorompare:
data Ordering = LT | EQ | GT
compare :: Ord a0 a - a - Ordering

Another example:

choose (x,v) (y,w) = case compare x y of
GT - v
LT - w
EQ - error "l cannot decide!"

306

310

SE3EO03, 2006 2.164 313

if ... then ... else and case Expressions

The typeBool can be considered as a two-element enumeration type:
data Bool = False | True

Conditional expressions are “syntactic sugar'dase expressions oveBool:

if condition _ | case condition of
then exprl True - exprl
else expr2 False — expr2

Two ways of defining functions:

Pattern Matching case

not b = case b of
True - False
False = True

not True = False
not False = True

SE3E03, 2006 2.168 317

case Expressions are “Anonymous” Pattern Matching

commaWords :: [String] - String
commaWords [] = []
commaWords (X : xs) = x + case xs of

[1-11

- ",": commaWords xs

Every use of @&ase expression can be transformed into the use of an auxiliary

function defined by pattern matching:

commaWords :: [String] - String
commaWords [] = []
commaWords (x : xs) = x + commaWordsAux Xs

commaWordsAux [] = []

commaWordsAux xs ="," : commaWords xs

SE3EO03, 2006 2.169

Some Prelude Functions — Elementary List Access

head 2 [a > a
head (x:) = X
last 2 [a] > a
last [x] = X
last (_:xs) = last xs
tail 2 o[al > [a]
tail (_:xs) = XS
init o [a]l > [a]
init [x] =
init (X:xs) = X : init xs
null : [a] -> Bool
null] = True
null (_:) = False
Some Prelude Functions — List Indexing
length [a] -> Int
length =fold \n _->n+1)0
(D] 2 [b] > Int > b
x) "o = X

(xs)y " n | n>0 = xs I (n-1)
) nm_ = error "PreludeList.!!: negative index"
1 n = error "PreludeList.!!: index too large"

319

SE3E03, 2006 2.171

Some Prelude Functions — Positional List Splitting

take 2ont -> [a] -> [4]

take 0 _ =]

take _] =]

take n (xxxs) | n>0 = x : take (n-1) xs

take _ _ = error "take: negative argument”
drop 2ont -> [a] -> [a]

drop 0 xs = XS

drop _ [] =1

drop n (_:xs) | n>0 = drop (n-1) xs

drop _ _ = error "drop: negative argument"
splitAt 2Int -> [a] -=> ([a], [a])

splitAt 0 xs = ([I,xs)

splitAt _] = (0.0

splitAt n (x:xs) | n>0 = (x:xs',xs")
where (xs',xs”) = splitAt (n-1) xs
splitAt _ = error "splitAt: negative argument”

SE3E03, 2006 2.172

Some Prelude Functions — Concatenation, Iteration

(++) = [a] -> [a] > [a]
I t+ys = ys
(xX:ixs) ++ ys = x : (Xxs ++ ys)

concat :: [[a]] -> [a]
concat = foldr (++) []

iterate t(a->a > a->[q

iterate f x = x : iterate f (f x)

repeat pa > [a]

repeat X = Xxs where Xxs = Xixs

{- repeat x = X ! repeat X -} — — for understanding

replicate
replicate n x

Dnt -> a > [q]
= take n (repeat x)

cycle o [a] -> [a]
cycle xs = xs' where Xxs' = Xs ++ Xxs’

SE3E03, 2006 2.186

Separation of Concerns: Generation and Consumption

replicate 3 '

= take 3 (repeat ') - — replicate

= take 3 (" : repeat ") - — repeat
="' : take (3 - 1) (repeat ') - — take (iii)
=TI : take 2 (repeat) - - subtraction
=" : take 2 (' : repeat ') - - repeat
=" 0 take (2 - 1) (repeat ') - — take (iii)
=" ;1" : take 1 (repeat ") - - subtraction
=" take 1 (1 : repeat 'T) - — repeat
=" take (1- 1) (repeat 'l) - - take (iii)
=" take 0 (repeat T) - — subtraction
= - - take (i)

SE3E03, 2006 2.193

Exercise: Splitting with Predicates

e takeWhile :: (a - Bool) - [a] - [a]

takeWhile, applied to a predicate and a listxs, returns the longest prefix
(possibly empty) ofks of elements that satisfy.

e dropWhile :: (a - Bool) - [a] - [a]
dropWhile p xs returns the suffix remaining aftesikeWhile p xs.

Laws:

* takeWhile p xs + dropWhile p xs = xs

e all p (takeWhile p xs) = True

e null (dropWhile p xs) || p (head (dropWhile p xs))
— if pistotal (onxs).

Note: span p xs = (takeWhile p xs, dropWhile p xs)

335

SE3E03, 2006 2.195 344

Exercise: zipWith

zip :: [a] - [b] ~ [(a, b)]
zip takes two lists and returns a list of corresponding pairs. If one input list is
short, excess elements of the longer list are discarded.

zipWith :: (a - b - c) - [a] - [b] - [c]

zipWith generalisegip by zipping with the function given as the first argument,
instead of a tupling function. For exampipwith (+) is applied to two lists
to produce the list of corresponding sums.

diagonal :: [[a]] - [a]

interprets its argument as a matrix, which may be assumed to be square, ant
returns the main diagonal of that matrix, e.qg.:

diagonal [[1,2,3],[4,5,6],[7.8,9]] = [1,5,9]

SE3E03, 2006 2.196 345

Some Prelude Functions — List Splitting with Predicates

takeWhile (@ -> Bool) -> [a] -> [a]
takeWhile p [] =]
takeWhile p (x:xs)

| p x = x : takeWhile p xs

| otherwise = []
dropWhile (@ -> Bool) -> [a] -> [a]
dropWhile p [] =]
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’

| otherwise = xs
span, break (@ -> Bool) -> [a] -> ([a],[a])
span p [] = (0.

span p xs@(x:xs’)

| p x = let (ys,zs) = span p xs’ in (X:ys,zs)
| otherwise = ([],xs)

break p = span (not . p)

SE3E03, 2006 2.206

as-Patterns

dropWhile . (a->Boal) ->[a] -> [q]
dropWhile p[] =1]
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’

| otherwise = xs

Consider matching of the third clause agaitstpwhile (< 5) [1,2,3]:

* p=(<5)

e xs = [1,2,3]

e x =1

* xs' = [2,3]

e px =(<5)1=1<5=True

Therefore:dropWhile (< 5) [1,2,3] = dropWhile (< 5) [2,3]

SE3E03, 2006 2.215

as-Patterns — 2

dropWhile .2 (a->Bool) ->[a] -> [a]
dropWhilep[] =1]
dropWhile p xs@(x:xs")

| p X = dropWhile p xs’

| otherwise = xs

Consider matching of the third clause agaitstpWhile (< 5) [5,4,3]:

* p=(<5)

* xs = [5,4,3]

e X =5

e xs' = [4,3]

* px =(<5)5=5<5=False

Therefore:dropwhile (< 5) [5,4,3] = [5,4,3]

355

364

SE3EO03, 2006 2.234 383

What We Have Seen So Far

« Functional programming: Higher-order functions, functions as arguments
and results

« Type systems: type constants and type constructors, parametric polymorphist
(type variables), type inference

* Operator precedence rules: juxtaposition as operator, “associate to the
left/right”

* Argument passing: not by value or reference, but by name
» Powerful datatypeswith simple interface: Integer, lists, lists of lists of ...

« Non-local control (evaluation on demand): modularity (e.g., generate
/ prune)

SE3E03, 2006 2.235 384

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be definedtwiectural
induction:

length i [a] - Int concat :: [[a]] - [a]

length [] =0 concat [] =[]

length (x : xs) = 1+ length xs concat (Xxs : Xss) = xs + concat xss
(+) i [a]l - [a] - [a] sum :: Numal[a] - a

[] Hys = ys sum [] =0

(x :xs) +ys =x:(xs +ys) sum (X :Xs) = X + sum xs

elem::Eqal a - [a] - Bool product :: Numal a] - a

x ‘elem’ [] = False product [] =1

x ‘elem’ (y :ys) product (x : xs) = x Oproduct xs
= X=y || x ‘elem' ys

(All these functions are in the standard prelude.)

SE3E03, 2006 2.236

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be definedtwiectural
induction:

length o [a] - Int concat :: [[a]] - [a]
length = foldr (const (1+))0 concat = foldr (+) []

(+) i [a]l - [a] - [a] sum :: Numall a] - a
Xs +H ys = foldr (:) ys xs sum = foldr (+) 0
elem :: Eqal a - [a] - Bool product :: Num al] a] - a

elemx =foldr (A yr - x=y ||r) False product = foldr (O 1

(All these functions are in the standard prelude.)

SE3E03, 2006 2.245

foldr

foldr t@->b->Db)->b->[a ->b
foldr (®) z] =z
foldr (®) z (Xixs) = X ® (foldr (®) Z XS)

foldr (®) z [X, X, Xy X, Xg]

=x, ® (foldr (®) z [X, Xz X, X])

=X, ® (x, ® (foldr (®) z [Xz X, X 1)

=X, ® (X, ® (x; & (foldr (®) z [%X, %X 1)

=X ® (X, ® (X;® (x,® (foldr (®) z [x; 1))
=X, ® (X, ® (X;® (x,® (xg@ (foldr (®) z [)))))
=X, ® (X, ® (X;® (x, ® (x5 ® 2)))

385

394

SE3E03, 2006 2.252

foldrl

foldrl t(@a->a->a ->[a > a
foldrl (| ®) [X] = X
foldrl (®) (xixs) = x ® (foldrl (®) xs)

foldrl (®) [X, Xy Xy X, X]

=X, ® (foldr1 (®) [Xy Xg Xy X)

=X, ® (x, ® (foldrl (®) [Xy X, X 1)

=X, ® (X, ® (X;® (foldrl (®) [x, Xg1)

=X 0 (X, ® (x38 (x, © (foldrl (®) [x5 1))
=X, ® (%, 8 (X8 (X, ® X))

SE3E03, 2006 2.253

List Folding

foldr abstracts structural induction over lists!

foldr c@->b->b->b->[a >0b
foldr f z [] =z

foldr f z (x:ixs) = f x (foldr f z xs)

foldrl T (@a->a->a ->[a > a
foldrl f [x] = X

foldrl f (x:xs) = f x (foldrl f xs)

foldl t(@a-=>b->a ->a->1[b > a
foldl f z [] =z

foldl f z (xixs) = foldl f (f z x) xs

foldl1 s (@a->a->a ->[a > a
foldll f (x:xs) = foldl f x xs

401

SE3EO03, 2006 2.263

Lambda-Abstraction

Named functions: Anonymous functions:
addlx =x +1 (+1)
recip x =1/ x (1/)

square x = x Ux A X - X Ox

\' X > X * X

In“A x - body”, the variablex is bound.

Typingrule

If, assumingx :: a, we can gebody :: b,then(A x - body) ::a - b

Evaluation rule 3-reduction uses substitution:

(A x > body) arg — body[x — arg]

SE3E03, 2006 2.268

Enumeration Type Definitions

data Bool = False | True
data Ordering = LT | EQ | GT

deriving (Eq, Ord, Read, Show)
deriving (Eq, Ord, Read, Show)

data Suit = Diamonds | Hearts | Spades | Clubs deriving (Eq, Ord)
Pattern matching:

not False = True
not True = False

lexicalCombineOrdering :: Ordering — Ordering - Ordering
lexicalCombineOrdering LT _ = LT

lexicalCombineOrdering EQ x = x

lexicalCombineOrdering GT _ = GT

SE3EO03, 2006 2.272

Simple data Type Definitions

data Point = Pt Int Int deriving (Eq) ——screen coordinates
This defines at the same timelata constructor:

Pt :: Int - Int - Point

Pattern matching:

addPt (Pt x1yl) (Pt x2y2) = Pt (x1 + x2) (yl + y2)

SE3E03, 2006 2.275

Multi-Constructor data Type Definitions

data Transport = Feet
| Bike

| Train Int ——price in cent

This defines at the same tirdata constructors

Feet :: Transport
Bike :: Transport
Train :: Int — Transport

Pattern matching:

cost Feet =0
cost Bike = 0
cost (Train Int) = Int

SE3EO03, 2006 2.280 429

Token Type

data Token = Number Integer
| Sep Char

| Ident String deriving (Show)
Constructors:

Number :: Integer — Token
Sep :: Char - Token
Ident :: String —» Token

Pattern Matching:

showToken (Number n) = "Number " + show n
showToken (Sep ¢) = "Sep" + show ¢
showToken (Ident s) = "Ident" + show s

(Defining this as $how :: Token - String” is the effect of ‘Heriving (Show)".)

SE3E03, 2006 2.300 449

Lexical Analysis — Haskell Example

module SimpleLexer where

import Char
data Token = Number Integer
| Sep Char
| Ident String deriving (Show)

simpleLexer :: String - [Token]
simpleLexer (c:cs)
| isDigit ¢ = lexNumber [c] cs
| isAlpha ¢ = lexldent [c] cs

| isSep ¢ Sep ¢ : simpleLexer cs
| isSpace ¢ = simpleLexer cs
| otherwise = error ("simpleLexer:illegal character:" + take 20 (c:cs))

simpleLexer [] = []

lexNumber, lexldent :: String — String — [Token]

lexNumber prefix (c:cs) | isDigit ¢ = lexNumber (prefix + [c]) cs
lexNumber prefix s = Number (read prefix) : simpleLexer s
lexldent prefix (c:cs) | isAlphaNum ¢ = lexldent (prefix + [c]) cs
lexldent prefix s = Ident prefix : simpleLexer s

isSep ¢ = ¢ ‘elem' "(Of};,+-*/"

SE3E03, 2006 2.308 457

Simple Polymorphicdata Type Definitions

The preludaype constructors Maybe, Either, Complex are defined as follows:

data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)

data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)

data Complex r = r :+ r deriving (Eq, Read, Show)
This defines at the same tirdata constructors

Nothing :: Maybe a
Just :: a - Maybe a

Left :: a —» Either a b
Right :: b - Either a b

(:+)::r > r - Complex r

SE3E03, 2006 2.315 464

Abstract Syntax Example — Haskell

Exor — Ident | Number | Expr Op Expr
data Op = MkOp String Expr *
deriving Show sNTL /N
data Expr Expr Op Expr + I
. SN I |
= Var String Expr Op Expr * Ident 20
| Num Integer | I \ / b
| Bin Expr Op Expr Ident + Ident ¢
deriving Show a/ b/
exprl = Bi.n plus x y = Bin x (MkOp "+") y
(Bin (Var "a") mult x y = Bin x (MkOp "*") y
(MkOp "+"
(Var "b")) expr2 = (Var "a" ‘plus‘ Var "b") ‘mult* Var "c"
(MkOp "*")
(Var "c")

SE3EO03, 2006 2.323 472 SE3E03, 2006 2.325

Showing Expr Some Prelude Functions — Text Processing

data Op = MkOp String lines . String -> [String]
deriving Show lines ™ =]
lines s = let (I,s") = break (\n'==) s
. in | : case s’ of [] >
showOp :: Op — String (:s") -> lines s”
showOp (MkOp s) = s
words . String -> [String]
data Expr words s = case dfgp_/!hl[l]e isSpace s of
= Var String s’ -> w : words s”
| Num Integer where (w,s”) = break isSpace s’
| Bin Expr Op Expr
unlines . [String] -> String

. unlines = foldr \ I r -=> | ++ \n' : 1) []
showExpr :: Expr - String

showExpr (Var v) = v unwords 2 [String] -> String

showExpr (Num n) = show n unwords] = "

showExpr (Bin el op e2) = 32&/\’8:3: Evv\\//]'ws)
‘(" - showExpr el + showOp op + showExpr e2 + ")" '

w
w ++ '’ unwords ws

SE3E03, 2006 2.324 473

Exercise: Text Processing

¢ lines :: String - [String]
lines breaks a string up into a list of strings at newline characters. The resultir
strings do not contain newlines.

e words :: String - [String]

words breaks a string up into a list of words, which were delimited by white
space.

e unlines :: [String] - String

unlines is an inverse operation tmes. It joins lines, after appending a
terminating newline to each.

e unwords :: [String] - String

unwords is an inverse operation t@ords. It joins words with separating
spaces.

