
SE3E03, 2006 2.131 280

Exercise: Positional List Splitting

• take : : Int → [a] → [a]

take, applied to ak : : Int and a listxs, returns the longest prefix ofxs of
elements that has no more thank elements.

• drop : : Int → [a] → [a]

drop k xs returns the suffix remaining aftertake k xs.

Laws:

• take k xs ++ drop k xs = xs

• length (take k xs) ≤ k

Note: splitAt k xs = (take k xs , drop k xs)

SE3E03, 2006 2.143 292

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ (a ,b) → (a ,b) → b
choose (x ,v) (y ,w)

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:
take 0 _ = []
take k _ | k < 0 = error "take: negative argument"
take k [] = []
take k (x : xs) = x : take (k − 1) xs

take 2 [5 , 6 , 7] = take 2 (5 : 6 : 7 : [])
= 5 : take (2 − 1) (6 : 7 : [])
= 5 : take 1 (6 : 7 : [])
= 5 : 6 : take (1 − 1) (7 : [])
= 5 : 6 : take 0 (7 : [])
= 5 : 6 : [] = [5 , 6]

SE3E03, 2006 2.148 297

where Clauses

If an auxiliary definition is used only locally, it should be inside alocal definition,
e.g.:

commaWords : : [String] → String

commaWords [] = []
commaWords (x : xs) = x ++ commaWordsAux xs

where
commaWordsAux [] = []
commaWordsAux xs = ", " : commaWords xs

where clauses are visibleonly within their enclosing clause, here “commaWords
(x : xs) = …”

where clauses are visible within all guards:

f x y | y > z = …

| y == z = …

| y < z = …

where z = x * x

SE3E03, 2006 2.152 301

let Expressions

Local definitions can also be part of expressions:

f k n = let m = k ‘mod‘ n
in if m == 0

then n
else f n m

h x y = let x2 = x * x
y2 = y * y

in sqrt (x2 + y2)

Definitions can usepattern bindings:

g k n = let (d,m) = divMod k n
in if d == 0

then [m]
else g d n ++ [m]

Guards,let andwhere bindings, andcase cases all arelayout sensitive!

SE3E03, 2006 2.157 306

let or where ?

• let bindings in expression

is anexpression

• fname patterns guardedRHSs where bindings

is a clause that is part of adefinition

• (where clauses can also modifycase cases)

Frequently, the choice betweenlet andwhere is a matter ofstyle:

• where clauses result in a top-down presentation

• let expressions lend themselves also to bottom-up presentations

SE3E03, 2006 2.161 310

case Expressions

sign x = case compare x 0 of
GT -> 1
EQ -> 0
LT -> -1

The prelude datatypeOrdering has three elements and is used mostly as result type
of the prelude functioncompare:

data Ordering = LT | EQ | GT

compare : : Ord a ⇒ a → a → Ordering

Another example:

choose (x ,v) (y ,w) = case compare x y of
GT → v
LT → w
EQ → error "I cannot decide!"

SE3E03, 2006 2.164 313

if … then … else … and case Expressions

The typeBool can be considered as a two-element enumeration type:

data Bool = False | True

Conditional expressions are “syntactic sugar” forcase expressions overBool:

if condition

then expr1

else expr2

≡
case condition of
True → expr1

False → expr2

Two ways of defining functions:

Pattern Matching

not True = False
not False = True

case

not b = case b of
True → False
False → True

SE3E03, 2006 2.168 317

case Expressions are “Anonymous” Pattern Matching

commaWords : : [String] → String
commaWords [] = []
commaWords (x : xs) = x ++ case xs of

[] → []
_ → ", " : commaWords xs

Every use of acase expression can be transformed into the use of an auxiliary
function defined by pattern matching:

commaWords : : [String] → String
commaWords [] = []
commaWords (x : xs) = x ++ commaWordsAux xs

commaWordsAux [] = []
commaWordsAux xs = ", " : commaWords xs

SE3E03, 2006 2.169 318

Some Prelude Functions — Elementary List Access

head :: [a] -> a
head (x:_) = x

last :: [a] -> a
last [x] = x
last (_:xs) = last xs

tail :: [a] -> [a]
tail (_:xs) = xs

init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs

null :: [a] -> Bool
null [] = True
null (_:_) = False

SE3E03, 2006 2.170 319

Some Prelude Functions — List Indexing

length :: [a] -> Int
length = foldl’ (\n _ -> n + 1) 0

(!!) :: [b] -> Int -> b
(x:_) !! 0 = x
(_:xs) !! n | n>0 = xs !! (n-1)
(_:_) !! _ = error "PreludeList.!!: negative index"
[] !! _ = error "PreludeList.!!: index too large"

SE3E03, 2006 2.171 320

Some Prelude Functions — Positional List Splitting

take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) | n>0 = x : take (n-1) xs
take _ _ = error "take: negative argument"

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop n (_:xs) | n>0 = drop (n-1) xs
drop _ _ = error "drop: negative argument"

splitAt :: Int -> [a] -> ([a], [a])
splitAt 0 xs = ([],xs)
splitAt _ [] = ([],[])
splitAt n (x:xs) | n>0 = (x:xs’,xs”)

where (xs’,xs”) = splitAt (n-1) xs
splitAt _ _ = error "splitAt: negative argument"

SE3E03, 2006 2.172 321

Some Prelude Functions — Concatenation, Iteration

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

concat :: [[a]] -> [a]
concat = foldr (++) []

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

repeat :: a -> [a]
repeat x = xs where xs = x:xs
{ − repeat x = x : repeat x −} − − for understanding

replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

cycle :: [a] -> [a]
cycle xs = xs’ where xs’ = xs ++ xs’

SE3E03, 2006 2.186 335

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : ’!’ : take (1 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : ’!’ : take 0 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : ’!’ : [] − − take (i)
= "!!!"

SE3E03, 2006 2.193 342

Exercise: Splitting with Predicates

• takeWhile : : (a → Bool) → [a] → [a]

takeWhile, applied to a predicatep and a listxs, returns the longest prefix
(possibly empty) ofxs of elements that satisfyp.

• dropWhile : : (a → Bool) → [a] → [a]

dropWhile p xs returns the suffix remaining aftertakeWhile p xs.

Laws:

• takeWhile p xs ++ dropWhile p xs = xs

• all p (takeWhile p xs) = True

• null (dropWhile p xs) || p (head (dropWhile p xs))

— if p is total (onxs).

Note: span p xs = (takeWhile p xs , dropWhile p xs)

SE3E03, 2006 2.195 344

Exercise: zipWith

• zip : : [a] → [b] → [(a , b)]

zip takes two lists and returns a list of corresponding pairs. If one input list is
short, excess elements of the longer list are discarded.

• zipWith : : (a → b → c) → [a] → [b] → [c]

zipWith generaliseszip by zipping with the function given as the first argument,
instead of a tupling function. For example,zipWith (+) is applied to two lists
to produce the list of corresponding sums.

• diagonal : : [[a]] → [a]

interprets its argument as a matrix, which may be assumed to be square, and
returns the main diagonal of that matrix, e.g.:

diagonal [[1,2 ,3] , [4 ,5 ,6] , [7 ,8 ,9]] = [1,5 ,9]

SE3E03, 2006 2.196 345

Some Prelude Functions — List Splitting with Predicates

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’
| otherwise = xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs’)

| p x = let (ys,zs) = span p xs’ in (x:ys,zs)
| otherwise = ([],xs)

break p = span (not . p)

SE3E03, 2006 2.206 355

as-Patterns

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause againstdropWhile (< 5) [1,2 ,3] :

• p = (< 5)

• xs = [1,2 ,3]

• x = 1

• xs’ = [2 ,3]

• p x = (< 5) 1 = 1 < 5 = True

Therefore:dropWhile (< 5) [1,2 ,3] = dropWhile (< 5) [2 ,3]

SE3E03, 2006 2.215 364

as-Patterns — 2

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause againstdropWhile (< 5) [5 ,4 ,3] :

• p = (< 5)

• xs = [5 ,4 ,3]

• x = 5

• xs’ = [4 ,3]

• p x = (< 5) 5 = 5 < 5 = False

Therefore:dropWhile (< 5) [5 ,4 ,3] = [5 ,4 ,3]

SE3E03, 2006 2.234 383

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constantsand type constructors,parametricpolymorphism
(type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to the
left/right”

• Argument passing: not by value or reference, but by name

• Powerful datatypeswith simple interface: Integer , lists, lists of lists of …

• Non-local control (evaluation on demand): modularity (e.g., generate
/ prune)

SE3E03, 2006 2.235 384

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined viastructural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

elem : : Eq a ⇒ a → [a] → Bool

x ‘elem‘ [] = False
x ‘elem‘ (y : ys)

= x ≡ y || x ‘elem‘ ys

concat : : [[a]] → [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss

sum : : Num a ⇒ [a] → a

sum [] = 0

sum (x : xs) = x + sum xs

product : : Num a ⇒ [a] → a

product [] = 1

product (x : xs) = x ∗ product xs

(All these functions are in the standard prelude.)

SE3E03, 2006 2.236 385

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined viastructural
induction:

length : : [a] → Int

length = foldr (const (1 +)) 0

(++) : : [a] → [a] → [a]
xs ++ ys = foldr (:) ys xs

elem : : Eq a ⇒ a → [a] → Bool

elem x = foldr (λ y r → x ≡ y || r) False

concat : : [[a]] → [a]
concat = foldr (++) []

sum : : Num a ⇒ [a] → a

sum = foldr (+) 0

product : : Num a ⇒ [a] → a

product = foldr (∗) 1

(All these functions are in the standard prelude.)

SE3E03, 2006 2.245 394

foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (⊗) z [] = z

foldr (⊗) z (x:xs) = x ⊗ (foldr (⊗) z xs)

foldr (⊗) z [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr (⊗) z [x2, x3, x4, x5])

= x1 ⊗ (x2 ⊗ (foldr (⊗) z [x3, x4, x5]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr (⊗) z [x4, x5])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr (⊗) z [x5]))))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (x5 ⊗ (foldr (⊗) z [])))))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (x5 ⊗ z))))

SE3E03, 2006 2.252 401

foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 (⊗) [x] = x

foldr1 (⊗) (x:xs) = x ⊗ (foldr1 (⊗) xs)

foldr1 (⊗) [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr1 (⊗) [x2, x3, x4, x5])

= x1 ⊗ (x2 ⊗ (foldr1 (⊗) [x3, x4, x5]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr1 (⊗) [x4, x5])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr1 (⊗) [x5]))))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ x5)))

SE3E03, 2006 2.253 402

List Folding

foldr abstracts structural induction over lists!

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs

SE3E03, 2006 2.263 412

Lambda-Abstraction

Named functions:

add1 x = x + 1

recip x = 1 / x

square x = x ∗ x

Anonymous functions:

(+ 1)

(1 /)

λ x → x ∗ x

\ x -> x * x

In “λ x → body”, the variablex is bound.

Typing rule:

If, assumingx : : a, we can getbody : : b, then (λ x → body) : : a → b

Evaluation rule: β-reduction uses substitution:

(λ x → body) arg → body[x 7→ arg]

SE3E03, 2006 2.268 417

Enumeration Type Definitions

data Bool = False | True deriving (Eq , Ord , Read , Show)
data Ordering = LT | EQ | GT deriving (Eq , Ord , Read , Show)

data Suit = Diamonds | Hearts | Spades | Clubs deriving (Eq , Ord)

Pattern matching:

not False = True
not True = False

lexicalCombineOrdering : : Ordering → Ordering → Ordering

lexicalCombineOrdering LT _ = LT

lexicalCombineOrdering EQ x = x

lexicalCombineOrdering GT _ = GT

SE3E03, 2006 2.272 421

Simpledata Type Definitions

data Point = Pt Int Int deriving (Eq) −− screen coordinates

This defines at the same time adata constructor:

Pt : : Int → Int → Point

Pattern matching:

addPt (Pt x1 y1) (Pt x2 y2) = Pt (x1 + x2) (y1 + y2)

SE3E03, 2006 2.275 424

Multi-Constructor data Type Definitions

data Transport = Feet
| Bike
| Train Int −− price in cent

This defines at the same timedata constructors:

Feet : : Transport

Bike : : Transport

Train : : Int → Transport

Pattern matching:

cost Feet = 0

cost Bike = 0

cost (Train Int) = Int

SE3E03, 2006 2.280 429

Token Type

data Token = Number Integer
| Sep Char
| Ident String deriving (Show)

Constructors:

Number : : Integer → Token

Sep : : Char → Token

Ident : : String → Token

Pattern Matching:

showToken (Number n) = "Number " ++ show n

showToken (Sep c) = "Sep " ++ show c

showToken (Ident s) = "Ident " ++ show s

(Defining this as “show : : Token → String” is the effect of “deriving (Show)”.)

SE3E03, 2006 2.300 449

Lexical Analysis — Haskell Example

module SimpleLexer where
import Char

data Token = Number Integer
| Sep Char
| Ident String deriving (Show)

simpleLexer : : String → [Token]
simpleLexer (c :cs)

| isDigit c = lexNumber [c] cs
| isAlpha c = lexIdent [c] cs
| isSep c = Sep c : simpleLexer cs
| isSpace c = simpleLexer cs
| otherwise = error ("simpleLexer: illegal character: " ++ take 20 (c :cs))

simpleLexer [] = []

lexNumber , lexIdent : : String → String → [Token]
lexNumber prefix (c :cs) | isDigit c = lexNumber (prefix ++ [c]) cs
lexNumber prefix s = Number (read prefix) : simpleLexer s
lexIdent prefix (c :cs) | isAlphaNum c = lexIdent (prefix ++ [c]) cs
lexIdent prefix s = Ident prefix : simpleLexer s

isSep c = c ‘elem‘ "(){};,+-*/"

SE3E03, 2006 2.308 457

Simple Polymorphicdata Type Definitions

The preludetype constructorsMaybe, Either , Complex are defined as follows:

data Maybe a = Nothing | Just a deriving (Eq , Ord , Read , Show)

data Either a b = Left a | Right b deriving (Eq , Ord , Read , Show)

data Complex r = r :+ r deriving (Eq , Read , Show)

This defines at the same timedata constructors:

Nothing : : Maybe a

Just : : a → Maybe a

Left : : a → Either a b

Right : : b → Either a b

(:+) : : r → r → Complex r

SE3E03, 2006 2.315 464

Abstract Syntax Example — Haskell

Expr → Ident | Number | Expr Op Expr

data Op = MkOp String

deriving Show

data Expr
= Var String
| Num Integer
| Bin Expr Op Expr

deriving Show

expr1 = Bin
(Bin (Var "a")

(MkOp "+")
(Var "b"))

(MkOp "*")
(Var "c")

Expr

Expr

Expr

Ident

a

Op

+

Expr

Ident

b

Op

*

Expr

Ident

c

*

+

a b

c

plus x y = Bin x (MkOp "+") y

mult x y = Bin x (MkOp "*") y

expr2 = (Var "a" ‘plus‘ Var "b") ‘mult‘ Var "c"

SE3E03, 2006 2.323 472

Showing Expr

data Op = MkOp String

deriving Show

showOp : : Op → String

showOp (MkOp s) = s

data Expr
= Var String
| Num Integer
| Bin Expr Op Expr

showExpr : : Expr → String

showExpr (Var v) = v

showExpr (Num n) = show n

showExpr (Bin e1 op e2) =
’(’ : showExpr e1 ++ showOp op ++ showExpr e2 ++ ")"

SE3E03, 2006 2.324 473

Exercise: Text Processing

• lines : : String → [String]

lines breaks a string up into a list of strings at newline characters. The resulting
strings do not contain newlines.

• words : : String → [String]

words breaks a string up into a list of words, which were delimited by white
space.

• unlines : : [String] → String

unlines is an inverse operation tolines. It joins lines, after appending a
terminating newline to each.

• unwords : : [String] → String

unwords is an inverse operation towords. It joins words with separating
spaces.

SE3E03, 2006 2.325 474

Some Prelude Functions — Text Processing

lines :: String -> [String]
lines "" = []
lines s = let (l,s’) = break (’\n’==) s

in l : case s’ of [] -> []
(_:s”) -> lines s”

words :: String -> [String]
words s = case dropWhile isSpace s of

"" -> []
s’ -> w : words s”

where (w,s”) = break isSpace s’

unlines :: [String] -> String
unlines = foldr (\ l r -> l ++ ’\n’ : r) []

unwords :: [String] -> String
unwords [] = ""
unwords [w] = w
unwords (w:ws) = w ++ ’ ’ : unwords ws

