
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3E03
Exercise Sheet 10

Design and Selection of Programming Languages

13 November 2005

This will be discussed in class

Exercise 10.1 — Correctness Proof for Bisection — 65%of Midterm 3, 2005

Written in the simple imperative programming language for which axiomatic semantics rules are available
on the distributed rule sheet, the following program fragment implements the bisection method for finding a
root of the functionf : IR → IR , wheree, m, s, x, u are all variables of type IR :

s := signum(f (x)) ;
while u > x + e do

m := u − (u − x)/ 2 ;
if signum(f (m)) ≡ s then x := m else u := m fi

 od

signum is the usual signum (sign) function: signum(z) = { 1 if z > 0
0 if z = 0
− 1 if z < 0

(a) ≈59% Using theglobal assumptions that f is acontinuous function and thate > 0 (i.e., no need to
carry this explicitly through every proof step; justmention where you use it),prove partial correctness
of the above program with respect to

• theprecondition u > x ∧ signum(f (x)) ≠ signum(f (u))
• and thepostcondition ∃ w ∈ [x, x + e] • f (w) = 0 .

(The bracket notation[x, x + e] here denotes theinterval containing exactly those real numbersz
with x ≤ z andz ≤ x + e.)

• Hint: Induce the invariant from theprecondition in this case!

(I.e.,not from the postcondition as in most previous examples.)

• Use the big sheet for this proof!

(b) ≈6% (independent from the solution of (a)!)

The postcondition given in (a) asserts that the resultingx is an approximation toan arbitrary root.
However, the root produced by this program fragment will actually be between thestarting valuesof x
andu. Provide a precondition-postcondition specification that includes this fact.

Exercise 10.2 — Abstract Syntax in Haskell — 35%of Midterm 3, 2005

The following abstract syntax datatypes for a variant of Jay adds procedure declarations and procedure calls
to the language we have seen so far, and removes while loops.

Procedure parameters are implicitly declared to be of typeint.

−− Datatypes for expressions etc.
−− are essentially as before:
type Variable = String
data Type = IntType | BoolType
data Expression

= Num Integer
| Var Variable
| BinOp Expression Operator Expression

data Operator = Op String
data Program

= Prog [Declaration] [Statement]

−− New and changed datatypes:
type ProcName = String

data Declaration
= VarDecl Variable Type
| ProcDecl ProcName [Variable] Program

data Statement
= Assignment Variable Expression
| ProcCall ProcName [Expression]
| Conditional Expression [Statement] [Statement]

(a) ≈10% With mostly C-like concrete syntax, the following is a program of this language variant:

int x ;
bool b;
void addToX (a) {

x = x + a;
}

{ // top-level block would be body of main() in C
x = 15;
addToX (27);

}

Define a Haskell valueprog1 : : Program to represent the abstract syntax tree of this program.

(b) ≈7% This abstract syntax datatype allows the representation of programs that cannot be directly
transliterated into ANSI C. Which feature does it introduce that ANSI C does not have?

Explain, and give an example for a program using this feature (preferably in C-like concrete syntax as
the example given in (a)).

(c) ≈18% Implement the Haskell functiontailCallsProg : : Program → [(ProcName , ProcName)] such
that for a programp and two procedure namesf andg, the pair(f ,g) is in tailCallsProg p exactly if in
the declaration of proceduref , there is a tail call to procedureg (i.e., in one branch of the body of This
abstract syntax datatypef , a call tog is the last executed statement).

(Define auxiliary functions as necessary.)

