McMaster University SFWR ENG 3E03
Department of Computing and Software Exercise Sheet 4
Dr. W. Kahl

Design and Selection of Programming Languages

5 October 2006

Exercise 4.1

Assume the following Haskell definitions:

size =10

squaren=n*n

Add a definition for cube with the obvious meaning, and manually perform single-stepped
expression evaluation for the expressionlie size - cube (size - 2)".

Exercise 4.2

Haskell has predefined typ&®at for single-precision floating point numbers (which we ignore in
the following) andDouble for double-precision floating point numbers.

Standard mathematical functions like
sqrt, sin, atan :: Double - Double

andpi :: Double are also available k stands fox*if k is naturalx 0 q can be used fox’ where
bothx andq are of typeDouble.

Define the following Haskell functions, with the meanings obvious from their names:

(a) sphereVolume :: Double — Double
(b) sphereSurface :: Double - Double
(c) centuryToPicosecond :: Integer — Integer

Try the last one in C or Java, too; test both, and compare the results

Exercise 4.3
Define the following Haskell functions:
(@) stutter :: [a] - [a]
duplicates each element of its argument lists, e.gtutter [1,2,3] = [1,1,2,2,3,3]
(b) splits :: [a] - [([a].[a])]

delivers for each argument list all possibilities to segment it into non-empty prefix and
suffix, e.g.:

splits [1,2,3] = [([1].[2,3]), ([1.2],[3])]
(The order is irrelevant.)
(c) rotations :: [a] - [[a]]
delivers for each argument list all different results of rotations, each result only once, e.g.:

(d)

rotations [1,2,3] = [[1,2,3], [3,1,2], [2,3,1]]

(The order is irrelevant.)

permutations :: [a] - [[a]]

delivers for each argument list all different results of permutations, each result only once, e.g.:
permutations [1,2,3] = [[1,2,3], [1,3.,2], [2,1,3], [2,3.,1], [3,1,2], [3,2,1]]

(The order is irrelevant.)

Exercise 4.4 — Defining Haskell Functions (40% of Midterm 1, 2003)
Define the follwing Haskell functions (the solutions are independent of each other):

)

(b)

(©)

(d)

(e)

polynomial :: [Double] — Double - Double
such that for coefficients,, ¢ , c,, ..., ¢, and anyx the following holds:

polynomial [c,, C,, C,, ..., C,] X = ¢, + ¢, X+ ¢, ¢ + I3 ¢, X"

e.g.: polynomial [3,4,5] 100.0 = 50403.0
Hint: Use Horner's rule:

C,+C, Ok +¢, O¢ + ¢, X' = ¢,+x ¢, +x [, + 0D+ x [(c,)ID)

findJump :: Integer - [Integer] — (Integer, Integer)

takes an integed and a list and returns the first pair afljacent elements of the list such that
the values of these two elements are farther thapart, e.g.,

findJump 3 [2,3,4,2,5,3,6,2,3,5,4,1,6] = (6,2)
If the list contains no such values, an error is produced.

suffixes :: [a] - [[a]]

delivers for each argument list all its suffixes, e.qg.:
suffixes [1,2,3,4] = [[1,2,3,4],[2,3,4],[3.,4],[4].[]]
(The order is irrelevant.)

diagonal :: [[a]] - [a]

interprets its argument as a matrix (represented as in Exercise 2.1), which may be assumed to be
square, and returns the main diagonal of that matrix, e.g.:

diagonal [[1,2,3],[4,5,6],[7,8,9]] = [15,9]

isSquare :: [[a]] —» Bool

determines whether its argument corresponds to a list-of-lists representation (as in Exercise 2.1)
of asguarematrix.

Exercise 4.5 — Haskell Evaluation (30% of Midterm 1, 2003)
Assume the following Haskell definitions to be given:

fol dr o (a->b->hb) ->b ->[a] ->b
foldr f e [] = e

foldr f e (x:xs) f x (foldr f e xs)

concat = foldr (++) []

(1) .. Bool -> Bool -> Bool - - Boolean disjunction: or
True || _ = True

False || b = b

any p = foldr ((|]]) . p) False
gen f (x,8) =x: genf (f x s)
foo k n=(k +n, n+ 2

Simulate Haskell evaluation for the following expressions (write down the sequence of intermediate
expressions):

(@ foldr (*) 11[6,7]
(b) any (> 0) (gen foo (0,1))

Exercise 4.6 — Defining Haskell Functions (20% of Midterm 1, 2004)
Define the follwing Haskell functions (the solutions are independent of each other):
(@) sum :: [Integer] - Integer
such thatsum xs evaluates to the sum of all elements of the kst
(b) all :: (a - Bool) - [a] - Bool

such thatall p xs evaluates tarue if p considered as a predicate holds for all elements,of
and toFalse if there is at least one elementsxa for which p does not hold.

E.g., all (> 1) [2..10] = True
(c) selMod :: Integer - [Integer] - [Integer]

such thatelMod k xs selects from the lists all those elements that are equivalerit tmodulo
k +1e.9.,

selMod 2 [2, 3,8, 1,2,5] = [2, 8, 2, 5]
(d) sources :: Eqalf(a,a)] - [a]
such thatsources ps returns thesources of the graphps.

Here, the lisps of pairsis considered as representing a simple graph by representing each edge
from nodex to nodey by the pair(x,y).

Thecontext “Eq a 0" just means that you may use the equality test for elements ofdype
l.e., (==)::a - a - Bool.

Example:ssources [(2,3), (3,4), (1,4), (1,5), (2,5)] = [2,]]
(The order is irrelevant.)

