McMaster University SFWR ENG 3E03
Department of Computing and Software Exercise Sheet 4
Dr. W. Kahl Solution Hints

Design and Selection of Programming Languages
5 October 2006

Exercise 4.1

Assume the following Haskell definitions:

size =10

squaren=n*n

Add a definition for cube with the obvious meaning, and manually perform single-stepped
expression evaluation for the expressiocalie size - cube (size - 2)".

Solution Hints
cube n = n Osquare n

Then:

cube size — cube (size - 2)

= (size Osquare size) - cube (size — 2)—-unfolding cube definition
= (10 Osquare 10) - cube (10 - 2)—-unfolding size definition

= (10 (10 0J10)) - cube (10 - 2)—-unfolding square definition

= (10 0100) - cube (10 - 2) ——multiplication

= 1000 - cube (10 - 2) ——multiplication

= 1000 - (10 - 2) Osquare (10 - 2)—-unfolding cube definition
= 1000 - 8 Osquare 8 ——subtraction

= 1000 - 8 J(8 U8) ——unfolding square definition
= 1000 - 8 064 ——multiplication

= 1000 - 512 ——multiplication

= 488 ——subtraction

Exercise 4.2

Haskell has predefined typ&®at for single-precision floating point numbers (which we ignore in
the following) andDouble for double-precision floating point numbers.

Standard mathematical functions like
sqrt, sin, atan :: Double - Double

andpi :: Double are also available; » k stands fox*if k is naturalx 0 g can be used fotwhere
both x andq are of typeDouble.

Define the following Haskell functions, with the meanings obvious from their names:

(&) sphereVolume :: Double — Double
(b) sphereSurface :: Double — Double
(c) centuryToPicosecond :: Integer — Integer

Try the last one in C or Java, too; test both, and compare the results

Solution Hints
Introduce auxiliary constants or functions at least for (c)!

sphereVolume :: Double -> Double
sphereVolume r = 4/3 * pi *r ~ 3

sphereSurface :: Double -> Double
sphereSurface r = 4 * pi * "2

centuryToPicosecond :: Integer -> Integer
centuryToPicosecond ¢ = ¢ * daysPerCentury * 24 * 3600 * 10 ~ 12

daysPerCentury, daysPerYear, leapYearsPerCentury :: Integer
daysPerCentury = 100 * daysPerYear + leapYearsPerCentury

leapYearsPerCentury = 24
daysPerYear = 365

(This does not take leap-seconds into account.)

In C or Java, some extra effort would be required to make this work with some integral type, since:

Main> centuryToPicosecond 1
3155673600000000000000
Main> 2 ~ 64
18446744073709551616

Exercise 4.3

Define the following Haskell functions:

(a) stutter :: [a] - [a]
duplicates each element of its argument lists, e.gtutter [1,2,3] = [1,1,2,2,3,3]
Solution Hints
stutter :: [a] -> [a]

stutter [] =]
stutter (x:xs) = x : X : stutter xs

(b) splits :: [a] - [([a],[a])]
delivers for each argument list all possibilities to segment it into non-empty prefix and
suffix, e.g.:
splits [1,2,3] = [([1],[2,3]), ([1,2].[3])]
(The order is irrelevant.)

Solution Hints
- — most “natural”;

splits [] = []

splits [x] = []
splits (x:xs) = ([x],xs) : map (pupdl (x:)) (splits xs)
-— = (x],xs) : [(x:pre, suff) | (pre,suff) <- splits

Xs |

pupdl f (xy) = (f x, y)

— — much less efficient:

splits” [] =[]
splits” (x : xs) = spl [x] xs
where

spl ys [= 1[I

spl ys (xs@(x : xs)) = (ys, xs) : spl (ys ++ [X]) xs’

— — roughly equally inefficient:
splits” xs = map (flip splitAt xs) [1 .. length xs - 1]

(c) rotations :: [a] - [[a]]
delivers for each argument list all different results of rotations, each result only once, e.g.:
rotations [1,2,3] = [[1,2,3], [3,1,2], [2,3,1]]
(The order is irrelevant.)

Solution Hints
rotations :: [a] -> [[a]]
rotations xs = xs : map (uncurry (flip (++))) (splits xs)
—— = xs : [suff ++ pre | (pre, suff) <- splits xs]

rotations’ xs = r [] xs
where
rys [l = [ys]
rys xs@(x : xs) = (xs ++ ys) : r (ys ++ [x]) xs’

(d) permutations :: [a] - [[a]]
delivers for each argument list all different results of permutations, each result only once, e.g.:
permutations [1,2,3] = [[1,2,3], [1,3,2], [2,1,3], [2,3.]], [3,1,2], [3,2,1]]
(The order is irrelevant.)
Solution Hints
permutations :: [a] -> [[a]]
permutations [] = [[]]
permutations xs =

concat [map (y:) (permutations ys) | (y : ys) <- rotations
Xs |

permutations’ [] = [[]]

permutations’ xs = concatMap permAux (rotations Xxs)
where
permAux (y : ys) = map (y:) (permutations ys)

Exercise 4.4 — Defining Haskell Functions (40% of Midterm 1, 2003)
Define the follwing Haskell functions (the solutions are independent of each other):

(a) polynomial :: [Double] — Double - Double

(b)

such that for coefﬁcient%, ¢, C,, ..., ¢, and anyx the following holds:
polynomial [C,, C,, C,, ..., C,] X = G, + ¢, X + ¢, ¢ + (I3 ¢, X"

e.g.: polynomial [3,4,5] 100.0 = 50403.0
Hint: Use Horner's rule:

C,+ ¢, X+c,O¢+ I0rc, X' = ¢, +x ¢, +xc, + OO+ x [c,) L)

Solution Hints

polynomial, polynomiall, polynomial2, polynomial3 :: [Double] -> Double -> Double
polynomial [|x =0

polynomial (c : cs) x =c¢ + x * polynomial cs X

polynomiall cs x =foldr A\cr->c +x *r)0cs
polynomial2 cs x =foldr \c ->(c +).(x *))Ocs

polynomial3 cs x =foldr ((. (x *)).(+))0cs

If we swap the argument order, we can easily abstract aeay The “A-lifting” of the
argument tafoldr however leads to rather unreadable code, presented here as a puzzle: Do the
transformations leading there yourself!

polynomial4 :: Double -> [Double] -> Double
polynomial4 x = foldr ((. (x *)).(+)) 0

findJump :: Integer - [Integer] - (Integer, Integer)

takes an integed and a list and returns the first pair afljacentelements of the list such that
the values of these two elements are farther thapart, e.g.,

findJump 3 [2,3,4,2,5,3,6,2,3,5,4,1,6] = (6,2)

If the list contains no such values, an error is produced.

Solution Hints

findJump :: Integer - [Integer] - (Integer, Integer)
findJump d [] = error "findJump: empty list"

findJump d [x] = error "findJump: singleton list"

finddumpd (x : xs{y :ys)) =ifabs (x —y) >d
then (x,y)
else findJump d xs

(c) suffixes :: [a] - [[a]]
delivers for each argument list all its suffixes, e.g.:
suffixes [1,2,3,4] = [[1,2,3,4],[2,3,4],[3.,4],[4],[1]
(The order is irrelevant.)
Solution Hints
suffixes :: [a] - [[a]]

suffixes [] = [[]]
suffixes xs{ y : ys) = xs : suffixes ys

(d) diagonal :: [[a]] - [a]
interprets its argument as a matrix (represented as in Exercise 2.1), which may be assumed to be
square, and returns the main diagonal of that matrix, e.g.:
diagonal [[1,2,3],[4,5,6],[7.,8,9]] = [1,5,9]
Solution Hints
diagonal, diagonal’ :: [[a]] - [a]
diagonal [] = []
diagonal ([] : xss) = error "not square"
diagonal ((x:xs) : xss) = x : diagonal (map tail xss)

diagonal’ = zipWith ((head .)odrop) [0..]
Discuss the use diead in the variantdiagonal’!

(e) isSquare :: [[a]] — Bool
determines whether its argument corresponds to a list-of-lists representation (as in Exercise 2.1)
of asguarematrix.
Solution Hints
The following works only for finite lists of finite lists:

isSquare, isSquare’ :: [[a]] - Bool
isSquare xs = all (((length xs) =)-length) xs

isSquare’ xs = all ((length xs) =) (map length xs)
(It is undecidable whether an inifinite list of lists has only infinite element lists.)

Exercise 4.5 — Haskell Evaluation (30% of Midterm 1, 2003)
Assume the following Haskell definitions to be given:

foldr c(@-=>b->hb->b->[a >0b

foldr f e [] = e

foldr f e (x:xs) = f x (foldr f e xs)

concat = foldr (++) []

()] :» Bool -> Bool -> Bool — — Boolean disjunction: or
True || _ = True

False || b = b

any p = foldr ((J|) . p) False
gen f (x,s) = x : gen f (f x s)
fookn=(k +n n+ 2)

Simulate Haskell evaluation for the following expressions (write down the sequence of intermediate
expressions):

(a) foldr (*) 1 [6,7]
(b) any (> 0) (gen foo (0,1))

Solution Hints

foldr (*) 1 [6,7]

=6 * (foldr (*) 1 [7])

=6* (7 * (foldr (*) 1 []))

=6*(7*1)

=6*7 - X

=42

any (> 0) (gen foo (0,1))

= foldr ((||) . (> 0)) False (gen foo (0,1))

= foldr ((||) . (> 0)) False (0 : gen foo (foo 0 1))

=((ID - (= 0)) 0 (foldr ((|) - (> 0)) False (gen foo (foo 0 1)))

= () ((> 0) 0) (foldr ((|) . (> 0)) False (gen foo (foo 0 1)))

=(|]) (0> 0) (foldr ((]]) . (> 0)) False (gen foo (foo 0 1))) -- X

= (|) False (foldr ((]]) . (> 0)) False (gen foo (foo 0 1)))

= foldr ((||) . (> 0)) False (gen foo (foo 0 1))

= foldr ((||) . (> 0)) False (gen foo (0 + 1, 1 + 2))

= foldr ((||) . (> 0)) False ((0 + 1) : gen foo (foo (0 + 1) (1 + 2)))

=) - (> 0)) (0 + 1) (foldr ((|]) . (> 0)) False (gen foo (foo (0 + 1) (1 + 2))))
=(Il) (> 0) (0 + 1)) (foldr ((|[) . (> 0)) False (gen foo (foo (0 + 1) (1 + 2))))
= (I ((0 + 1) > 0) (foldr ((|]) . (> 0)) False (gen foo (foo (0 + 1) (1 + 2)))) -- X
= (I (@ > 0) (foldr ((|]) . (> 0)) False (gen foo (foo 1 (1 + 2))))

= (||) True (foldr ((|]) . (> 0)) False (gen foo (foo 1 (1 + 2))))

= True

Exercise 4.6 — Defining Haskell Functions (20% of Midterm 1, 2004)
Define the follwing Haskell functions (the solutions are independent of each other):

(@)

(b)

(c)

(d)

sum :: [Integer] - Integer
such thatsum xs evaluates to the sum of all elements of the st
all :: (a - Bool) - [a] - Bool

such thatall p xs evaluates tdrue if p considered as a predicate holds for all elements,of
and toFalse if there is at least one elementsxa for which p does not hold.

E.g., all (> 1) [2..10] = True

selMod :: Integer — [Integer] - [Integer]

such thatelMod k xs selects from the lists all those elements that are equivalerit tmodulo
k +1e.9.,

selMod 2 [2, 3,8,1,2,5] = [2, 8, 2, 5]
sources :: Eqal(a,a)] - [a]
such thatsources ps returns thesources of the graphps.

Here, the lisps of pairsis considered as representing a simple graph by representing each edge
from nodex to nodey by the pair(x,y).

Thecontext “Eq a 0" just means that you may use the equality test for elements of dype
l.e., (==) :: a - a -» Bool.

Example:ssources [(2,3), (3,4), (1,4), (1,5), (2,5)] = [2,]]
(The order is irrelevant.)

Solution Hints

sum = foldl (+)0

sum = foldr (+) 0

sum[] =0
sum (X:XS) = X + sum Xs

all = foldr (&&) True

all p[] = True
all p (x:xs) = px && all p xs

selMod :: Integer — [Integer] — [Integer]
selMod k xs = [X | X « xs, X ‘mod’ (k+1) =k]

sources, sources’ :: Eqal(a,a)] - [a]

sources ps = let (srcs, trgs) = unzip ps
in filter (‘notElem’ trgs) srcs

sources’ ps =lettrgs=[snd p|p < ps]
in=1[x](x,y) <« ps, x ‘notElem* trgs]

