
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3E03
Exercise Sheet 4
Solution Hints

Design and Selection of Programming Languages

5 October 2006

Exercise 4.1

Assume the following Haskell definitions:

size = 10
square n = n * n

Add a definition for cube with the obvious meaning, and manually perform single-stepped
expression evaluation for the expression “cube size - cube (size - 2)”.

Solution Hints
cube n = n ∗ square n

Then:

cube size − cube (size − 2)
= (size ∗ square size) − cube (size − 2)−− unfolding cube definition
= (10 ∗ square 10) − cube (10 − 2)−− unfolding size definition
= (10 ∗ (10 ∗ 10)) − cube (10 − 2)−− unfolding square definition
= (10 ∗ 100) − cube (10 − 2) −− multiplication
= 1000 − cube (10 − 2) −− multiplication
= 1000 − (10 − 2) ∗ square (10 − 2)−− unfolding cube definition
= 1000 − 8 ∗ square 8 −− subtraction
= 1000 − 8 ∗ (8 ∗ 8) −− unfolding square definition
= 1000 − 8 ∗ 64 −− multiplication
= 1000 − 512 −− multiplication
= 488 −− subtraction

Exercise 4.2

Haskell has predefined typesFloat for single-precision floating point numbers (which we ignore in
the following) andDouble for double-precision floating point numbers.

Standard mathematical functions like

sqrt , sin , atan : : Double → Double

andpi : : Double are also available;x ^ k stands for kx if k is natural;x ∗∗ q can be used forqx where
both x andq are of typeDouble.

Define the following Haskell functions, with the meanings obvious from their names:

(a) sphereVolume : : Double → Double

(b) sphereSurface : : Double → Double

(c) centuryToPicosecond : : Integer → Integer

Try the last one in C or Java, too; test both, and compare the results

Solution Hints
Introduce auxiliary constants or functions at least for (c)!

sphereVolume :: Double -> Double
sphereVolume r = 4/3 * pi * r ^ 3

sphereSurface :: Double -> Double
sphereSurface r = 4 * pi * r^2

centuryToPicosecond :: Integer -> Integer
centuryToPicosecond c = c * daysPerCentury * 24 * 3600 * 10 ^ 12

daysPerCentury, daysPerYear, leapYearsPerCentury :: Integer
daysPerCentury = 100 * daysPerYear + leapYearsPerCentury

leapYearsPerCentury = 24
daysPerYear = 365

(This does not take leap-seconds into account.)

In C or Java, some extra effort would be required to make this work with some integral type, since:

Main> centuryToPicosecond 1
3155673600000000000000
Main> 2 ^ 64
18446744073709551616

Exercise 4.3

Define the following Haskell functions:

(a) stutter : : [a] → [a]

duplicates each element of its argument lists, e.g.:stutter [1,2 ,3] = [1,1,2 ,2 ,3 ,3]

Solution Hints
stutter :: [a] -> [a]
stutter [] = []
stutter (x:xs) = x : x : stutter xs

(b) splits : : [a] → [([a] , [a])]

delivers for each argument list all possibilities to segment it into non-empty prefix and
suffix, e.g.:

splits [1,2 ,3] = [([1] , [2 ,3]) , ([1,2] , [3])]

(The order is irrelevant.)

Solution Hints
− − most “natural”:
splits [] = []

splits [x] = []
splits (x:xs) = ([x],xs) : map (pupd1 (x:)) (splits xs)

− − = ([x],xs) : [(x:pre, suff) | (pre,suff) <- splits
xs]

pupd1 f (x,y) = (f x, y)

− − much less efficient:
splits’ [] = []
splits’ (x : xs) = spl [x] xs

where
spl ys [] = []
spl ys (xs@(x : xs’)) = (ys, xs) : spl (ys ++ [x]) xs’

− − roughly equally inefficient:
splits” xs = map (flip splitAt xs) [1 .. length xs - 1]

(c) rotations : : [a] → [[a]]

delivers for each argument list all different results of rotations, each result only once, e.g.:

rotations [1,2 ,3] = [[1,2 ,3] , [3 ,1,2] , [2 ,3 ,1]]

(The order is irrelevant.)

Solution Hints
rotations :: [a] -> [[a]]
rotations xs = xs : map (uncurry (flip (++))) (splits xs)

− − = xs : [suff ++ pre | (pre, suff) <- splits xs]

rotations’ xs = r [] xs
where

r ys [] = [ys]
r ys xs@(x : xs’) = (xs ++ ys) : r (ys ++ [x]) xs’

(d) permutations : : [a] → [[a]]

delivers for each argument list all different results of permutations, each result only once, e.g.:

permutations [1,2 ,3] = [[1,2 ,3] , [1,3 ,2] , [2 ,1,3] , [2 ,3 ,1] , [3 ,1,2] , [3 ,2 ,1]]

(The order is irrelevant.)

Solution Hints
permutations :: [a] -> [[a]]
permutations [] = [[]]
permutations xs =

concat [map (y:) (permutations ys) | (y : ys) <- rotations
xs]

permutations’ [] = [[]]

permutations’ xs = concatMap permAux (rotations xs)
where

permAux (y : ys) = map (y:) (permutations ys)

Exercise 4.4 — Defining Haskell Functions (40%of Midterm 1, 2003)

Define the follwing Haskell functions (the solutions are independent of each other):

(a) polynomial : : [Double] → Double → Double

such that for coefficientsc0, c1, c2, …, cn and anyx the following holds:

polynomial [c0, c1, c2, …, cn] x = c0 + c1 ⋅ x + c2 ⋅ 2x + ⋅ ⋅ ⋅ + cn ⋅ nx

e.g.: polynomial [3 ,4 ,5] 100.0 = 50403.0

Hint: Use Horner’s rule:

c0 + c1 ⋅ x + c2 ⋅ 2x + ⋅ ⋅ ⋅ + cn ⋅ nx = c0 + x ⋅ (c1 + x ⋅ (c2 + ⋅ ⋅ ⋅ + x ⋅ (cn)⋅ ⋅ ⋅))

Solution Hints
polynomial, polynomial1, polynomial2, polynomial3 :: [Double] -> Double -> Double
polynomial [] x = 0
polynomial (c : cs) x = c + x * polynomial cs x

polynomial1 cs x = foldr (\ c r -> c + x * r) 0 cs

polynomial2 cs x = foldr (\ c -> (c +) . (x *)) 0 cs

polynomial3 cs x = foldr ((. (x *)) . (+)) 0 cs

If we swap the argument order, we can easily abstract awaycs. The “λ-lifting” of the
argument tofoldr however leads to rather unreadable code, presented here as a puzzle: Do the
transformations leading there yourself!

polynomial4 :: Double -> [Double] -> Double
polynomial4 x = foldr ((. (x *)) . (+)) 0

(b) findJump : : Integer → [Integer] → (Integer , Integer)

takes an integerd and a list and returns the first pair ofadjacentelements of the list such that
the values of these two elements are farther thand apart, e.g.,

findJump 3 [2 ,3 ,4 ,2 ,5 ,3 ,6 ,2 ,3 ,5 ,4 ,1,6] = (6 ,2)

If the list contains no such values, an error is produced.

Solution Hints
findJump : : Integer → [Integer] → (Integer , Integer)
findJump d [] = error "findJump: empty list"
findJump d [x] = error "findJump: singleton list"

findJump d (x : xs ≅ (y : ys)) = if abs (x − y) > d
then (x ,y)
else findJump d xs

(c) suffixes : : [a] → [[a]]

delivers for each argument list all its suffixes, e.g.:

suffixes [1,2 ,3 ,4] = [[1,2 ,3 ,4] , [2 ,3 ,4] , [3 ,4] , [4] , []]

(The order is irrelevant.)

Solution Hints
suffixes : : [a] → [[a]]
suffixes [] = [[]]
suffixes xs ≅ (y : ys) = xs : suffixes ys

(d) diagonal : : [[a]] → [a]

interprets its argument as a matrix (represented as in Exercise 2.1), which may be assumed to be
square, and returns the main diagonal of that matrix, e.g.:

diagonal [[1,2 ,3] , [4 ,5 ,6] , [7 ,8 ,9]] = [1,5 ,9]

Solution Hints
diagonal , diagonal’ : : [[a]] → [a]
diagonal [] = []
diagonal ([] : xss) = error "not square"
diagonal ((x :xs) : xss) = x : diagonal (map tail xss)

diagonal’ = zipWith ((head .) ° drop) [0..]

Discuss the use ofhead in the variantdiagonal’!

(e) isSquare : : [[a]] → Bool

determines whether its argument corresponds to a list-of-lists representation (as in Exercise 2.1)
of a square matrix.

Solution Hints
The following works only for finite lists of finite lists:

isSquare , isSquare’ : : [[a]] → Bool
isSquare xs = all (((length xs) ≡) ° length) xs

isSquare’ xs = all ((length xs) ≡) (map length xs)

(It is undecidable whether an inifinite list of lists has only infinite element lists.)

Exercise 4.5 — Haskell Evaluation (30%of Midterm 1, 2003)

Assume the following Haskell definitions to be given:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)

concat = foldr (++) []

(||) :: Bool -> Bool -> Bool − − Boolean disjunction: or
True || _ = True
False || b = b

any p = foldr ((||) . p) False

gen f (x,s) = x : gen f (f x s)

foo k n = (k + n, n + 2)

Simulate Haskell evaluation for the following expressions (write down the sequence of intermediate
expressions):

(a) foldr (*) 1 [6,7]

(b) any (> 0) (gen foo (0,1))

Solution Hints
foldr (*) 1 [6,7]
= 6 * (foldr (*) 1 [7])
= 6 * (7 * (foldr (*) 1 []))
= 6 * (7 * 1)
= 6 * 7 -- X
= 42

any (> 0) (gen foo (0,1))
= foldr ((||) . (> 0)) False (gen foo (0,1))
= foldr ((||) . (> 0)) False (0 : gen foo (foo 0 1))
= ((||) . (> 0)) 0 (foldr ((||) . (> 0)) False (gen foo (foo 0 1)))
= (||) ((> 0) 0) (foldr ((||) . (> 0)) False (gen foo (foo 0 1)))
= (||) (0 > 0) (foldr ((||) . (> 0)) False (gen foo (foo 0 1))) -- X
= (||) False (foldr ((||) . (> 0)) False (gen foo (foo 0 1)))
= foldr ((||) . (> 0)) False (gen foo (foo 0 1))
= foldr ((||) . (> 0)) False (gen foo (0 + 1, 1 + 2))
= foldr ((||) . (> 0)) False ((0 + 1) : gen foo (foo (0 + 1) (1 + 2)))
= ((||) . (> 0)) (0 + 1) (foldr ((||) . (> 0)) False (gen foo (foo (0 + 1) (1 + 2))))
= (||) ((> 0) (0 + 1)) (foldr ((||) . (> 0)) False (gen foo (foo (0 + 1) (1 + 2))))
= (||) ((0 + 1) > 0) (foldr ((||) . (> 0)) False (gen foo (foo (0 + 1) (1 + 2)))) -- X
= (||) (1 > 0) (foldr ((||) . (> 0)) False (gen foo (foo 1 (1 + 2))))
= (||) True (foldr ((||) . (> 0)) False (gen foo (foo 1 (1 + 2))))
= True

Exercise 4.6 — Defining Haskell Functions (20%of Midterm 1, 2004)

Define the follwing Haskell functions (the solutions are independent of each other):

(a) sum : : [Integer] → Integer

such thatsum xs evaluates to the sum of all elements of the listxs.

(b) all : : (a → Bool) → [a] → Bool

such thatall p xs evaluates toTrue if p considered as a predicate holds for all elements ofx,
and toFalse if there is at least one element inxs for which p does not hold.

E.g., all (> 1) [2..10] = True

(c) selMod : : Integer → [Integer] → [Integer]

such thatselMod k xs selects from the listxs all those elements that are equivalent tok modulo
k + 1, e.g.,

selMod 2 [2 , 3 , 8 , 1, 2 , 5] = [2 , 8 , 2 , 5]

(d) sources : : Eq a ⇒ [(a ,a)] → [a]

such thatsources ps returns thesources of the graphps.

Here, the listps of pairs is considered as representing a simple graph by representing each edge
from nodex to nodey by the pair(x ,y).

Thecontext “ Eq a ⇒ ” just means that you may use the equality test for elements of typea,
i.e., (==) : : a → a → Bool.

Example:sources [(2 ,3) , (3 ,4) , (1,4) , (1,5) , (2 ,5)] = [2 ,1]

(The order is irrelevant.)

Solution Hints

sum = foldl (+) 0

sum = foldr (+) 0

sum [] = 0
sum (x :xs) = x + sum xs

all = foldr (&&) True

all p [] = True
all p (x :xs) = p x && all p xs

selMod : : Integer → [Integer] → [Integer]
selMod k xs = [x | x ← xs , x ‘mod‘ (k +1) ≡ k]

sources , sources’ : : Eq a ⇒ [(a ,a)] → [a]

sources ps = let (srcs , trgs) = unzip ps
in filter (‘notElem‘ trgs) srcs

sources’ ps = let trgs = [snd p | p ← ps]
in = [x | (x ,y) ← ps , x ‘notElem‘ trgs]

