McMaster University SFWR ENG 3E03
Department of Computing and Software Exercise Sheet 5
Dr. W. Kahl Solution Hints

Design and Selection of Programming Languages
11 October 2006

Exercise 5.1 — Haskell Evaluation (36% of Midterm 1, 2004)
Assume the following Haskell definitions to be given:

succ n = n+l - — reduce in one step, e.gsucc 5 - 6
take :: Int ->[a] -> [a]
take 0 _ = [
take _ [] = []
= X

take n (x:xs) take (n-1) xs
feed hgy = q: feed h (g +vy) (hy)

Simulate Haskell evaluation for the following expression (write down the sequence of intermediate
expressions):

take 3 (feed succ 0 1)

Note: You may introducebbreviations for repeated subexpression®r userepetition marks for
material that is unchanged from the previous line In particularwrite “s” instead of“succ”!

Solution Hints
13 steps, 1 contractible arith

take 3 (feed succ 0 1)

= take 3 (0 : feed succ (0 + 1) (succ 1))

=0 : take (3-1) (feed succ (0 + 1) (succl))

=0 : take 2 (feed succ (0 + 1) (succ 1))

=0:take2 ((0 + 1) : feed succ ((0 + 1) + succ 1) (succ (succl)))

=0:(0+1):take (2-1) (feed succ ((0 + 1) + succ 1) (succ (succ l)))

=0:1: take (2-1) (feed succ (1+ succ 1) (succ (succl)))

=0:1: take 1 (feed succ (1+ succ 1) (succ (succ1)))

=0:1:takel1((1+ succl) : feed (+) succ ((1+ succ 1) + succ (succ 1)) (succ (succ (succ 1)
)))

=0:1:(1+ succl) :take (1-1) (feed succ ((1+ succ 1) + succ (succ 1)) (succ (succ (succ 1)
)))

=0:1:(1+2):take (1-1) (feed succ ((1+ 2) + succ (succ 1)) (succ (succ 2)))
=0:1:3:take (1-1) (feed succ (3 + succ (succ 1)) (succ (succ 2)))

=0:1:3: take 0 (feed succ (3 + succ (succ 1)) (succ (succ 2)))

=0:1:3:[]

3% per necessary step: *« 1% for reducing the right redex
» 2% for performing the reduction correctly
» -19% for not writing down

Exercise 5.2 — Finite-State Machines (25% of Midterm 1, 2004)
Let the following type synonyms be given, as in the presentation in the first lecture:

type State = Int

type Symbol = Char

type TransRel = [(State, Symbol, State)]
type FSM = (State, TransRel, [State])

(a) Definefsml :: FSM such that it represents the finite-state machine drawn above (with start state
circled and end states in boxes):

(b) Define the Haskell function isDet :: FSM - Bool such thatisDet fsm evaluates to the
Boolean value indicating whether the finite-state maclgneis deterministic or not.

For example, isDet fsm1 = False since there are twb-edges from state 1 to different nodes.

Hint: Define auxiliary functions! For example:
Calculate all start nodes of transitions ifiransRel.
Given a state, calculate all edges leaving that stateTiaraRel.

Given aSymbol and aTransRel, find all target nodes of edges with that symbol.
Given aState and aTransRel, find out whether any edges from that state violate determinacy.
Other functions may be useful, toDocument your functions!

Solution Hints

type State = Int

type Symbol = Char

type TransRel = [(State, Symbol, State)]

type FSM = (State, TransRel, [State])

fsml :: FSM --6%
fsml = (0,trl,[1])
where
trl =
[(0.a’,1)
(1°b",2)
(L,°b",3)
(2,2,1)
,(2,'¢,0)
,(3,a,2)
]

edgeStartstr = [s | (s, c,t) « tr] —--3%

outEdges tr s = [(c,t) | (s',c,t) « tr, s=s] ——3%
isUnique es (c,t) =all (t=) [t | (¢',t') —es,c’=c] —-——5%

isDetState tr s = all (isUnique es) es ——4%
where es = outEdges tr s

isDet (s0, tr, fin) = all (isDetState tr) (edgeStarts tr) ——4%

Exercise 5.3 — Haskell Typing (19% of Midterm 1, 2004)
Providedetailed derivationsof the Haskell types of the following functions:
swibble xy =[(x,y), (x++"", y+1)]
swongh=[9g((1+) . h)]

Solution Hints
Type classes have not been taught yet, only mentioned: Numeric types can be defauttagktamr
Int.

swibble :: (Num n) O String - n - [(String, n)]

Assumingl :: Integer, we must have :: Integer because ofy + 1
Since™ :: String, we also have :: String because ok + "" :: String.
Then(x,y) :: (String, Integer), and the type obwibble follows easily.

swoon :: (Numn)O((a->n) - b) - (a-n) > [b]

Assumingl :: Integer, we have(1 +) :: Integer - Integer, and because of the composition, we
must have

h ::a - Integer for some typea.

Therefore, we havé (1+)oh) :: a - Integer, and may assumg :: (a - Integer) - b for some
typeb.
Thenwe havd g ((1+)oh)] :: b, and therefore

swoon g :: (a - Integer) - b
and

swoon :: ((a - Integer) - b) - (a - Integer) - b.

Exercise 5.4 (Skeleton file is on the course pape

We define a type of transition functions that define state transitions triggeredphbys and also
producingoutputs:

type Transition state input output = (state, input) — (state, output)

(a) Define a Haskell function

process :: Transition state input output — state - [input] - [output]

that calculates the list of outputs produced by a transition function given a starting state and a list
of inputs.

Solution Hints
process tr s [] = []
process tr s (input : inputs) = let
(s', output) = tr (s, input)
in output : process tr s’ inputs

Using process from (b) and prelude functions, the definition

runprocess :: Transition state String String - state - 10 ()

runprocess tr s = do
hSetBuffering stdout LineBuffering ——requires: “import System.lO” at beginning of module
interact (unlinese- process tr sclines)

allowsrunprocess to turn a transition witlstring inputs and outputs into a runnable program.

Try: runprocess id 0

(b)

(€)

(d)

Define a transition function
countEcho :: Transition Integer String String

that keeps a counter as its state and otherwise just reproduces the input prefixed withline numbers
as output.

Try: runprocess countEcho 0
Solution Hints

countEcho (count,input) = (count’, shows count’ (' : input))
where count’ = succ count

Define a transition function
trAdd :: Transition Integer String String

that uses the prelude functiomsad and show to add theinteger reading of the input to the
accumulating state, and outputs that state as a string.

Try: runprocess trAdd 0

Solution Hints
trAdd (s,input) = (s’, show s’)

where
n = read input
s=s+n

Define a transition function
polish :: Transition [Integer] String String

that implements a reverse Polish notation calculator by pushing number inputs on the stack, always
outputing the top of the stack (if present), and interpreting-, [, / as taking their arguments

from the stack and pushing the result back onto the stack.

Try: runprocess polish []

Solution Hints

polish (n : m : ks, "+") = (k : ks, show k) wherek = m + n
polish (n : m : ks, "-") = (k : ks, show k) wherek = m — n
polish (n : m : ks, "™") = (k : ks, show k) wherek = m On
polish (n : m : ks, "/") = (k : ks, show k) where k = m ‘div‘ n
polish (ks , input) = (k : ks, show k) where k = read input

