
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3E03
Exercise Sheet 6

Design and Selection of Programming Languages

18 October 2006

Exercise 6.1 — Haskell Evaluation (25%of 90 minutes Midterm 2, 2005)

Let the following Haskell definition be given:

from k = k : from (k+1)

prune True xs = []
prune False xs = xs

eat p [] = from (7 * 8)
eat p (x : xs) = x : prune (p x) (eat (not . p) xs)

Simulate Haskell evaluation for the following expression, i.e., write downthe complete sequence of
intermediate expressions:

eat (< 5) (from 5)

Note: You may introduceabbreviations for repeated subexpressions, or userepetition marks for
material that is unchanged from the previous line.

Exercise 6.2 — Haskell Typing (22%of Midterm 2, 2005)

Providedetailed derivationsof themost generalHaskell types of the following functions:

maybe x f Nothing = x

maybe x f (Just y) = f y

keepof2 k h (x,y) = k (curry h x) y

Remember:curry : : ((a , b) → c) → a → b → c

Exercise 6.3 — Defining Haskell Functions (19%of Midterm 2, 2005)

Define the following Haskell functions (the solutions are independent of each other, but each can use
functions specified in previous items):

(a) ≈5% inits : : [a] → [[a]]

such that inits xs evaluates to a list consisting of exactly all prefixes ofxs (in which order
is irrelevant).

E.g., inits [1,2 ,3] = [[] , [1] , [1,2] , [1,2 ,3]]

(This is a function exported by the standard library moduleList.)

(b) ≈6% fromThen : : Integer → Integer → [Integer]

such thatfromThen x1 x2 = [x1 , x2 ..].

(c) ≈8% fromThenTo : : Integer → Integer → Integer → [Integer]

such thatfromThenTo x1 x2 x3 = [x1 , x2 .. x3] , e.g.:

fromThenTo 5 7 9 = [5 ,7 ,9]
fromThenTo 5 7 10 = [5 ,7 ,9]
fromThenTo 7 5 10 = []
fromThenTo 7 5 1 = [7 ,5 ,3 ,1]

Note: fromThen and fromThenTo are the functions underlying the syntactic sugar[1, 3 ..] and
[1,3 .. 10] — you should not use this syntax to define these functions.

Exercise 6.4 — Simple Graphs (34%of Midterm 2, 2005)

A simple graph can be (naïvely) represented in Haskell as a list of pairs, where an edge from nodex to
nodey is represented by the pair(x ,y), and the sequencing of pairs in the list does not matter.

1 2

34

5 For example, one representation of the graph drawn to the left is

gr = [(1,2) , (2 ,3) , (2 ,5) , (3 ,4) , (4 ,1)]

Let the following type synonym be given:

type Graph a = [(a ,a)]

(a) ≈6% Define successors : : Eq a ⇒ Graph a → a → [a] such thatsuccessors g n returns a
list containing exactly the endnodes of those edges of the graphg that start at noden.

E.g., successors gr 2 = [3 , 5] and successors gr 5 = []

(b) ≈10% pathGraph : : [a] → Graph a

such thatpathGraph[x1, …, xn] evaluates to the list[(x1, x2), …, (xn−1, xn)] containing the pairs of
immediately consecutive elements inxs, e.g.,

pathGraph [2 ,3 ,4 ,1,2 ,5] = [(2 ,3) , (3 ,4) , (4 ,1) , (1,2) , (2 ,5)] , which is just another
representation fo the graph drawn above.

(c) ≈8% A path in a simple graph can be represented as a list of nodes, as above in (b). Define the
Haskell functionhasCycle : : Eq a ⇒ [a] → Bool such thathasCycle p is true if pathp contains
a cycle, i.e., if there is a node that occurs at least twice inp. For example, the path[2 ,3 ,4 ,1,2 ,5
] has a cycle around node2.

(d) ≈10% DefineedgeGraph : : Eq a ⇒ Graph a → Graph (a ,a) such thatedgeGraph g returns
theedge graph of g. This edge graph has edges ofg as nodes, and has an edge frome1 to e2 iff
the end node ofe1 is equal to the start node ofe2 (as edges ing).

(e) new Define paths :: Eq a => Graph a -> [[a]] to calculate all non-empty cycle-free paths of
a graph.

