
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3E03
Exercise Sheet 8

Design and Selection of Programming Languages

4 November 2005

Exercise 8.1 — Using Operational Semantics to Prove Incorrectness

The following Hoare triples do not hold.

For each of these Hoare triples, present a derivation in the operational semantics that proves a counterex-
ample to the statement.

(a) {x ≥ − 5} z := 5 − x {z ≤ 11 ∧ x ≥ − 3}

(b) {x ≥ − 5} z := 5 − x ; x := z + 2 {z ≤ 11 ∧ x ≥ − 3}

“Proving a counterexample” for the Hoare triple

{pre}Prog{post}
means to derive an assertion

σ1(Prog) ⇒ σ 2

involving
– a stateσ1 for whichpre holds, and
– a stateσ2 for whichpost does not hold.

Exercise 8.2 — Semantics of Exceptions

We consider a simple imperative programming language with exceptions, with the followingabstract
syntax:

Stmt ::= skip
| Id := Expr
| Stmt ; Stmt
| if Expr then Stmt elseStmt
| while Expr do Stmt
| throw Expr
| try Stmt catch(Id) Stmt

Expr ::= Id
| Num
| Bool
| Expr Op Expr

Op ::= + | − | ∗ | / | ≤ | ≥ | < | >

(a) Define Haskell datatypes for the abstract syntax of this language.

We still have the following basic semantic domains:

Val = Bool + Num values
Store = Id |→ Val (simple) stores

We denote the elements ofVal by True, False, 0, 1, 2, …

(b) For each of the following, indicate whether it denotes an element of the setStore, i.e., a possibleStore
(the notation “a → b” means exactly the pair “(a, b)”):
1. True: False: {b → {True}, n → 0}
2. True: False: {k → 7,b → 42,m → 1001,n → 1,b → False}
3. True: False: {b → 42,k → True}
4. True: False: {k → 5,b → True, s → skip}
5. True: False: {} × Val

6. True: False: {n} × {0}
7. True: False: {n} × {0, 1, 2}
8. True: False: {k, m, n} × {0}

From an operational point of view, assuming that the expressione evaluates to the numberk, the statement
“throw e” raises exceptionk.

We allowonly numbersas exceptions.

If a statement raising an exception is not enclosed by any “try _ catch” construct, then this exception
immediately leads to program termination with anuncaught exception.

If there is an enclosing “try _ catch” construct, then this is of the shape “try _ catch(i) s2” for some
identifieri and a statements2. In that case, execution proceeds immediately tos2 in an environment where
the identifieri is bound to the numerical value of the caught exception.

(c) Write down theStore that the statements2 executes from when control arrives ats2 in the following
program:

k := 100 ; try q := 42 ; throw 14 ; s := q + 1 catch(n) s2

The statement semantics needs to accommodate the possibility of locally uncaught exceptions. Therefore,
the lecture introduced an additional assertion schema for operational semantics:

σ1(s) !⇒ (σ2, x) — execution of statements starting in stateσ1 can terminate in stateσ2 rasing excep-
tion x

The lecture also showed that in the Haskell interpreter, statement interpretationwith exceptionscan be
implemented via:

interpStmtExc : : Statement → State1 → Maybe (Either State1 (State1, Exc))

This function corresponds to the operational semantics in the following way:

σ1(s) ⇒ σ 2 iff interpStmt s σ1 = Just (Left σ2)

σ1(s) !⇒ (σ2, x) iff interpStmt s σ1 = Just (Right (σ2, x))

¬∃σ 2, x • σ1(s) ⇒ σ 2 ∨
σ1(s) !⇒ (σ2, x) iff interpStmt s σ1 = Nothing

(d) Extend operationalsemanticsof expressionevaluation toallowfor thepossibility that expressioneval-
uation raises exceptions. (In particular, division by zero should be defined to raise exception 24.)

(e) Adapt also the definition of the Haskell interpreter functions accordingly.

