McMaster University SFWR ENG 3E03
Department of Computing and Software Exercise Sheet 9
Dr. W. Kahl

Design and Selection of Programming Languages
8 November 2005

| This exercise sheet has four pages and four exer{:ises.

Exercise 9.1 — Partial Correctness

For each of the following Hoare triples, determine whether it holds; if yes, prove it using the rules of
axiomatic semantics, and if no, prove a counter-example using the rules of operational sey@nticay(
abbreviate eachexpression evaluation into a single step.

(@ {x= -5}z:=5-x{z< 11}

(b) {x= -5}z:=5-x{z<110Ox= -7}

() {x= -5}z:=5-x;x:=x+z{z<110Ox=2}
(d) {z=abs(x)} if x=0then z:= —zfi {xz= - X%}

(e) {z=0}if x=0then w:=Trueelse z:= Uxfi {-w - xz=1}

Exercise 9.2 — Partial Correctness Proof — 50% of Midterm 4, 2003
Consider the following program in a language providing a Java-like printing statement:

s:=1;

r:=0;

while s< ndo
r-=r+1;

S:=s+20r+1;
printin (r +" " +9)
od

(&) What is the output of this program for= 30?
(b) Give an equation relating the valuesradndsin eachprintin statement.

(c) For this programwithout the printin statementprove partial correctness with respect to the
precondition { n > 0 } and thepostcondition{ r’<n 0O n<(r + 1¥ }.

Hint: Usetheeguation from (b)as part of the invariant!

Exercise 9.3 — Operational and Axiomatic Semantics: Base-2-Logarithm — 30% of Final 2005

(a) Define what the phrase “Statem&g partially correct with respect to the preconditi@nand
the postconditiolR’ means in terms of operational semantics.

Written in the simple imperative programming language for which operational and axiomatic semantics rules
are available on the distributed rule sheet, let the following program fragimevith int variableg, k, and
n, be given in two variants, one with simultaneous assignments, and one without::

(k,i):=(1, -1); k:=1;
while k<ndo i=-1;
(k, i):=(kDO2,i+1) while k<ndo
od; k:=k0O2;
i=i+1
od;

This program fragment is intended to calculate the base-2-logarithm ad expressed by the following
post-conditiorPost:

2<n 0O n<2*
(b) Provide a derivation in the operational semantics that shows that the precon@iitieis too
weak, i.e., that the progra (in theright variantwithout simultaneous assignmentshist partially

correct with respect to the preconditiofrie’ and the above postcondition. (You may omit the details
for expression evaluation.)

Explain why your derivation shows that.

(© Identify the weakest precondition for which the program fragnfeoan be proven partially
correct with respect to the above postconditi@xplain!

(Trueis “weaker” than every other conditid®, sinceQ [0 Trueholds for evernQ.)

(d) Formally prove tha® is partially correct with respect to the precondition you stated in (c) and
the above postcondition:

Post : - 2<n O n<2*!

Choosewhether you consider[_] only the version with simultaneous assignments (left), or
] only the version without (right).
Include all intermediate steps of the proof, abwalso theimplications used.

Exercise 9.4 — Imperative Programs with Nested Scopes — 20% of Final 2004 (adapted)

For this question, thabstract syntax of statements of SImPL-0.0 will be replaced by the following
definitions that allow declarations to occur anywhere:

data Program = MkProgram Block
type Block = [Statement]

data Statement
= Decl Variable Type
| MkBlock Block
| Assignment Variable Expression
| Conditional Expression Statement Statement
| Loop Expression Statement

(@) Change the SImPL lexer and parser to the followiogncrete statement syntax where variable
declarations are introduced by the keywert, and blocks are delimited by the keyworlgsgin and
endinstead of by braces; we also introduce the keyvakig for the empty block:

Smt skip

var Type Id ;

Id := Expr ;

if Expr then Smt elseStmt
while Expr do Snt

begin Smt" end

For notation, we use the following conventions:

— “A - B’denotes the set dbtal functionsfrom the sefAto the seB.

— “A & B’denotes the set giartial functionsfrom the setAto the seB.

— “[AT denotes the set of finite sequences (lists) of elements from the set

We choose the followingasic semantic domains

Val = Bool + Num values data Value = ValBool Bool | Vallnt Int
Sval =Va +{Q} storable values type SVal = Maybe Value

Env =1d & Sva environments type Env = Map Variable Sval

Sate =[Env] states type State = [Env]

We denote the elements ¥l by True, False, 0, 1, 2, ...

We denote the elements 8Yal by Q, True, False, 0,1, 2, ...

From anoperational point of view, a programstarts executing in astate consisting of asingle, empty
environment.

At any time, the first element of the environment list that is the state is callezithent environment.

A variable declarationvar ty v’ produces a run-time error ¥f is in the domain of the current environment,
and otherwise enteksassociated witlf2 (markinguninitialised variables) into the current environment.

When execution moves pashbagin, a new, empty current environment is added to the state. When execution
moves past the matchiremd, this current environment is dropped.

Areference to a variable (in assignments or expressions) naneéels to the first environment in the current
state that hagin its domain of definition.

Assignments and references to non-existing variables give rise to run-time errors. In expressions, variable
references to uninitialised variables (i.e., associated @jjtkalso give rise to run-time errors.

(b) Besideseachline of the following statement sequence, write down 8ge that is reachedfter
execution of the respective line (it has been written down for you in the first few lines):

skip ; [{}]
var int k ; [{ki-> Q}]
begin [{}, { ki~ Q}]
varint q; [{q- Q}, { k- Q}]
ki=9; [{a- Q}, { ki~ 9}]
varint r ;
g:=50k;
var int k;
begin
varint r ;
r-=q-8;
ki=r+5
end
q:=q+k;
end

In the following, you are asked to define the operational semantics of selected syntactic constructs. You may
want to provide derivation rules for operational semantics assertions, similar to those presented in the lecture.
In any case, also modify the definitions of the Haskell interpreter functions in the meuhfe.Eval:

evalExpr :: Expression - State - Maybe Value
interpStmt :: Statement - State — Maybe State

(c) Define the statement semanticdelyin S endfor an arbitrary statemei®: Smt.
(In Haskell, defineinterpStmt (BeginEnd stmt) for an arbitrarystmt :: Statement.)

(d) Define the statement semantics/af ty v for an arbitrary typey and an arbitrary variable name
(In Haskell, defineinterpStmt (Decl v ty) for arbitraryty :: Type andv :: Variable.)

(e) Define the remaining cases of statement semantics. Also adapt the expression sengntitsHval
.hs to this setting.

